

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

On *I*– Lacunary Statistical Convergence of Order α of Sequences of Sets

Hacer Şengül^a, Mikail Et^b

 a Department of Mathematics; Siirt University 56100; Siirt ; TURKEY b Department of Mathematics; Fırat University 23119; Elazıg ; TURKEY

Abstract. The idea of I—convergence of real sequences was introduced by Kostyrko et al. [Kostyrko, P.; Šalát, T. and Wilczyński, W. I—convergence, Real Anal. Exchange 26(2) (2000/2001), 669-686] and also independently by Nuray and Ruckle [Nuray, F. and Ruckle, W. H. Generalized statistical convergence and convergence free spaces, J. Math. Anal. Appl. 245(2) (2000), 513–527]. In this paper we introduce the concepts of Wijsman I—lacunary statistical convergence of order α and Wijsman strongly I—lacunary statistical convergence of order α , and investigated between their relationship.

1. Introduction

The concept of statistical convergence was introduced by Steinhaus [36] and Fast [15]. Schoenberg [34] established some basic properties of statistical convergence and studied the concept as a summability method. Later on it was further investigated from the sequence space point of view and linked with summability theory by Altın et al. [1], Başarır and Konca [2], Caserta et al. [3], Connor [4], Çakallı [5], Çolak ([8],[9]), Et et al. ([11],[12],[20],[21]), Fridy [17], Gadjiev and Orhan [19], Kolk [22], Mursaleen et al. ([25],[26]), Salat [29], Savaş et al. ([10],[32],[33]) and many others. Nuray and Rhoades [28] extended the notion to statistical convergence of sets and gave some basic theorems. Ulusu and Nuray [38] defined the Wijsman lacunary statistical convergence of sequence of sets, and considered its relation with Wijsman statistical convergence.

Let *X* be a non-empty set. Then a family of sets $I \subseteq 2^X$ (power sets of *X*) is said to be an *ideal* if *I* is additive *i.e.* $A, B \in I$ implies $A \cup B \in I$ and hereditary, *i.e.* $A \in I$, $B \subset A$ implies $B \in I$.

A non-empty family of sets $F \subseteq 2^X$ is said to be a *filter* of X if and only if

(i) $\phi \notin F$, (ii) A, $B \in F$ implies $A \cap B \in F$ and (iii) $A \in F$, $A \subset B$ implies $B \in F$.

An ideal $I \subseteq 2^X$ is called *non-trivial* if $I \neq 2^X$.

A non-trivial ideal *I* is said to be *admissible* if $I \supset \{\{x\} : x \in X\}$.

If *I* is a non-trivial ideal in $X(X \neq \phi)$ then the family of sets

 $F(I) = \{M \subset X : (\exists A \in I) (M = X \setminus A)\}$ is a filter of X, called the *filter associated with I*.

Let (X, d) be a metric space. For any non-empty closed subset A_k of X, we say that the sequence $\{A_k\}$ is bounded if $\sup_k d(x, A_k) < \infty$ for each $x \in X$. In this case we write $\{A_k\} \in L_\infty$.

Throughout the paper I will stand for a non-trivial admissible ideal of \mathbb{N} .

2010 Mathematics Subject Classification. 40A05, 40C05, 46A45

Keywords. I—convergence, Wijsman convergence, lacunary sequence

Received: 04 December 2015; Accepted: 25 April 2016

Communicated by Ljubiša D.R. Kočinac

Email addresses: hacer.sengul@hotmail.com (Hacer Şengül), mikailet@yahoo.com (Mikail Et)

The idea of *I*–convergence of real sequences was introduced by Kostyrko *et al.* [23] and also independently by Nuray and Ruckle [27] (who called it generalized statistical convergence) as a generalization of statistical convergence. Later on *I*–convergence was studied in ([6],[7],[14],[24],[30], [31],[32],[33],[37],[39]).

