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Abstract. For two given Hilbert spacesH andK and a given bounded linear operator A ∈ L(H ,K ) having
closed range, it is well known that the Moore-Penrose inverse of A is a reflexive 1-inverse G ∈ L(K ,H)
of A which is both minimum norm and least squares. In this paper, weaker equivalent conditions for an
operator G to be the Moore-Penrose inverse of A are investigated in terms of normal, EP, bi-normal, bi-EP,
`-quasi-normal and r-quasi-normal and `-quasi-EP and r-quasi-EP operators.

1. Introduction

The symbol L(H ,K ) stands for the algebra of bounded linear operator from the Hilbert spaceH to the
Hilbert space K , both over the field C of complex numbers. When K = H , it will be written L(H). The
symbol A∗ denotes the adjoint of an operator A ∈ L(H ,K ). As usual, I and O denote the identity and the
zero operators, respectively. For A ∈ L(H ,K ), let R(A) and N(A) be the range and the null space of A,
respectively.

LetH andK be Hilbert spaces. For a given operator A ∈ L(H ,K ) having closed range, it is well known
that the equations AGA = A, GAG = G, (AG)∗ = AG and (GA)∗ = GA have a unique common solution for
G ∈ L(K ,H), denoted by G = A† and called the Moore-Penrose inverse of A. Moreover, an operator G
satisfying AGA = A and (AG)∗ = AG is called a least squares 1-inverse of A and if it satisfies AGA = A and
(GA)∗ = GA it is called a minimum norm 1-inverse of A. Also, G is called a reflexive 1-inverse of A if both
AGA = A and GAG = G hold. Thus, G is the Moore-Penrose inverse of A if G is a reflexive 1-inverse of A
which is both a minimum norm as well as a least squares inverse. These four conditions for defining the
Moore-Penrose inverse, established in 1955, are known in the literature as the Penrose conditions. It is well
known that the Moore-Penrose inverse is a very useful tool in Matrix Theory, Hilbert spaces, Ring Theory
and so on. Only for a few references we refer the reader to [3], [4], [7]-[13], and for the theory on Hilbert
spaces to [6].

We also recall that A ∈ L(H) is said to be a (a) normal operator if AA∗ = A∗A, (b) EP operator if AA† = A†A,
(c) bi-normal operator if (AA∗)(A∗A) = (A∗A)(AA∗), (d) bi-EP operator if (AA†)(A†A) = (A†A)(AA†), (e) `-
quasi-normal operator if A(A∗A) = (A∗A)A, (f) r-quasi-normal operator if A(AA∗) = (AA∗)A, (g) `-quasi-EP
operator if A(A†A) = (A†A)A and (h) r-quasi-EP operator if A(AA†) = (AA†)A [1, 6–8].
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The main aim of this note is to study equivalent conditions to those given in Penrose equations for an
operator G to be the Moore-Penrose inverse of A by using concepts of normal, EP, bi-normal, bi-EP, `- and
r-quasi-normal, `- and r-quasi-EP operators. The pursuit of the main result is due to the fact that mentioned
conditions which are weaker than the one of being self-adjoint, can be adopted to define the Moore-Penrose
inverse of A.

2. Main Results

Let H and K be two complex Hilbert spaces. Assume that an operator A ∈ L(H ,K ) having closed
range is written in a matrix form with respect to mutually orthogonal subspaces decompositions H =
R(A∗) ⊕⊥ N(A) andK = R(A) ⊕⊥ N(A∗) given by

A =

[
A1 O
O O

]
:
[
R(A∗)
N(A)

]
→

[
R(A)
N(A∗)

]
(1)

where A1 ∈ L(R(A∗),R(A)) is nonsingular. In this case, the Moore-Penrose generalized inverse of A has the
following matrix decomposition

A† =

[
A−1

1 O
O O

]
:
[
R(A)
N(A∗)

]
→

[
R(A∗)
N(A)

]
. (2)

It is well known [6] that the general form of all 1-inverses G ∈ L(K ,H) of A (that is, AGA = A) is given
by

G =

[
A−1 G2
G3 G4

]
:
[
R(A)
N(A∗)

]
→

[
R(A∗)
N(A)

]
, (3)

where Gi are arbitrary linear bounded operators on corresponding subspaces for i = 2, 3, 4. Clearly,

AG =

[
I A1G2
O O

]
:
[
R(A)
N(A∗)

]
→

[
R(A)
N(A∗)

]
. (4)

Next technical result will be needed in the following.

