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Abstract. Let R be a ring with unity and let a, 1 ∈ R be such that a is regular. In this article, the generalized
invertibility of a1 + 1 − aa− are investigated in term of the generalized invertibility of elements in a corner
ring. As applications, several equivalent conditions on the Drazin invertibility of product and difference
of idempotents are obtained. Moreover, we present the equivalent conditions for the existence of Moore-
Penrose inverse in a ring with involution.

1. Introduction

Throughout this paper, R is an associative ring with unity. Given an element a ∈ R, a is (von Neumann)
regular if there exists b ∈ R such that a = aba. In this case, the element b is called an inner inverse of a
and we will denote it by a−. By a{1} = {b ∈ R : aba = a} we denote the set of all inner inverses of a. Let
∗ be an involution (anti-isomorphism of degree 2) on R. That is, the involution satisfies (a + b)∗ = a∗ + b∗,
(ab)∗ = b∗a∗ and (a∗)∗ = a for all a, b ∈ R. If x satisfies axa = a and (ax)∗ = ax, then x is a {1, 3}-inverse of a. If
y satisfies aya = a and (ya)∗ = ya, then y is a {1, 4}-inverse of a. The standard notions of group, Drazin and
Moore-Penrose inverse can be referred to the literature [5, 10]. From now on, R#, RD and R† stand for the set
of all group invertible elements, the set of all Drazin invertible elements and the set of all Moore-Penrose
invertible elements of R, respectively.

A motivation for this research appeared in [7]. There, the authors investigated the (Drazin) invertibility
of a1 + 1 − aa− for a, 1 ∈ R when a is regular. If we set e = aa− and b = a1, then

t = a1 + 1 − aa− = eb + 1 − e. (1)

In [9], the relation between generalized invertible elements of eRe and eRe + 1 − e was obtained. It should
be stressed that the set

eRe + 1 − e = {exe + 1 − e : x ∈ R},
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is a (multiplicative) semigroup. The subrings of the form eRe are called corner rings. In section 3, the Drazin
and group invertibility of a1 + 1 − aa− are investigated in term of the generalized invertibility of elements
in a corner ring. As applications, several equivalent conditions on the Drazin invertibility of product and
difference of idempotents are obtained. In section 4, we consider the Moore-Penrose invertibility in a corner
ring. Moreover, we present the equivalent conditions for the existence of Moore-Penrose inverse in a ring
with involution.

2. Preliminaries

In this section, we will introduce some lemmas which will play an important role in the forthcoming
section. Let e ∈ R be an idempotent. The group Ue of e-units in the corner ring eRe is given by Ue = {exe :
exeR = eR,Rexe = Re}. We can link elements in Ue and invertible elements in eRe + 1 − e.

Lemma 2.1. [1] Let R be a ring with unity and e ∈ R be an idempotent. Then, for all x ∈ R,

exe ∈ Ue if and only if exe + 1 − e is invertible if and only if ex + 1 − e is invertible.

Lemma 2.2. [9] Let a ∈ R and e ∈ R be an idempotent. Then the following statements are equivalent:
(i) eae is Drazin invertible in eRe.
(ii) eae + 1 − e is Drazin invertible in R.

Lemma 2.3. [9] Let R be a ring with involution ∗, and let a, e ∈ R be such that e2 = e∗ = e. Then, for all x ∈ R, the
following statements are equivalent:

(i) eae is Moore-Penrose invertible in eRe.
(ii) eae + 1 − e is Moore-Penrose invertible in R.

Lemma 2.4. (i) [2, Theorem 3.6][Jacobson lemma] Let a, b ∈ R. If 1 − ab is (group) Drazin invertible with
ind(1 − ab) = k, then 1 − ba is (group) Drazin invertible with ind(1 − ba) = k and

(1 − ba)D = 1 + b((1 − ab)D
− (1 − ab)πr)a,

where r =
∑k−1

i=0 (1 − ab)i.
(ii) [4, Cline’s Formula] Let a, b ∈ R and ab is Drazin invertible. Then ba is Drazin invertible too and

(ba)D = b((ab)D)2a.

3. Drazin Invertibility in a Corner Ring

Patricio in [7, Theorem 3.1] have considered the (Drazin) invertibility of the element a1+ 1− aa− when a
is regular. In what follows, we provide new proofs of some results in [7] in term of the Drazin invertibility
of elements in a corner ring. It is well known that x ∈ R is Drazin invertible if and only if xk

∈ xk+1R∩Rxk+1

for some k ∈N+, whereN+ denote the set of all positive integer numbers.

Theorem 3.1. [7, theorem 3.1] Let a, 1 ∈ R be such that a is regular with an inner inverse a−. The element a1+1−aa−

is Drazin invertible in R if and only if (a1)ka ∈ (a1)k+1aR ∩ R(a1)k+1a for some k ∈N+.