2. Main Results

In this section, we will extend the results of Et and Şengül ([13], [35]) to statistical convergence of set sequences, namely; the relationship between the concepts of Wijsman I–lacunary statistical convergence of order α and Wijsman strongly I–lacunary statistical convergence of order α are given

Definition 2.1. Let (X,d) be a metric space, θ be a lacunary sequence, $\alpha \in (0,1]$ and $I \subseteq 2^{\mathbb{N}}$ be an admissible ideal of subsets of \mathbb{N} . For any non-empty closed subsets $A, A_k \subset X$, we say that the sequence $\{A_k\}$ is Wijsman I-lacunary statistical convergent to A of order α (or $S^{\alpha}_{\theta}(I_w)$ -convergent to A) if for each $\varepsilon > 0$, $\delta > 0$ and $x \in X$,

$$\left\{r \in \mathbb{N}: \frac{1}{h_r^{\alpha}} \left| \left\{ k \in I_r: \left| d\left(x, A_k\right) - d\left(x, A\right) \right| \ge \varepsilon \right\} \right| \ge \delta \right\}$$

belongs to I. In this case, we write $A_k \longrightarrow A\left(S_{\theta}^{\alpha}(I_w)\right)$. For $\theta = (2^r)$, we shall write $S^{\alpha}(I_w)$ instead of $S_{\theta}^{\alpha}(I_w)$ and in the special case $\alpha = 1$ and $\theta = (2^r)$ we shall write $S(I_w)$ instead of $S_{\theta}^{\alpha}(I_w)$.

As an example, consider the following sequence:

$$A_k = \left\{ \begin{array}{l} \{3x\} \,, \quad k_{r-1} < k < k_{r-1} + \sqrt{h_r} \\ \{0\} \,, \quad otherwise. \end{array} \right.$$

Let (\mathbb{R}, d) be a metric space such that for $x, y \in X$, d(x, y) = |x - y|, $A = \{1\}$, x > 1 and $\alpha = 1$. Since

$$\frac{1}{h_{+}^{\alpha}}\left|\left\{k\in I_{r}:\left|d\left(x,A_{k}\right)-d\left(x,1\right)\right|\geq\varepsilon\right\}\right|\geq\delta$$

belongs to I, the sequences $\{A_k\}$ is Wijsman I-lacunary statistical convergent to $\{1\}$ of order α ; that is $A_k \longrightarrow \{1\}\left(S_{\theta}^{\alpha}\left(I_w\right)\right)$.

Definition 2.2. Let (X, d) be a metric space, θ be a lacunary sequence, $\alpha \in (0, 1]$ and $I \subseteq 2^{\mathbb{N}}$ be an admissible ideal of subsets of \mathbb{N} . For any non-empty closed subsets $A, A_k \subset X$, we say that the sequence $\{A_k\}$ is said to be Wijsman strongly I-lacunary statistical convergent to A of order α (or $N_{\theta}^{\alpha}[I_w]$ -convergent to A) if for each $\varepsilon > 0$ and $x \in X$,

$$\left\{r \in \mathbb{N} : \frac{1}{h_r^{\alpha}} \sum_{k \in I_r} |d(x, A_k) - d(x, A)| \ge \varepsilon\right\}$$

belongs to I. In this case, we write $A_k \longrightarrow A\left(N_\theta^\alpha\left[I_w\right]\right)$. For $\theta=(2^r)$, we shall write $N^\alpha\left[I_w\right]$ instead of $N_\theta^\alpha\left[I_w\right]$ and in the special case $\alpha=1$ and $\theta=(2^r)$ we shall write $N\left[I_w\right]$ instead of $N_\theta^\alpha\left[I_w\right]$.

As an example, consider the following sequence:

$$A_k = \left\{ \begin{array}{l} \left\{ \frac{xk}{2} \right\}, & k_{r-1} < k < k_{r-1} + \sqrt{h_r} \\ \{0\}, & otherwise. \end{array} \right.$$

Let (\mathbb{R}, d) be a metric space such that for $x, y \in X$, d(x, y) = |x - y|, $A = \{1\}$, x > 1 and $\alpha = 1$. Since

$$\frac{1}{h_{r}^{\alpha}}\sum_{k\in I}\left|d\left(x,A_{k}\right)-d\left(x,1\right)\right|\geq\varepsilon,$$

the sequences $\{A_k\}$ is Wijsman I-lacunary statistical convergent to $\{1\}$ of order α ; that is $A_k \longrightarrow \{1\} \left(N_{\theta}^{\alpha}[I_w]\right)$.

Theorem 2.3. $S^{\alpha}_{\theta}(I_w) \cap L_{\infty}$ is a closed subset of L_{∞} for $0 < \alpha \le 1$.

