Filomat 31:8 (2017), 2355-2364

Published by Faculty of Sciences and Mathematics,
DOI 10.2298/FIL1708355Y

University of Nis, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

% ) &

% &

U 5
iy s’

%

T1pupor®

Further Generalizations of Some Operator Inequalities
Involving Positive Linear Map

Changsen Yang?, Chaojun Yang?

?Henan Engineering Laboratory for Big Data Statistical Analysis and Optimal Control; College of Mathematics and Information Science, Henan
Normal University, Xinxiang 453007, Henan, P.R.China.

Abstract. We obtain a generalized conclusion based on an a-geometric mean inequality. The conclusion
is presented as follows: If m;, M, m,, M, are positive real numbers, 0 < m; < A <M;and 0 <m, < B <M,
for my < M and m, < M, then for every unital positive linear map ® and « € (0, 1], the operator inequality
below holds:

(@(A)ﬁaq)(B))P < 11_6 {(M1+m1)2((M1+m1)‘1(M2+mz))2n) p Q)P(AﬁaB)l p> )

(M) (1 My )1~
Likewise, we give a second powering of the Diaz-Metcalf type inequality. Finally, we present p—th powering

of some reversed inequalities for n operators related to Karcher mean and power mean involving positive
linear maps.

1. Introduction

Let B(H) stand for the C*-algebra of all bounded linear operators acting on a complex Hilbert space H
and I denote the identity operator. ||| denote the operator norm. An operator A is said to be positive if
(Ax,x) > 0 for all x € H and we write A > 0. We identify T > S(the same as S < T) with T—S > 0. A positive

invertible operator T is denoted by T > 0. The absolute value of T is denoted by |T| = (T*T)%, where T*
stands for the adjoint of T.

A linear map @ : B(H) — B(H) is called positive (strictly positive) if ®(A) > 0 (P(A) > 0) whenever
A >0(A>0),and @ is said to be unital if @(I) = I. Take A, B > 0 and « € [0, 1], the a-geometric mean Af,B
is defined by A#,B = A2(A7BA7)%Az, when o = 3 Aﬁ%B = A#B is said to be the geometric mean between
A and B.

The geometric mean A#B of two positive operators A, B € B(H) is characterized by Ando [2]

AﬂB:max{X=X*eB(7-():[§ )'5]20}.
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The definition above reveals the maximal characterization of geometric mean [16]. The 2 X 2 operator
matrix mentioned in this work is naturally understood as an operator acting on H P H .

In 1948, Kantorovich [9] introduced the famous Kantorovich inequality. In 1990, Marshall and Olkin
[13] established an operator Kantorovich inequality. It is well known that t* is operator monotone function
on [0, o) if and only if a € [0,1]. Since #? is not an operator monotone function, we can not obtain A? > B?
directly by A > B > 0. In 2013, Lin [12] proved that the operator Kantorovich inequality is order preserving
under squaring. In 2011, Seo gave an @-geometric mean inequality for positive linear map as follows:

Theorem 1.1. [17] Let @ : B(H) — B(K) be a unital positive linear map and let A and B be positive operators such
that 0 < m? < A < M3 and 0 < m3 < B < M3 for some positive real numbers my < My and my < M. Then for
a€[0,1]

D(A)a@(B) < K(m, M, @) O(Af,B), (1)
where we suppose (’”2 Z=m, (M2 > = M and the generalized Kantorovich constant K(M, m, a) [7] is defined by

K(m,M, a) =

mM® — Mm*“ <0z—1 M* —m? )a
(a-1)M-m)\ a mM*— Mm*

for any real number a € R.
Motived by Lin’s idea [12], Fu obtained a second powering of the operator inequality (1):
Theorem 1.2. [6] Let @ : B(H) — B(K) be a unital positive linear map and let A and B be positive operators such

that 0 <my < A < My and 0 < my < B < M, for some positive real numbers my < My and my < M,. Then for
a€[0,1]

2 -1 20 \2
D(A),P(B))? < (Ml CEm ) g2 (A4, B). @)

Next we present the Diaz-Metcalf type inequality.