Theorem 2.1. A necessary and sufficient condition for a closed range operator M ∈ L(K ) in the form

M =

[
I Y
O O

]
:
[
R(M)
N(M∗)

]
→

[
R(M)
N(M∗)

]
,

to be (a) normal, (b) EP, (c) bi-normal (d) bi-EP, (e) `-quasi-normal, (f) r-quasi-normal, (g) `-quasi-EP or (h)
r-quasi-EP is that Y = O.

Proof. First note that the bounded operator I + YY∗ is self-adjoint positive definite. Hence, it has a bounded
inverse [3, pp. 334]. Now, we have

M∗ =

[
I O

Y∗ O

]
and M† =

[
(I + YY∗)−1 O

Y∗(I + YY∗)−1 O

]
by Lemma 3.3.1 in [4]. Thus, simple computations give

MM∗ =

[
I + YY∗ O

O O

]
, MM† =

[
I O
O O

]
, M∗M =

[
I Y

Y∗ Y∗Y

]
and

M†M =

[
(I + YY∗)−1 (I + YY∗)−1Y

Y∗(I + YY∗)−1 Y∗(I + YY∗)−1Y

]
.

We now consider each of the cases.
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(a) If M is normal then MM∗ = M∗M and directly yields Y = O.
(b) Assume that M is EP. So, from MM† = M†M and their matrix forms we get (I + YY∗)−1Y = O. Hence,

Y = O.
(c) If M is bi-normal then (MM∗)(M∗M) = (M∗M)(MM∗). Using that

(MM∗)(M∗M) =

[
I + YY∗ (I + YY∗)Y

O O

]
and

(M∗M)(MM∗) =

[
I + YY∗ O

Y∗(I + YY∗) O

]
we get (I + YY∗)Y = O. Since I + YY∗ is nonsingular, we thus arrive at Y = O.

(d) If M is bi-EP, the equality (MM†)(M†M) = (M†M)(MM†) leads to[
(I + YY∗)−1 (I + YY∗)−1Y

O O

]
=

[
(I + YY∗)−1 O

Y∗(I + YY∗)−1 O

]
which implies (I + YY∗)−1Y = O and again Y = O.

(e) If M is `-quasi-normal then M(M∗M) = (M∗M)M. So, from[
I + YY∗ Y(I + Y∗Y)

O O

]
=

[
I Y

Y∗ Y∗Y

]
we get Y = O.

(f) The proof in case of M is r-quasi-normal is similar to that of (e).
(g) If M is `-quasi-EP then M(M†M) = (M†M)M. Thus,[

I Y
O O

]
=

[
(I + YY∗)−1 (I + YY∗)−1Y

Y∗(I + YY∗)−1 Y∗(I + YY∗)−1Y

]
gives Y∗(I + YY∗)−1 = O and then Y = O.

(h) The proof in case M is r-quasi-EP is similar to that of (g).

Theorem 2.2. Let A ∈ L(H ,K ) be a closed range operator. If G ∈ L(K ,H) is a 1-inverse of A such that AG is (a)
normal, (b) EP, (c) bi-normal, (d) bi-EP, (e) `-quasi-normal, (f) r-quasi-normal, (g) `-quasi-EP or (h) r-quasi-EP then
G is a least squares 1-inverse of A.

Proof. Assume that A ∈ L(H ,K ) is written in the matrix form (1) and the general form for its 1-inverses G
is expressed as in (3). So, AG has the expression

AG =

[
Ir A1G2
O O

]
(5)

as it was given in (4).
If we set Y = A1G2, and assume any of the assumptions (a)-(h) for AG, an application of Lemma 2.1

yields Y = O, that is G2 = O because A1 is nonsingular. Hence, from (5) we have (AG)∗ = AG.

Corollary 2.3. Let A ∈ L(H ,K ) be a closed range operator and G ∈ L(K ,H) be a 1-inverse of A. Then the
following conditions are equivalent:

(i) AG is self-adjoint,
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(ii) AG is normal,
(iii) AG is EP,
(iv) AG is bi-normal,
(v) AG is bi-EP,

(vi) AG is `-quasi-normal,
(vii) AG is r-quasi-normal,

(viii) AG is `-quasi-EP,
(ix) AG is r-quasi-EP.