Proof. Omitted. □

Theorem 2.4. Let (X, d) be a metric space, $\theta = (k_r)$ be a lacunary sequence and A, A_k (for all $k \in \mathbb{N}$) be non-empty closed subsets of X, then

(i)
$$A_k \to A(N_\theta^\alpha[I_w]) \Rightarrow A_k \to A(S_\theta^\alpha(I_w))$$
 and $N_\theta^\alpha[I_w]$ is a proper subset of $S_\theta^\alpha(I_w)$,

(ii)
$$\{A_k\} \in L_\infty$$
 and $A_k \to A\left(S_\theta^\alpha(I_w)\right) \Rightarrow A_k \to A\left(N_\theta^\alpha[I_w]\right)$,

$$(iii) S_{\theta}^{\alpha}(I_w) \cap L_{\infty} = N_{\theta}^{\alpha}[I_w] \cap L_{\infty}.$$

Proof. (*i*) The inclusion part of proof is easy. In order to show that the inclusion $N_{\theta}^{\alpha}[I_w] \subseteq S_{\theta}^{\alpha}(I_w)$ is proper, let θ be given and we define a sequence $\{A_k\}$ as follows

$$A_k = \left\{ \begin{array}{l} \left\{ x^2 \right\}, & k = 1, 2, 3, ..., \left[\sqrt{h_r} \right] \\ \left\{ 0 \right\}, & \text{otherwise} \end{array} \right.$$

Let (\mathbb{R}, d) be a metric space such that for $x, y \in X$, d(x, y) = |x - y|. We have for every $\varepsilon > 0$, x > 0 and $\frac{1}{2} < \alpha \le 1$,

$$\frac{1}{h_r^{\alpha}}\left|\left\{k \in I_r : |d\left(x, A_k\right) - d\left(x, \{0\}\right)\right| \ge \varepsilon\right\}\right| \le \frac{\left[\sqrt{h_r}\right]}{h_r^{\alpha}},$$

and for any $\delta > 0$ we get

$$\left\{r \in \mathbb{N} : \frac{1}{h_r^{\alpha}} \left| \left\{k \in I_r : \left| d\left(x, A_k\right) - d\left(x, \left\{0\right\}\right)\right| \ge \varepsilon\right\} \right| \ge \delta\right\} \subseteq \left\{r \in \mathbb{N} : \frac{\left\lfloor \sqrt{h_r} \right\rfloor}{h_r^{\alpha}} \ge \delta\right\}.$$

Since the set on the right-hand side is a finite set and so belongs to I, it follows that for $\frac{1}{2} < \alpha \le 1$, $A_k \to \{0\} \left(S_{\theta}^{\alpha}(I_w)\right)$.

On the other hand, for $\frac{1}{2} < \alpha \le 1$ and x > 0,

$$\frac{1}{h_r^{\alpha}} \sum_{k \in I_r} \left| d\left(x, A_k\right) - d\left(x, \{0\}\right) \right| = \frac{\left(x^2 - 2x\right) \left[\sqrt{h_r}\right]}{h_r^{\alpha}} \rightarrow 0$$

and for $0 < \alpha < \frac{1}{2}$

$$\frac{\left(x^2-2x\right)\left[\sqrt{h_r}\right]}{h_r^{\alpha}}\to\infty.$$

Hence we have

$$\left\{r \in \mathbb{N} : \frac{1}{h_r^{\alpha}} \sum_{k \in I_r} |d(x, A_k) - d(x, \{0\})| \ge 0\right\} = \left\{r \in \mathbb{N} : \frac{\left(x^2 - 2x\right)\left[\sqrt{h_r}\right]}{h_r^{\alpha}} \ge 0\right\} = \left\{a, a + 1, a + 2, \ldots\right\}$$

for some $a \in \mathbb{N}$ which belongs to F(I), since I is admissible. So $A_k \to \{0\} \left(N_{\theta}^{\alpha}[I_w]\right)$.