Theorem 1.3. [14] Let ® be a positive linear map. If0 < m?* < A < M2 and 0 < m3 < B < M3 for some positive real
numbers my < My and my < My, then the following inequality holds:

Mom, (M )
——PA)+DPB) <|— + — | D(AHB
R ©A) +@(B) < (T2 + 72 | o(AfB).
LetA;, -+, A, >0and w = (wy, ..., wy) is a probability vector: Yi,wi=landw; >0fori=1,...,n. For
t € (0,1], the w—weighted power mean Pi(w; Ay, ..., A,) (or Pw; A))is defined as the unique solution of

X = ) oiXpA).
i=1

For t € [-1,0), we define Py(w; A1, ..., Ay,) = P_t(a);Ail, ., AN Next we bring some basic properties of
the power mean that is useful to obtain the results in this work, for more details about power mean, see
[11].
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Proposition 1.4. [11] The power mean satisfies the following properties:
(i) (self duality) P_y(w; A}, -+, A7) = Plw; Ay, -+, Ay).
(if) (AGH weighted mean inequalities) (Li—; wiA;')™ < Puw; A1, -+, An) < Ying widi.
(iii) t € (0, 1], D(PH(w; A)) < Pi(w; P(A)) for any positive unital linear map ©; t € [-1,0),
O(P(w; A)) = Pr(w; D(A)) for any strictly positive unital linear map ©.
(iv) Plw; A) < Pl(w;B)if Ai < B; foralli=1,2,--- ,n.

The w—-weighted Karcher mean A(w; Ay, ..., An)(orA(w; A)) of Ay, - -+ , A, > 0is defined to be the unique
positive definite solution of equation

Z wilog(X 1 A;X71) =0,
i=1

where w = (wy, ..., w,) is a probability vector. Next we cite some basic properties of the Karcher mean as
follows, for more details about Karcher mean, see [11].

Proposition 1.5. [11] The Karcher mean satisfies the following properties:

(i) (self duality) ANw; AT, -+, A7) = Aw; Ay, -+, Ay).

(if) (AGH weighted mean inequalities) (Lt @A) ™ < Aw; Ay, -+, Ay) < Yoing widi.
(iif) P(A(w; A)) < A(w; DP(A)) for any positive unital linear map P.

(iv) (monotonicity) If B; < A; forall 1 <i < n, then A(w;B) < A(w; A).

As mentioned in the abstract, we shall give a further generalization of Theorem 1.2 and Diaz-Metcalf type
inequality in the following section, along with presenting p—th powering of some reversed inequalities for
n operators related to Karcher mean and power mean involving positive linear maps.

2. Main Results

Before giving our main results, let us first consider the following lemmas.

Lemma 2.1. ( Choi inequality.) [5, 7] Let ® be a unital positive linear map, then
(C1) when A > 0 and =1 < p < 0, then D(A)P < D(AP), in particular,D(A)™! < D(A™Y);
(Cy) when A2 0and 0 < p <1, then D(AY > D(AF);

(C3) when A > 0and 1 < p <2, then D(A) < D(AP).

Lemma 2.2. [10] Let ® be a unital positive linear map and A, B be positive operators. Then for a € [0, 1]
D(Af.B) < D(A)H.D(B).

Lemma 2.3. [4] Let A, B > 0. Then the following norm inequality holds:

1
IABlI< Z1IA + BIP.
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Lemma 2.4. [3] Let A,B > 0. Then for 1 <r < +oo,

IA" + B'[I< [I(A + B)'l.

Now we are going to present the first main theorem of this paper.

2358

Theorem 2.5. Let @ : B(H) — B(K) be a unital positive linear map and let A and B be positive operators such that
0<m; <A< M;and0 < my < B < M, for some positive real numbers my < My and my < My. Then for a € [0,1],

p=2

(@A) 2B)Y < & {

(M) (M)~ (M +112)) }” DP(AH4,B)

(ma M) (my M)«

Proof. The desired inequality is equivalent to

(@A) D(B): D5 (AfB)ll< L { Wt i) (a2 |2

Note that

then

and therefore

P
2

(maMp)* (m1 My )=
My — A)(my; — A)A™' <0,

MlmlA_l +A <M +my,

Mlmlcb(A‘l) + q)(A) < My + my.

Likewise, we can get

Mymy®(B™) + ©(B) < My + my.

Hence, by the property of weighted geometric mean, through (5) and (6), we obtain

(Mim @A) + DA (Mo ®(B™!) + O(B)) < (M + my)Ba(Ma + my).

Using the subadditivity of weighted geometric mean, we get

where the first inequality is obtained by Lemma 2.1, the second one is obtained by Lemma 2.2.

