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Abstract. For two given Hilbert spaces H and K and a given bounded linear operator A € L(H, K) having
closed range, it is well known that the Moore-Penrose inverse of A is a reflexive g-inverse G € L(K, H)
of A which is both minimum norm and least squares. In this paper, weaker equivalent conditions for an
operator G to be the Moore-Penrose inverse of A are investigated in terms of normal, EP, bi-normal, bi-EP,
¢-quasi-normal and r-quasi-normal and ¢-quasi-EP and r-quasi-EP operators.

1. Introduction

The symbol L(H, K) stands for the algebra of bounded linear operator from the Hilbert space H to the
Hilbert space K, both over the field C of complex numbers. When K = H, it will be written L(#H). The
symbol A* denotes the adjoint of an operator A € L(H,K). As usual, I and O denote the identity and the
zero operators, respectively. For A € L(H,K), let R(A) and N(A) be the range and the null space of A,
respectively.

Let H and K be Hilbert spaces. For a given operator A € L(H, K) having closed range, it is well known
that the equations AGA = A, GAG = G, (AG)* = AG and (GA)" = GA have a unique common solution for
G € L(K,H), denoted by G = A" and called the Moore-Penrose inverse of A. Moreover, an operator G
satisfying AGA = A and (AG)" = AG is called a least squares g-inverse of A and if it satisfies AGA = A and
(GA)* = GA it is called a minimum norm g-inverse of A. Also, G is called a reflexive g-inverse of A if both
AGA = A and GAG = G hold. Thus, G is the Moore-Penrose inverse of A if G is a reflexive g-inverse of A
which is both a minimum norm as well as a least squares inverse. These four conditions for defining the
Moore-Penrose inverse, established in 1955, are known in the literature as the Penrose conditions. It is well
known that the Moore-Penrose inverse is a very useful tool in Matrix Theory, Hilbert spaces, Ring Theory
and so on. Only for a few references we refer the reader to [3], [4], [7]-[13], and for the theory on Hilbert
spaces to [6].

Wealsorecall that A € £(H)is said to be a (a) normal operatorif AA* = A*A, (b) EP operatorif AAT = ATA,
(c) bi-normal operator if (AA*)(A*A) = (A*A)(AA"), (d) bi-EP operator if (AAT)(ATA) = (ATA)(AAY), (e) ¢-
quasi-normal operator if A(A*A) = (A*A)A, (f) r-quasi-normal operator if A(AA*) = (AA")A, (g) {-quasi-EP
operator if A(ATA) = (ATA)A and (h) r-quasi-EP operator if A(AA") = (AAN)A [1, 6-8].
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The main aim of this note is to study equivalent conditions to those given in Penrose equations for an
operator G to be the Moore-Penrose inverse of A by using concepts of normal, EP, bi-normal, bi-EP, {- and
r-quasi-normal, {- and r-quasi-EP operators. The pursuit of the main result is due to the fact that mentioned
conditions which are weaker than the one of being self-adjoint, can be adopted to define the Moore-Penrose
inverse of A.

2. Main Results

Let H and K be two complex Hilbert spaces. Assume that an operator A € L(H,K) having closed
range is written in a matrix form with respect to mutually orthogonal subspaces decompositions H =
R(A*) &+ N(A) and K = R(A) &+ N(A*) given by

_| A O | | RA) R(A)
A‘[ o o0 ][ N |7 MaY
where A; € L(R(A"), R(A)) is nonsingular. In this case, the Moore-Penrose generalized inverse of A has the
following matrix decomposition
[5G

[ 5|72

N(AY)
It is well known [6] that the general form of all g-inverses G € L(K, H) of A (thatis, AGA = A) is given

1)

ATl O
O O

R(A™)

by
_[AT G || R&A) R(AY)
G‘[ G G ] Ny [T V@) | ©
where G; are arbitrary linear bounded operators on corresponding subspaces for i = 2,3, 4. Clearly,
1 oAG | [ RA R(A)
AG—[O o _.[N(A*) = N |- (4)

Next technical result will be needed in the following.