ii) Suppose that $\{A_k\} \in L_\infty$ and $A_k \to A\left(S_\theta^\alpha(I_w)\right)$. Then we can assume that

$$|d(x, A_k) - d(x, A)| \le M$$

for each $x \in X$ and all $k \in \mathbb{N}$. Given $\varepsilon > 0$, we get

$$\begin{split} \frac{1}{h_r^{\alpha}} \sum_{k \in I_r} |d\left(x, A_k\right) - d\left(x, A\right)| &= \frac{1}{h_r^{\alpha}} \sum_{\substack{k \in I_r \\ |d(x, A_k) - d(x, A)| \ge \varepsilon}} |d\left(x, A_k\right) - d\left(x, A\right)| \\ &+ \frac{1}{h_r^{\alpha}} \sum_{\substack{k \in I_r \\ |d(x, A_k) - d(x, A)| < \varepsilon}} |d\left(x, A_k\right) - d\left(x, A\right)| \\ &\leq \frac{M}{h_r^{\alpha}} \left| \left\{ k \in I_r : |d\left(x, A_k\right) - d\left(x, A\right)| \ge \varepsilon \right\} \right| + \varepsilon. \end{split}$$

Hence we have

$$\left\{r \in \mathbb{N} : \frac{1}{h_r^{\alpha}} \sum_{k \in I_r} |d(x, A_k) - d(x, A)| \ge M\delta + \varepsilon\right\}$$

$$\subset \left\{r \in \mathbb{N} : \frac{1}{h_r^{\alpha}} \left| \left\{k \in I_r : |d(x, A_k) - d(x, A)| \ge \varepsilon\right\}\right| \ge \delta\right\} \in I.$$

Therefore $A_k \to A\left(N_{\theta}^{\alpha}\left[I_w\right]\right)$.

iii) Follows from (i) and (ii). \square

Theorem 2.5. Let $\theta = (k_r)$ be a lacunary sequence and α be a fixed real number such that $0 < \alpha \le 1$. If $\liminf_r q_r > 1$, then $S^{\alpha}(I_w) \subset S^{\alpha}_{\theta}(I_w)$.

Proof. Suppose first that $\liminf_r q_r > 1$; then there exists a $\lambda > 0$ such that $q_r \ge 1 + \lambda$ for sufficiently large r, which implies that

$$\frac{h_r}{k_r} \ge \frac{\lambda}{1+\lambda} \Longrightarrow \left(\frac{h_r}{k_r}\right)^{\alpha} \ge \left(\frac{\lambda}{1+\lambda}\right)^{\alpha} \Longrightarrow \frac{1}{k_r^{\alpha}} \ge \frac{\lambda^{\alpha}}{(1+\lambda)^{\alpha}} \frac{1}{h_r^{\alpha}}.$$

If $A_k \to A(S^\alpha(I_w))$, then for every $\varepsilon > 0$, for each $x \in X$, and for sufficiently large r, we have

$$\begin{split} \frac{1}{k_r^{\alpha}}\left|\left\{k \leq k_r: \left|d\left(x, A_k\right) - d\left(x, A\right)\right| \geq \varepsilon\right\}\right| & \geq & \frac{1}{k_r^{\alpha}}\left|\left\{k \in I_r: \left|d\left(x, A_k\right) - d\left(x, A\right)\right| \geq \varepsilon\right\}\right| \\ & \geq & \frac{\lambda^{\alpha}}{\left(1 + \lambda\right)^{\alpha}} \frac{1}{h_r^{\alpha}}\left|\left\{k \in I_r: \left|d\left(x, A_k\right) - d\left(x, A\right)\right| \geq \varepsilon\right\}\right|. \end{split}$$

For $\delta > 0$, we have

$$\left\{r \in \mathbb{N} : \frac{1}{h_r^{\alpha}} \left| \left\{ k \in I_r : \left| d\left(x, A_k\right) - d\left(x, A\right) \right| \ge \varepsilon \right\} \right| \ge \delta \right\}$$

$$\subseteq \left\{ r \in \mathbb{N} : \frac{1}{k_r^{\alpha}} \left| \left\{ k \le k_r : \left| d\left(x, A_k\right) - d\left(x, A\right) \right| \ge \varepsilon \right\} \right| \ge \frac{\delta \lambda^{\alpha}}{\left(1 + \lambda\right)^{\alpha}} \right\} \in I.$$

This completes the proof. \Box

Theorem 2.6. Let $\theta = (k_r)$ be a lacunary sequence and the parameters α and β be fixed real numbers such that $0 < \alpha \le \beta \le 1$, then $N_{\theta}^{\alpha}[I_w] \subseteq N_{\theta}^{\beta}[I_w]$ and the inclusion is strict.