Proof. In view of (1.1), Lemma 2.2 and Lemma 2.4, one can see that a1 + 1 − aa− is Drazin invertible in R if
and only if ebe is Drazin invertible in eRe.

As a matter of fact, ebe is Drazin invertible in eRe if and only if (ebe)k
∈ (ebe)k+1Re ∩ eR(ebe)k+1 for some

k ∈N+. We note that

(ebe)k
∈ (ebe)k+1Re ∩ eR(ebe)k+1 if and only if (a1)ka ∈ (a1)k+1aR ∩ R(a1)k+1a.

Indeed, if (ebe)k
∈ (ebe)k+1Re∩ eR(ebe)k+1, there exist x, y ∈ R such that (ebe)k = (ebe)k+1xe = ey(ebe)k+1. That is,

(a1)kaa− = (a1)k+1aa−xaa− = aa−y(a1)k+1aa−.

Premultiplication by a gives (a1)ka = (a1)k+1aa−xa = aa−y(a1)k+1a, and thus,
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(a1)ka ∈ (a1)k+1aR ∩ R(a1)k+1a.

Conversely, if (a1)ka ∈ (a1)k+1aR ∩ R(a1)k+1a, then

(a1)kaa− ∈ (a1)k+1aRa− ∩ R(a1)k+1aa−.

It gives (ebe)k
∈ (ebe)k+1eaRa− ∩ R(ebe)k+1, and then (ebe)k

∈ (ebe)k+1R ∩ R(ebe)k+1. This shows that (ebe)k
∈

(ebe)k+1Re ∩ eR(ebe)k+1, as desired.

As we known, if a ∈ R is regular, then a + 1− aa− is invertible if and only if a is group invertible (See [9]).
From Theorem 3.1, set 1 = 1, we obtain the following corollary.

Corollary 3.2. Let a ∈ R be regular with an inner inverse a−. Then a + 1 − aa− ∈ RD if and only if a ∈ RD.

Lemma 3.3. [9] Let a ∈ R and e ∈ R be an idempotent. Then the following statements are equivalent:
(i) eae is group invertible in eRe.
(ii) eae + 1 − e is group invertible in R.

Remark 3.4. It is worth to mention that, if e ∈ R be an idempotent, eae is group invertible in eRe if and only if eae is
group invertible in R. From Lemma 3.3 and Lemma 2.4 (i), if a is regular and let a− be an arbitrary inner inverse of
a, we set e = aa−, then one can obtain that

a2a− ∈ R] ⇐⇒ a2a− + 1 − aa− ∈ R] ⇐⇒ a + 1 − aa− ∈ R]

Next, we will give a counter example to show that a2a− ∈ R] < a ∈ R]. It also implies that a + 1 − aa− ∈
R] < a ∈ R].

Example 3.5. Set a =

(
0 1
0 0

)
. Note that a2 = 0 and then a2a− is group invertible. Choose a− =

(
0 0
1 0

)
, and it

is easy to check that s = a + 1 − aa− =

(
0 1
0 1

)
is not invertible in R, this leads to a < R].

In view of Corollary 3.2 and Remark 3.4, one can see that

a2a− ∈ R] ⇐⇒ a + 1 − aa− ∈ R] =⇒ a ∈ RD

But next example show that the converse is not true, in general.

Example 3.6. Set a =

 0 1 0
0 0 1
0 0 0

. It is easy to check that a3 = 0 and aD = 0. We can choose a− =

 0 0 0
1 0 0
0 1 0


and thus, x = a2a− =

 0 1 0
0 0 0
0 0 0

. Choose x− =

 0 0 0
1 0 0
0 0 0

, then x + 1 − xx− =

 0 1 0
0 1 0
0 0 1

 is not invertible in

R, this leads to x < R], that is, a2a− < R].

As an application, in what follows, p and q always mean two arbitrary idempotents in a ring R. In [3,
proposition 3.1], several equivalent conditions on the Drazin invertibility of 1 − pq are given. As a matter
of fact, it is a direct consequence of Lemma 2.2. Firstly, it is easy to check that prp ∈ (pRp)D if and only if
prp ∈ RD for any r ∈ R.

Theorem 3.7. The following statements are equivalent:
(1) 1 − pq ∈ RD, (2) p − pq ∈ RD, (3) p − qp ∈ RD, (4) 1 − pqp ∈ RD, (5) p − pqp ∈ RD,
(6) 1 − qp ∈ RD, (7) q − qp ∈ RD, (8) q − pq ∈ RD, (9) 1 − qpq ∈ RD, (10) q − qpq ∈ RD.
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Proof. Note that item (5) p − pqp ∈ RD if and only if p(1 − q)p ∈ (pRp)D. By Lemma 2.2, it is equivalent to
p(1− q)p + 1− p ∈ RD, that is, (4) 1− pqp ∈ RD holds. By Lemma 2.4 (i), it is equivalent to (1) 1− pq ∈ RD. For
item (2) and (3), since (5) p(1 − q)p ∈ RD holds, we can check them directly by Lemma 2.4 (ii). Similarly, we
obtain that (6), (7), (8), (9) and (10) hold.