Theorem 2.1. A necessary and sufficient condition for a closed range operator M € L(K) in the form

TR

N(M)
to be (a) normal, (b) EP, (c) bi-normal (d) bi-EP, (e) €-quasi-normal, (f) r-quasi-normal, (g) €-quasi-EP or (h)
r-quasi-EP is that Y = O.

IY
O O

R(M)

M= [ NOL)

Proof. First note that the bounded operator I + YY" is self-adjoint positive definite. Hence, it has a bounded
inverse [3, pp. 334]. Now, we have

.1 o + [ a+yyt o
M ‘[ % o] and M ‘[ YI+YY)y! O
by Lemma 3.3.1 in [4]. Thus, simple computations give
. _|[I1+yr O + |10 N I B
MM™=1" o o]' MM ‘[o o]' MM_[Y* Y*Y]
and
i | dEYY)TT T+ YY)lY
MM=1 v aeyyy ya+yyyy |

We now consider each of the cases.
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(a) If M is normal then MM* = M*M and directly yields Y = O.

(b) Assume that M is EP. So, from MM = M'M and their matrix forms we get (I + YY*)"'Y = O. Hence,
Y=0.

(c) If M is bi-normal then (MM")(M*M) = (M*M)(MM"). Using that

e | THYY (I+YY)Y
(MM)(MM)—» 0 o ]
and
. w_ | I+YY O
(MM)(MM)__Y*(I+YY*) o]

we get (I + YY*)Y = O. Since I + YY" is nonsingular, we thus arrive at Y = O.
(d) If M is bi-EP, the equality (MM")(M'M) = (M'M)(MM?") leads to

[ a+yy)t o
Tl ya+yy)yl o

I+YY) ! (I+YY)Y
o) o)

which implies (I + YY*)"'Y = O and again Y = O.
(e) If M is {-quasi-normal then M(M*M) = (M*"M)M. So, from

I+Yy ya+yvmn ] [ 1 Y
o) o) “ly vy

wegetY = 0.
(f) The proof in case of M is r-quasi-normal is similar to that of (e).
(g) If M is {-quasi-EP then M(M'M) = (M'M)M. Thus,

I Y] [ a+yyy!  @+Yyy)yly
O O |7 Yya+Yy)y' Y(+YY)ly

gives Y'(I+YY*)"! =Oand then Y = O.
(h) The proof in case M is r-quasi-EP is similar to that of (g).

O

Theorem 2.2. Let A € L(H,K) be a closed range operator. If G € L(K, H) is a g-inverse of A such that AG is (a)
normal, (b) EP, (c) bi-normal, (d) bi-EP, (e) {-quasi-normal, (f) r-quasi-normal, (g) {-quasi-EP or (h) r-quasi-EP then
G is a least squares g-inverse of A.

Proof. Assume that A € L(H,K) is written in the matrix form (1) and the general form for its g-inverses G
is expressed as in (3). So, AG has the expression

(5)

AG:[ I, Alcz]

O O

as it was given in (4).
If we set Y = A1Gy, and assume any of the assumptions (a)-(h) for AG, an application of Lemma 2.1
yields Y = O, that is G, = O because A; is nonsingular. Hence, from (5) we have (AG)" = AG. O

Corollary 2.3. Let A € L(H,K) be a closed range operator and G € L(K,H) be a g-inverse of A. Then the
following conditions are equivalent:

(i) AG is self-adjoint,
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(ii) AG is normal,

(iii) AGis EP,

(iv) AG is bi-normal,

(v) AGis bi-EP,

(vi) AG is {-quasi-normal,
(vil) AG is r-quasi-normal,
(viii) AG is {-quasi-EP,

(ix) AG is r-quasi-EP.