Proof. The inclusion part of proof is easy. To show that the inclusion is strict define $\{A_k\}$ such that for (\mathbb{R}, d) , x > 1 and $A = \{0\}$,

$$A_k = \begin{cases} \{3x + 5\}, & k_{r-1} < k < k_{r-1} + \sqrt{h_r} \\ \{0\}, & \text{otherwise} \end{cases}$$

Then $\{A_k\} \in N_{\theta}^{\beta}[I_w]$ for $\frac{1}{2} < \beta \le 1$ but $\{A_k\} \notin N_{\theta}^{\alpha}[I_w]$ for $0 < \alpha \le \frac{1}{2}$. \square

Theorem 2.7. Let $\theta = (k_r)$ be a lacunary sequence and the parameters α and β be fixed real numbers such that $0 < \alpha \le \beta \le 1$, then $S^{\alpha}_{\theta}(I_w) \subseteq S^{\beta}_{\theta}(I_w)$ and the inclusion is strict.

Proof. The inclusion part of proof is easy. To show that the inclusion is strict define $\{A_k\}$ such that for $X = \mathbb{R}^2$

$$A_k = \begin{cases} (x, y) \in \mathbb{R}^2, x^2 + (y - 1)^2 = k^2, & \text{if } k \text{ is square} \\ \{(0, 0)\}, & \text{otherwise} \end{cases}.$$

Then $\{A_k\} \in S_{\theta}^{\beta}(I_w)$ for $\frac{1}{2} < \beta \le 1$ but $\{A_k\} \notin S_{\theta}^{\alpha}(I_w)$ for $0 < \alpha \le \frac{1}{2}$. \square

Theorem 2.8. Let the parameters α and β be fixed real numbers such that $0 < \alpha \le \beta \le 1$, then $S^{\beta}(I_w) \subseteq N^{\alpha}[I_w]$.

Proof. For any sequence $\{A_k\}$ and $\varepsilon > 0$, we have

$$\frac{1}{n^{\alpha}} \sum_{k=1}^{n} |d(x, A_k) - d(x, A)| \geq \frac{1}{n^{\alpha}} |\{k \leq n : |d(x, A_k) - d(x, A)| \geq \varepsilon\}| \varepsilon$$

$$\geq \frac{1}{n^{\beta}} |\{k \leq n : |d(x, A_k) - d(x, A)| \geq \varepsilon\}| \varepsilon$$

and so

$$\left\{n\in\mathbb{N}:\frac{1}{n^{\alpha}}\sum_{k=1}^{n}\left|d\left(x,A_{k}\right)-d\left(x,A\right)\right|\geq\delta\right\}\subseteq\left\{n\in\mathbb{N}:\frac{1}{n^{\beta}}\left|\left\{k\leq n:\left|d\left(x,A_{k}\right)-d\left(x,A\right)\right|\geq\varepsilon\right\}\right|\geq\frac{\delta}{\varepsilon}\right\}\in I.$$

This gives that $S^{\beta}(I_w) \subseteq N^{\alpha}[I_w]$. \square

Theorem 2.9. Let $\theta = (k_r)$ be a lacunary sequence and α be a fixed real number such that $0 < \alpha \le 1$. If $\lim_{r \to \infty} \inf \frac{h_r^{\alpha}}{k_r} > 0$ then $S(I_w) \subseteq S_{\theta}^{\alpha}(I_w)$.

Proof. Let (X,d) be a metric space, $\theta=(k_r)$ be a lacunary sequence and A,A_k (for all $k \in \mathbb{N}$) be non-empty closed subsets of X. If $\lim_{r\to\infty}\inf\frac{h_r^{\alpha}}{k_r}>0$, then we can write

$$\{k \leq k_r : |d(x, A_k) - d(x, A)| \geq \varepsilon \} \quad \supset \quad \{k \in I_r : |d(x, A_k) - d(x, A)| \geq \varepsilon \}$$

$$\frac{1}{k_r} |\{k \leq k_r : |d(x, A_k) - d(x, A)| \geq \varepsilon \}| \quad \geq \quad \frac{1}{k_r} |\{k \in I_r : |d(x, A_k) - d(x, A)| \geq \varepsilon \}|$$

$$= \quad \frac{h_r^{\alpha}}{k_r} \frac{1}{h_r^{\alpha}} |\{k \in I_r : |d(x, A_k) - d(x, A)| \geq \varepsilon \}| .$$