In [3, Theorem 3.4], it is proven that p(p − q)p ∈ RD if and only if p − q ∈ RD. In the following, we extend
the result to the p(p − q)np ∈ RD case. We need to give some elementary and known results which play an
important role in the next theorem.

Lemma 3.8. [5] Let a ∈ R. Then a is Drazin invertible if and only if am is Drazin invertible for some (any) integer
m.

Lemma 3.9. [5] Let a, b ∈ RD with ab = ba. Then ab ∈ RD and (ab)D = bDaD.

Theorem 3.10. The following statements are equivalent:
(i) p − q ∈ RD.
(ii) p(p − q)np ∈ RD for any n > 1.
(iii) p(p − q)np ∈ RD for some n > 1.

Proof. Let us first observe that p(p − q)2 = p − pqp = (p − q)2p. Then we have p(p − q)2k = (p − q)2kp for any
integer k > 1. Thus, we claim that

p(p − q)2k−1p = p(p − q)2kp. (2)

We now proceed by induction on k. If k = 1, then it is clear that p(p − q)2 = p(p − q)p = (p − q)2p. Assume
that the result is true for some k > 1. This implies that p(p − q)2k−1p = p(p − q)2kp, and thus

p(p − q)2k+1p = p(p − q)2k−1(p − q)2p = p(p − q)2k−1p(p − q)2p

= p(p − q)2kp(p − q)2p = p(p − q)2k+2p.

(i) ⇒ (ii) By Lemma 3.8, p − q ∈ RD if and only if (p − q)k
∈ RD for any k > 1. From (3.1) and Lemma

3.9, we obtain p(p − q)2n−1p = (p − q)2np = p(p − q)2n = p(p − q)2np is Drazin invertible. This implies that
p(p − q)np ∈ RD whenever n is odd or even integer.

(ii)⇒ (iii) It is clear.
(iii)⇒ (i) By (3.1), there exists an even number n such that p(p−q)np ∈ RD. This gives that p(p−q)2kp ∈ RD

for some k ∈N. Note that
(p − q)2 = p(1 − q) + q(1 − p).

Set A = p(1 − q) and B = q(1 − p). By Bp = 0 and AB = BA = 0, it is easy to get

p(p − q)2kp = p(Ak + Bk)p = pAkp = Akp.

From Lemma 2.4 (ii) and Lemma 3.8, we have p(p − q)2kp ∈ RD
⇐⇒ A ∈ RD. By Theorem 3.7, one can see

A ∈ RD
⇐⇒ B ∈ RD.

Then A+B ∈ RD and (A+B)D = AD +BD since AB = BA = 0. That implies that (p−q)2
∈ RD and p−q ∈ RD.

4. Moore-Penrose Invertibility in a Corner Ring

In what follows, R denotes an associate ring with unity and involution ∗. Moore-Penrose invertibility in
a corner ring is considered in this section. Moreover, we present the equivalent conditions for the existence
of Moore-Penrose inverse in R.

Lemma 4.1. [7, corollary 3.1] Let a, 1 ∈ R be such that a is regular with an inner inverse a−. Then a1 + 1 − aa− is
invertible if and only if a ∈ a1aR ∩ Ra1a.
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Proof. Set b = a1 and e = aa−. From Lemma 2.1, it implies that a1 + 1 − aa− is invertible if and only if
e ∈ ebeR ∩ Rebe. That is, aa− ∈ a1aa−R ∩ Ra1aa−. We claim that aa− ∈ a1aa−R ∩ Ra1aa− is equivalent to
a ∈ a1aR ∩ Ra1a. Indeed,
“⇒ ” aa− = a1aa−x = ya1aa− for some x, y ∈ R. Then a = a1aa−xa = ya1a, so a ∈ a1aR ∩ Ra1a.
“⇐ ” a = a1at = sa1a for some s, t ∈ R. Then aa− = a1aa−ata− = sa1aa−, so aa− ∈ a1aa−R ∩ Ra1aa−.

Proposition 4.2. Let a ∈ R be regular. Then the following statements are equivalent:
(i) a ∈ R†.
(ii) a ∈ aa∗aR ∩ Raa∗a.
(iii) a ∈ aa∗R ∩ Ra∗a.