Proof. We know that a self-adjoint operator is normal, EP, bi-normal, bi-EP, `- and r-quasi-normal and `-
and r-quasi-EP. So, item (i) implies items (ii)-(ix). If we assume that any of the conditions (ii)-(ix) holds,
then (i) is satisfied by Theorem 2.2. Hence, the corollary follows.

Next theorem provides a property related to minimum norm taking advantage of the one corresponding
to least squares and remarking that G is a minimum norm 1-inverse of A if and only if G∗ is a least squares
1-inverse of A∗.

Theorem 2.4. Let A ∈ L(H ,K ) be a closed range operator. If G ∈ L(K ,H) is a 1-inverse of A such that GA is (a)
normal, (b) EP, (c) bi-normal, (d) bi-EP, (e) `-quasi-normal, (f) r-quasi-normal, (g) `-quasi-EP or (h) r-quasi-EP then
G is a minimum norm 1-inverse of A.

Proof. We first show that if an operator B ∈ L(H) is (a) normal, (b) EP, (c) bi-normal, (d) bi-EP then so is
B∗. In fact, it is straightforward to check the normal, bi-normal and bi-EP cases by definition and using that
(B∗)† = (B†)∗. Now, B is EP if and only if B and B∗ have the same range [4, 6]. Evidently, this last condition
and the fact that B∗ and (B∗)∗ have the same range are equivalent, which means that B∗ is EP. Now, it is easy
to see that if B is `-(or r-)quasi-normal then B∗ is r-(or `-)quasi-normal by taking adjoint operator. Similarly,
it can be shown that if B is `-(or r-)quasi-EP then B∗ is r-(or `-)quasi-EP by using (B∗)† = (B†)∗.

Let assume now that G is a 1-inverse of A such that GA is (a) normal, (b) EP, (c) bi-normal, (d) bi-EP, (e)
`-quasi-normal, (f) r-quasi-normal, (g) `-quasi-EP or (h) r-quasi-EP. Then, G∗ is a 1-inverse of A∗ such that
A∗G∗ satisfies any of the conditions (a), (b), (c), (d), (f), (e), (h) or (g), respectively. Applying Theorem 2.2 we
obtain that G∗ is a least squares 1-inverse of A∗. Hence, G is a minimum norm 1-inverse of A.

Now, we are ready to give the main result, which provides a new characterization of the Moore-Penrose
inverse operator in terms of weaker conditions than those by Penrose.

Theorem 2.5. Let A ∈ L(H ,K ) be a closed range operator and G ∈ L(K ,H) be a reflexive 1-inverse of A. If both
AG and GA satisfy any of the following statements:

(a) normal,
(b) EP,
(c) bi-normal,
(d) bi-EP,
(e) `-quasi-normal,
(f) r-quasi-normal,
(g) `-quasi-EP,
(h) r-quasi-EP,

then G is the Moore-Penrose inverse of A.

Proof. It follows from Theorem 2.2 and Theorem 2.4 and from the uniqueness of the Moore-Penrose inverse
operator.
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Finally, if we denote the following subclasses of L(H): hermitian, normal, bi-normal, EP, bi-EP, quasi-
normal and quasi-EP by the symbols H, N, bi−N, EP, bi− EP, ` − q−N, r− q−N, ` − q− EP and r− q− EP,
respectively, it is remarkable that

H  N  bi −N ∩ EP  bi − EP.

These inclusions can be seen using [2, pp. 2799] and the following finite-dimensional examples. The matrix

B1 =

 0 1 0
0 0 1
1 0 0


is normal but not hermitian. The matrix

B2 =

[
0 1
2i 0

]
is bi-normal and also EP but is not normal. The matrix

B3 =

[
0 1
0 0

]
is bi-EP and bi-normal but it is not EP. Moreover, it is well known that `- and r-quasi-normal and `- and
r-quasi-EP classes are different from each other as it can be seen in [5, 6], even different from the normal
class.

The previous (strict) inclusions clarify the fact that conditions used in Theorem 2.5, which are weaker
than the one of being self-adjoint, can be now adopted to define the Moore-Penrose inverse of A.
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