So

$$\left\{r \in \mathbb{N} : \frac{1}{h_r^{\alpha}} \left| \left\{ k \in I_r : \left| d\left(x, A_k\right) - d\left(x, A\right) \right| \ge \varepsilon \right\} \right| \ge \delta \right\}$$

$$\subseteq \left\{ r \in \mathbb{N} : \frac{1}{k_r} \left| \left\{ k \le k_r : \left| d\left(x, A_k\right) - d\left(x, A\right) \right| \ge \varepsilon \right\} \right| \ge \delta \frac{h_r^{\alpha}}{k_r} \right\}$$

which implies that $S(I_w) \subseteq S^{\alpha}_{\alpha}(I_w)$. \square

Theorem 2.10. Let (X,d) be a metric space and A, A_k (for all $k \in \mathbb{N}$) be non-empty closed subsets of X. If $\theta = (k_r)$ is a lacunary sequence with $\limsup \frac{(k_j - k_{j-1})^{\alpha}}{k_{r-1}^{\alpha}} < \infty$ (j = 1, 2, ..., r), then $A_k \to A\left(S_{\theta}^{\alpha}(I_w)\right)$ implies $A_k \to A\left(S^{\alpha}(I_w)\right)$.

Proof. If $\limsup \frac{\left(k_{j}-k_{j-1}\right)^{\alpha}}{k_{r-1}^{\alpha}} < \infty$, then without any loss of generality, we can assume that there exists a $0 < B_{j} < \infty$ such that $\frac{\left(k_{j}-k_{j-1}\right)^{\alpha}}{k_{r-1}^{\alpha}} < B_{j}$, (j=1,2,...,r) for all $r \geq 1$. Suppose that $A_{k} \to A\left(S_{\theta}^{\alpha}(I_{w})\right)$ and for $\varepsilon, \delta, \delta_{1} > 0$ define the sets

$$C = \left\{ r \in \mathbb{N} : \frac{1}{h_r^{\alpha}} \left| \left\{ k \in I_r : \left| d\left(x, A_k\right) - d\left(x, A\right) \right| \ge \varepsilon \right\} \right| < \delta \right\}$$

and

$$T = \left\{ r \in \mathbb{N} : \frac{1}{n^{\alpha}} \left| \left\{ k \le n : \left| d\left(x, A_{k}\right) - d\left(x, A\right) \right| \ge \varepsilon \right\} \right| < \delta_{1} \right\}.$$

It is obvious from our assumption that $C \in F(I)$, the filter associated with the ideal I. Further observe that

$$A_{i}=\frac{1}{h_{i}^{\alpha}}\left|\left\{k\in I_{i}:\left|d\left(x,A_{k}\right)-d\left(x,A\right)\right|\geq\varepsilon\right\}\right|<\delta$$

for all $i \in C$. Let $n \in N$ be such that $k_{r-1} < n < k_r$ for some $r \in C$. Now

$$\begin{split} \frac{1}{n^{\alpha}} \left| \{k \leq n : |d\left(x, A_{k}\right) - d\left(x, A\right) \right| &\geq \varepsilon \} \right| &\leq \frac{1}{k_{r-1}^{\alpha}} \left| \{k \leq k_{r} : |d\left(x, A_{k}\right) - d\left(x, A\right) \right| \geq \varepsilon \} \right| \\ &= \frac{1}{k_{r-1}^{\alpha}} \left| \{k \in I_{1} : |d\left(x, A_{k}\right) - d\left(x, A\right) \right| \geq \varepsilon \} \right| + \dots \\ &+ \frac{1}{k_{r-1}^{\alpha}} \left| \{k \in I_{r} : |d\left(x, A_{k}\right) - d\left(x, A\right) \right| \geq \varepsilon \} \right| \\ &= \frac{k_{1}^{\alpha}}{k_{r-1}^{\alpha}} \frac{1}{h_{1}^{\alpha}} \left| \{k \in I_{1} : |d\left(x, A_{k}\right) - d\left(x, A\right) \right| \geq \varepsilon \} \right| \\ &+ \frac{(k_{2} - k_{1})^{\alpha}}{k_{r-1}^{\alpha}} \frac{1}{h_{2}^{\alpha}} \left| \{k \in I_{2} : |d\left(x, A_{k}\right) - d\left(x, A\right) \right| \geq \varepsilon \} \right| \\ &+ \dots + \frac{(k_{r} - k_{r-1})^{\alpha}}{k_{r-1}^{\alpha}} \frac{1}{h_{r}^{\alpha}} \left| \{k \in I_{r} : |d\left(x, A_{k}\right) - d\left(x, A\right) \right| \geq \varepsilon \} \right| \\ &\leq \sup_{i \in C} A_{i} \cdot \frac{k_{1}^{\alpha} + (k_{2} - k_{1})^{\alpha} + \dots + (k_{r} - k_{r-1})^{\alpha}}{k_{r-1}^{\alpha}} \\ &\leq \sup_{i \in C} A_{i} (B_{1} + B_{2} + \dots + B_{r}) < \delta \sum_{i=1}^{r} B_{i}. \end{split}$$