Since

(maMy)* (m1My)' =@~ (Al B) + D(A)},D(B)

< (maMa)*(mi M) =*(@(A™H,B™)) + D(A)R.D(B)

< (maMp)* (M) (DA™ D(B™)) + (A D(B)
= (M1 ®(A™)) o (m2Ma®(B™)) + D(A)f,P(B)

< (M D(A™) + O(A)) o (maMy@(B™) + D(B)),

(1-a)p

(@A) D(B))? (M) F (mMy) 2 ©~2 (A B)l|

(-a)p

< (@A), D(B))T + (maMa) 7 (m1 M) T D5 (A, B)|2

< HI(@A)D(B) + (m2Ma)* (11 My) =D (At B)) |

= HO(A),D(B) + (12 My)* (11 M1)' =@ (A, B)|IP
i
1
4

< 3I(@(A) + m My @A) (P(B) + maMo®(B)IP

[(My + m1)ia(My + my)|IP

((Ma+my)(My+m1) " (Mp+m2))%)P
4 7

<

)
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where the first inequality is obtained by Lemma 2.3, the second one is obtained by Lemma 2.4.,
so we have

[
(@(A)§.D(B))> D2 (A, B)Il
(M1+m1)((M1+m1) ! (Ma+mg))* )
a a)
4mM)F (mMy) 2

-1 {(Ml+m1)2((M1+m1)‘1(M2+m2))2a }§
4 (maMp)®(myMy) -2 .

Hence the inequality (4) has been obtained. [
Remark 2.6. Inequality (2) is a special case of Theorem 2.5 by taking p = 2.

Lemma 2.7. [1] Let A,B > 0. Then

A+B

<
A< =

Inspired by Theorem 2.5, we give a further generalization related to the Diaz-Metcalf type inequality as
follows.

Theorem 2.8. Let @ be a unital positive linear map. If0 < m3 < A < M2 and 0 < m3 < B < M3 for some positive
real numbers my < My and my < My, then the following inequality holds:

(Mymy (M§+m§)+M2mz(Mf+m§))2
2 \/M2M1 mq IﬂzM% m%Mzmz

(beza) + oB) < 4 { fows, =2 7

Proof. Obviously (7) is equivalent to

4
“(]\/[zm2 CD(A) N CD(B))Z q)_g(AﬂB)”< 1 (Mlml(Mé + Tl’l%) + Mlez(M% + m%))2 2
Mimy 4 2 Mo Mymymy M2m2 Moy

By the proof of (5), we have
MImiD(A™) + O(A) < M2 + mj,

which equals to
MomamMy®(A™!) + TR D(A) < T2 (M2 + m3). (8)
Similarly, we have
M2m2d(B™) + D(B) < M2 + m? 9)
By (8) and (9) we have
2 VMM Momy ®(A§B)™ + (2 D(A) + ©(B))
< 2 VMpMymmaMamy®(A™B™) + (52 B(A) + ©(B))
< 2 VMM Moy ®(A-YD(B) + (A2 D(A) + (B))
< MoMiymyma®(A™) + Mam3®(B™Y) + L2 D(A) + D(B)

Momy 2 2 2
< (M7 +m7) + M5 + mz,
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where the first inequality is obtained by Lemma 2.1, the second one is obtained by Lemma 2.2, the third
one is obtained by Lemma 2.7, the last one is the result of combining (8) and (9).
Since

I(A2204) + D(B))* (2 VLML M) i (ASB)|
14

< HI(322d(A) + D(B))” + (2 VMMimmyMams)s &~ (AYB)|1

IA

< HI(FE=D(A) + D(B) + 2 VMM myMamy®™ 1(A1jB)) II2
i”ﬁ:ﬁ D(A) + D(B) + 2 VMMymymaMymy @~ (AEB)|)P

1 [ Mamo(ME+m2)+ My (M2-+m2) 4
4 Mymy ¢

IA

we have

”(Mz 2

M

4
Mlml(M% + Wl%) + Mzmg(M% + m%))z :
2 szMlmlsz%m%Mzmz .

O(A) + cD(B)) o4 (ALB)|< }L{ (

Corollary 2.9. In Theorem 2.8, put p = 2, we get

2
(Mlml(Mi + m%) + Mzﬁ’lz(M% + m%))z ®Z(AﬁB)
8 VM2M1m1m2M%m%M2m2 ’

(ﬁzmz D(A) + cp(B))2 < {

which can be seen as a squared operator inequality related to Diaz-Metcalf type inequality.