Proof. We know that a self-adjoint operator is normal, EP, bi-normal, bi-EP, {- and r-quasi-normal and ¢-
and r-quasi-EP. So, item (i) implies items (ii)-(ix). If we assume that any of the conditions (ii)-(ix) holds,
then (i) is satisfied by Theorem 2.2. Hence, the corollary follows. [

Next theorem provides a property related to minimum norm taking advantage of the one corresponding
to least squares and remarking that G is a minimum norm g-inverse of A if and only if G* is a least squares
g-inverse of A*.

Theorem 2.4. Let A € L(H, K) be a closed range operator. If G € L(K,H) is a g-inverse of A such that GA is (a)
normal, (b) EP, (c) bi-normal, (d) bi-EP, (e) {-quasi-normal, () r-quasi-normal, (g) {-quasi-EP or (h) r-quasi-EP then
G is a minimum norm g-inverse of A.

Proof. We first show that if an operator B € L(H) is (a) normal, (b) EP, (c) bi-normal, (d) bi-EP then so is
B*. In fact, it is straightforward to check the normal, bi-normal and bi-EP cases by definition and using that
(B")' = (BY)". Now, B is EP if and only if B and B* have the same range [4, 6]. Evidently, this last condition
and the fact that B* and (B*)* have the same range are equivalent, which means that B* is EP. Now, it is easy
to see that if B is {-(or r-)quasi-normal then B* is r-(or £-)quasi-normal by taking adjoint operator. Similarly,
it can be shown that if B is ¢-(or r-)quasi-EP then B* is r-(or {-)quasi-EP by using (B*)" = (B")".

Let assume now that G is a g-inverse of A such that GA is (a) normal, (b) EP, (c) bi-normal, (d) bi-EP, (e)
¢-quasi-normal, (f) r-quasi-normal, (g) {-quasi-EP or (h) r-quasi-EP. Then, G is a g-inverse of A* such that
A*G” satisfies any of the conditions (a), (b), (c), (d), (), (e), (h) or (g), respectively. Applying Theorem 2.2 we
obtain that G* is a least squares g-inverse of A*. Hence, G is a minimum norm g-inverse of A. [

Now, we are ready to give the main result, which provides a new characterization of the Moore-Penrose
inverse operator in terms of weaker conditions than those by Penrose.

Theorem 2.5. Let A € L(H,K) be a closed range operator and G € L(K, H) be a reflexive g-inverse of A. If both
AG and GA satisfy any of the following statements:

(a) normal,

(b) EP,

(¢c) bi-normal,

(d) bi-EP,

(e) t-quasi-normal,
(f) r-quasi-normal,
(g) ¢-quasi-EP,
(h) r-quasi-EP,

then G is the Moore-Penrose inverse of A.

Proof. It follows from Theorem 2.2 and Theorem 2.4 and from the uniqueness of the Moore-Penrose inverse
operator. []
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Finally, if we denote the following subclasses of L(H): hermitian, normal, bi-normal, EP, bi-EP, quasi-

normal and quasi-EP by the symbols H, N, bi — N, EP, bi —EP,{ —q—N,r—q—N,{—qg—EPand r — g — EP,
respectively, it is remarkable that

HCNCbi—-NNEP ¢ bi — EP.

These inclusions can be seen using [2, pp. 2799] and the following finite-dimensional examples. The matrix
010
Bi=|0 0 1
1 00

is normal but not hermitian. The matrix

0 1
B = [ 2i 0 ]
is bi-normal and also EP but is not normal. The matrix
01
5=|5 o)

is bi-EP and bi-normal but it is not EP. Moreover, it is well known that £- and r-quasi-normal and ¢- and
r-quasi-EP classes are different from each other as it can be seen in [5, 6], even different from the normal
class.

The previous (strict) inclusions clarify the fact that conditions used in Theorem 2.5, which are weaker
than the one of being self-adjoint, can be now adopted to define the Moore-Penrose inverse of A.
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