Choosing $\delta_1 = \frac{\delta}{\sum\limits_{j=1}^{C} B_j}$ and in view of the fact that $\bigcup \{n : k_{r-1} < n < k_r, r \in C\} \subset T$ where $C \in F(I)$. This completes the proof of the theorem. \square

In [16], it is defined that the lacunary sequence $\theta' = (s_r)$ is called a lacunary refinement of the lacunary sequence $\theta = (k_r)$ if $(k_r) \subseteq (s_r)$. In [18], the inclusion relationship between S_θ and $S_{\theta'}$ is studied.

Theorem 2.11. Suppose $\theta' = (s_r)$ is a lacunary refinement of the lacunary sequence $\theta = (k_r)$. Let $I_r = (k_{r-1}, k_r]$ and $J_r = (s_{r-1}, s_r]$, r = 1, 2, 3, ... If there exists $\epsilon > 0$ such that for $0 < \alpha \le \beta \le 1$,

$$\frac{\left|J_{j}\right|^{\beta}}{\left|I_{i}\right|^{\alpha}} \geq \epsilon \text{ for every } J_{j} \subseteq I_{i} .$$

Then $A_k \to A\left(S_{\theta}^{\alpha}(I_w)\right)$ implies $A_k \to A\left(S_{\theta'}^{\beta}(I_w)\right)$, i.e., $S_{\theta}^{\alpha}(I_w) \subseteq S_{\theta'}^{\beta}(I_w)$.

Proof. For any $\varepsilon > 0$, and every J_i , we can find I_i such that $J_i \subseteq I_i$; then we have

$$\frac{1}{\left|J_{j}\right|^{\beta}}\left|\left\{k \in J_{j}:\left|d\left(x,A_{k}\right)-d\left(x,A\right)\right| \geq \varepsilon\right\}\right| = \left(\frac{\left|I_{i}\right|^{\alpha}}{\left|J_{j}\right|^{\beta}}\right)\left(\frac{1}{\left|I_{i}\right|^{\alpha}}\right)\left|\left\{k \in J_{j}:\left|d\left(x,A_{k}\right)-d\left(x,A\right)\right| \geq \varepsilon\right\}\right| \\
\leq \left(\frac{\left|I_{i}\right|^{\alpha}}{\left|J_{j}\right|^{\beta}}\right)\left(\frac{1}{\left|I_{i}\right|^{\alpha}}\right)\left|\left\{k \in I_{i}:\left|d\left(x,A_{k}\right)-d\left(x,A\right)\right| \geq \varepsilon\right\}\right| \\
\leq \left(\frac{1}{\varepsilon}\right)\left(\frac{1}{\left|I_{i}\right|^{\alpha}}\right)\left|\left\{k \in I_{i}:\left|d\left(x,A_{k}\right)-d\left(x,A\right)\right| \geq \varepsilon\right\}\right|,$$

and so

$$\left\{r \in \mathbb{N} : \frac{1}{\left|J_{j}\right|^{\beta}} \left| \left\{k \in J_{j} : \left| d\left(x, A_{k}\right) - d\left(x, A\right)\right| \geq \varepsilon\right\} \right| \geq \delta\right\}$$

$$\subseteq \left\{r \in \mathbb{N} : \left(\frac{1}{\left|I_{i}\right|^{\alpha}}\right) \left| \left\{k \in I_{i} : \left| d\left(x, A_{k}\right) - d\left(x, A\right)\right| \geq \varepsilon\right\} \right| \geq \delta\epsilon\right\} \in I.$$