Lemma 2.10. [8] For any bounded operator X,

t X

X <tl o X<t [X* i

] >0 (t=0)
Theorem 2.11. Let A and B be positive operators on a Hilbert space H with0 < my < A < Myand0 < my < B < My,
® be a unital positive linear map on B(H). Then for 0 <a <landp > 2,

(D(A)}D(B)): 0> (Al B) + O~ (A B)(D(A)H,D(B))*

) 10
<1 {(M1+m1>2<(M1+m1>*1(M2+mz>>2“}’f (10)
=2 (maMy)* (my My )1-2 :

Proof. By (4) and Lemma 2.10, we obtain

- P
HE e T @ReE) O (LB |
HARB@AROE): M
and ] ,
HO st e fasB@@pe®) ||
SO ORSCONES o msa NI

Summing up these two operator matrices above, and putting

t= 1 {(Ml + ml)z((Ml + 7’}’[1)_1 (M; + mz))Za };
4 (maMy)* (myMy)1- ,
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X = O3 (A B)(@(A)aD(B))? + (D(A)D(B)) 1 D2 (Al B),

we have

2t X >0
X 2t~

Since ®~7(A#,B)(P(A)H,P(B))? + (P(A),D(B))2D~1(AH,B) is self-adjoint, (10) follows from the maximal
characterization of geometric mean. [

Theorem 2.12. Let O be a unital positive linear map. If 0 < m? < A < M2 and 0 < m% < B < M3 for some positive
real numbers my < My and my < My, p > 2, then the following inequalities holds:

(D(A)aD(B))2 D™= (AlleB) + D™= (Al B)(D(A).D(B))
(11)

IA

|4
l (M1m1 (M§+m§)+M2mz(Mf+mf))2 2
2 2 VMo Mymyma M2m? My

Proof. By the method of proving Theorem 2.11, we can easily get (11). [

Next we present a p—th powering of a reversed HM-PM inequality for n operators.

Theorem 2.13. Let 0 < m < A; < Mfori =1,---n, M > m, o = (w1, -+ ,wy) be a probability vector,
t € [-1,0) U (0, 1]. Then we have

2\ 1
Piwi Ay, A < 5 (SR (E widh 7, pz2 (12)

Proof. The inequality (12) is equivalent to

1 2\ 5
A 4 FEN 1 [(M+m)
“Pt(a)/All /An)z(; a)zA, )ZH_ 4 {—Mm .

Since (5) implies
n n
Mm(Y, a),'A;1) + Y wiAi <M+ m. (13)
i=1 i=1
Then by Proposition 1.4, we have

n
Puw; Ay, -+, Ay) + Mm(Y, wiATY)
i=1

n n
<Y wiAi + Mm(Y, wiAi_l)
i=1 i=1
<M+m.

Thus

IPww; Av, -, A (M) (@iA )

< LIP3 Av, -, A + (M) (@A)
< YI(Py(@; Ar, -+, Ay) + Mim(wiA71)3 |2

= §lIPHw; A1, -+, Ap) + Mm(w;ATIP

}l(M+ m)P.

IN
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Therefore

2
IPy(@; A+ A %ZwA Hij< 1 {%} .

O

From [11] we know, power mean is increasing from [-1,0) U (0,1]. Furthermore, ltirrol Pi(w; D(A)) =
A(w; P(A)). Therefore in Theorem 2.13 put ¢ — 0, we obtain:

Corollary 2.14. Let0 <m < A; <Mfori=1,---n,M2m,w = (w1, ,wn) be a probability vector. Then we have

A(w;Al,---,Amsf{M*m)}(Z AT, pz2. (14)

Lemma 2.15 presented a p-th powering of a reversed HM-KM inequality for n operators.
Lemma 2.15. [7] (L-H inequality) If0 < a <1, A,B > 0and A > B, then A* > B*.