Proof. (i)⇔ (ii) Note that a ∈ R† if and only if u = 1 + aa∗ − aa− is an unit of R, where a− is an arbitrary inner
inverse of a (See [6, Theorem 1.1]). From Lemma 4.1, it is easy to get a ∈ R† if and only if a ∈ aa∗aR ∩ Raa∗a.

(ii)⇒ (iii) It is clear.
(iii) ⇒ (ii) There exist r1, r2 ∈ R such that a = aa∗r1 = r2a∗a. It implies that a = a(r2a∗a)∗r1 = aa∗ar∗2r1 and

a = r2(aa∗r1)∗a = r2r∗1aa∗a. So, we have a ∈ aa∗aR ∩ Raa∗a.

In the following, we give new characterizations for an element a to have Moore-Penrose inverse.

Theorem 4.3. Let a ∈ R. The following statements are equivalent:
(i) a ∈ R†.
(ii) a ∈ aa∗aR.
(iii) a ∈ Raa∗a.

Proof. (i)⇒ (ii) See Proposition 4.2.
(ii)⇒ (i) Since a ∈ aa∗aR, there exists x ∈ R such that a = aa∗ax and a∗ = x∗a∗aa∗. Note that

a∗ax = (x∗a∗aa∗)ax = (x∗a∗aa∗ax)∗ = (a∗ax)∗

It gives that a = aa∗ax = a(a∗ax)∗ = ax∗a∗a ∈ aRa. So, we obtain that a is regular. Meanwhile, from a = ax∗a∗a,
one can see that a = ax∗a∗a = ax∗(x∗a∗aa∗)a ∈ Raa∗a. By Porposition 4.2, we get a ∈ R is Moore-Penrose
invertible.

(i)⇔ (iii) The proof is similar to (i)⇔ (ii).

Remark 4.4. If a ∈ aa∗R (or a ∈ Ra∗a), then a ∈ R is {1, 4}-invertible (or {1, 3}-invertible). Form a ∈ aa∗R, there
exists x ∈ R such that a = aa∗x. Then x∗a = x∗aa∗x, this gives that (x∗a)∗ = x∗a. So, we have a = aa∗x = a(x∗a)∗ = ax∗a.

Proposition 4.5. Let a be {1, 3}-invertible and a(1,3) be a {1, 3}-inverse of a. Then the following are equivalent:
(i) w = a1aa(1,3) + 1 − aa(1,3)

∈ R†.
(ii) a1a ∈ Ra1aa(1,3)(a1)∗a1a.

Proof. Set a1 = b and aa(1,3) = e. Then the element

w = a1aa(1,3) + 1 − aa(1,3) = ebe + 1 − e.

By Lemma 2.3, w ∈ R† if and only if ebe ∈ (eRe)†. As a matter of fact, when e2 = e = e∗, ebe ∈ (eRe)† if
and only if ebe ∈ R†. By Theorem 4.3, it implies that a1aa(1,3)

∈ Ra1aa(1,3)(a1)∗a1aa(1,3). It is equivalent to
a1a ∈ Ra1aa(1,3)(a1)∗a1a.

Recall that an element a ∈ R is called EP [11], if a ∈ R† ∩ R# and a† = a#. Hence, we get

Corollary 4.6. Let a be {1, 3}-invertible and a(1,3) be a {1, 3}-inverse of a. Then the following are equivalent:
(i) w = aa∗ + 1 − aa(1,3)

∈ R†

(ii) aa∗ is EP.
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Proof. Set 1 = a∗ in item (ii) in Proposition 4.5. Then we can get aa∗a ∈ Raa∗aa∗aa∗a. Postmultiply by a(1,3), we
get aa∗ ∈ Raa∗aa∗aa∗. Note that aa∗ ∈ R] if and only if aa∗ ∈ Raa∗aa∗aa∗. Moreover, we obtain that aa∗ is EP by
[8, Proposition 2].

Recall from [12] that a ring R is said to be ∗-reducing if, for any element a ∈ R, a∗a = 0 implies a = 0.
Note that R is ∗-reducing if and only if the following implications hold for any a ∈ R: a∗ax = a∗ay⇒ ax = ay
and xaa∗ = yaa∗ ⇒ xa = ya.

Remark 4.7. Under the condition of corollary 4.6, if R is ∗-reducing, then we obtain that w = aa∗ + 1 − aa(1,3)
∈ R†

if and only if a ∈ R†. Set x = a∗(aa∗)†. Now (xa)∗ = [a∗(aa∗)†a]∗ = a∗(aa∗)†a = xa; (ax)∗ = aa∗(aa∗)† is self-adjoint;
xax = a∗(aa∗)†aa∗(aa∗)† = a∗(aa∗)† = x. Finally, axaa∗ = aa∗(aa∗)†aa∗ = aa∗, and since R is ∗-reducing, we get axa = a.
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