Lemma2.16. Let0 <m < A; <Mfori=1,---n,M >m,w = (w1, ,wy) be a probability vector. Then we obtain

Ai < (MY oy AL
Zlc‘) S T (Zla)l i)
1= 1=

n
Proof. First we proof (Z wiA;)? < (("EZMM) )Z(Z w;A;1)72. This inequality equals to
i=1 i

||ZwA2wA g QAL

Now by
1 n
“('Zi a)iAi)Mm(Zi W AT
i= i=
< ill; wiA; + Mm(;1 wiATHIP
< 1M +m)?,

where the second inequality is obtained by (13). Hence we can get desired inequality by Lemma 2.15.
We remark that the result of Lemma 2.16 is a special case of Theorem 1in [15]. O

Theorem 2.17. Let @ be a unital positive linear map, 0 <m < Aj<Mfori=1,---n,M>m. w = (w1, -+ ,wy) be
a probability vector, t € (0,1]. Then we have

Py(w; D(A)) < LM (A (w; A)). (15)

Proof. By Proposition 1.4, 1.5 and Lemma 2.16 we get

' n“_n”(m+M)2 . o1y (m+ M)? _
Pi(w; B(A)) < Z; 0D(A) = @(; i) < @((Z AT S =A@ A)).
From [11] we know Py(w; A) > A(w; A) when t € (0,1], and by Proposition 1.4, 1.5 we have Py(w; P(A)) >
A(w; P(A)) > P(A(w; A)) . Thus (15) can be viewed as a reversed PM-KM inequality involving positive
unital linear maps. O
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Corollary 2.18. Under the same conditions as in Theorem 2.13, one can obtain

O(Py(w; A)) < WM A (w; DA)).

Proof. By Proposition 1.4 and 1.5, we obtain

(m + M)?
4mM

(m + M)?

D(Py(w; A)) £ Pr(w; D(A))) < 4mM

O(A(w; A)) < A(w; D(A)).

Next we present p-th powering of (14) involving positive unital linear maps. [

Theorem 2.19. Let © be a unital positive linear map, 0 <m < A; <Mfori=1,---n,M>2m. w = (w1, -

a probability vector, t € (0,1], p = 2. Then we have
Py(w; DAY < & | LN (A (w; ).

Mm

Proof. The inequality (17) is equivalent to

1P (w; D(A)) 2 D(A(w; A)) 2 |I< E{M} ‘

Mm
By (13), we obtain
Pi(w; D(A)) + MmD(A(w; A))~!
< Pi(w; D(A)) + MmD(A(w; A)™)
< (L, 0D(A) + MmD(E, ;A7)
i=1 i=1
<M+m.
Then

IIPy(w; D(A))E (Mm) s D(A(w; A))~5|

< HIPi(w; D(A))E + (Mm): D(A(w; A)) 2 12
LIPy(w; D(A)) + Mmd(A(w; A)) P
LM +my.

IN

IA

Therefore we have the desired inequality. O

2363

(16)

7 a)n) be

(17)

Theorem 2.20. Let © be a strictly unital positive linear map, 0 < m < A; < M fori =1,---n, M > m.

w = (w1, ,wy) be a probability vector, t € [-1,0). Then we have

Aw; D(A)) < P2 Py (w; A)).

Proof. By Proposition 1.4, Proposition 1.5 and Lemma 2.16 we get

Aw; D) < Y 0d(A @(Z wiA) < ("’ i M) @((Z Ay < Ut o+ MY b (wr A
i=1

4mM

From [11] we know A(w; A) > Pi(w; A) when t € [-1,0), and by Proposition 1.4, 1.5 we have A(w; P(A)) >

D(A(w; A)) = O(P(w; A)) . Thus (18) can be viewed as a reversed PM-KM inequality as well.
Next we give a p-th powering of (18). O
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Theorem 2.21. Let © be a strictly unital positive linear map, 0 < m < A; < M fori =1,---n, M > m.

w =

(w1, -+, wp) be a probability vector, t € [-1,0), p = 2. Then we have

A@; DA < & { LV (P (w; A (19)

Proof. Since

SO

Aw; DIA)) + O(Py(w; A))!

< Aw; D(A)) + B(Py(w; A))

= Aw; (A)) + B(P_y(w; A

< (¥, wi®(A)) + Mim®(¥, a;A™)
i=1 i=1

<M+m,

A (w; D(A))s (M) > O(Py(w; A))||
< HIA(@; D(A))? + (Mm): D(Py(w; A)) 2 |12
LIA(@; ©(A)) + Mmd(Py(w; A)) P

LM+ my.

IA

IA

Therefore we have

(M+m)2}g

A (; (A (P (a; A) < 5 { AL

which is equivalent (19). O
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