The proof completes immediately. \Box

Theorem 2.12. Suppose $\theta = (k_r)$ and $\theta' = (s_r)$ are two lacunary sequences. Let $I_r = (k_{r-1}, k_r]$, $J_r = (s_{r-1}, s_r]$, r = 1, 2, 3, ..., and $I_{ij} = I_i \cap J_j$, i, j = 1, 2, 3, ... If there exists $\epsilon > 0$ such that for $0 < \alpha \le \beta \le 1$,

$$\frac{\left|I_{ij}\right|^{\beta}}{\left|I_{i}\right|^{\alpha}} \geq \epsilon \text{ for every } i, j = 1, 2, 3, ..., provided } I_{ij} \neq \emptyset.$$

Then
$$A_k \to A\left(S^{\alpha}_{\theta}\left(I_w\right)\right)$$
 implies $A_k \to A\left(S^{\beta}_{\theta'}\left(I_w\right)\right)$, i.e., $S^{\alpha}_{\theta}\left(I_w\right) \subseteq S^{\beta}_{\theta'}\left(I_w\right)$.

Proof. Let $\theta'' = \theta' \cup \theta$. Then θ'' is a lacunary refinement of the lacunary sequence θ' , also θ . Then interval sequence of θ'' is $\left\{I_{ij} = I_i \cap J_j : I_{ij} \neq \varnothing\right\}$. From Theorem 2.11, the condition in Theorem 2.12: $\frac{|I_{ij}|^{\beta}}{|I_i|^{\alpha}} \geq \epsilon$, for every i, j = 1, 2, 3, ..., provided $I_{ij} \neq \varnothing$ yields that $A_k \to A\left(S_{\theta}^{\alpha}(I_w)\right)$ implies $A_k \to A\left(S_{\theta''}^{\beta}(I_w)\right)$. Since θ'' is also a lacunary refinement of the lacunary sequence θ' , we have that $A_k \to A\left(S_{\theta''}^{\alpha}(I_w)\right)$ implies $A_k \to A\left(S_{\theta''}^{\beta}(I_w)\right)$. The proof follows immediately. □

Let $\theta=(k_r)$ and $\theta'=(s_r)$ be two lacunary sequences such that $I_r\subset J_r$ for all $r\in\mathbb{N}$ and let α and β be positive real numbers such that $0<\alpha\leq\beta\leq1$. Now we shall give some general inclusion relations between the sets of $S^\alpha_\theta(I_w)$ –convergent sequences and $N^\alpha_\theta[I_w]$ –summable sequences for different α and α which also include Theorem 2.4, Theorem 2.6, Theorem 2.7 and Theorem 2.8 as a special case.

Theorem 2.13. Let $\theta = (k_r)$ and $\theta' = (s_r)$ be two lacunary sequences such that $I_r \subset J_r$ for all $r \in \mathbb{N}$ and let α and β be such that $0 < \alpha \le \beta \le 1$,

$$\lim_{r \to \infty} \inf \frac{h_r^{\alpha}}{\ell_r^{\beta}} > 0 \tag{1}$$

then
$$S^{\beta}_{\theta'}(I_w) \subseteq S^{\alpha}_{\theta}(I_w)$$
, (ii) If

$$\lim_{r \to \infty} \frac{\ell_r}{h_r^{\beta}} = 1 \tag{2}$$

then $S^{\alpha}_{\theta}\left(I_{w}\right)\subseteq S^{\beta}_{\theta'}\left(I_{w}\right)$.

Proof. (*i*) Let (X, d) be a metric space, $\theta = (k_r)$ be a lacunary sequence and A, A_k (for all $k \in \mathbb{N}$) be non-empty closed subsets of X. Suppose that $I_r \subset J_r$ for all $r \in \mathbb{N}$ and let (1) be satisfied. For given $\varepsilon > 0$ we have

$$\{k \in I_r : |d(x, A_k) - d(x, A)| \ge \varepsilon\} \supseteq \{k \in I_r : |d(x, A_k) - d(x, A)| \ge \varepsilon\},$$

and so

$$\frac{1}{\ell_r^{\beta}}\left|\left\{k\in J_r:\left|d\left(x,A_k\right)-d\left(x,A\right)\right|\geq\varepsilon\right\}\right|\geq\frac{h_r^{\alpha}}{\ell_r^{\beta}}\frac{1}{h_r^{\alpha}}\left|\left\{k\in I_r:\left|d\left(x,A_k\right)-d\left(x,A\right)\right|\geq\varepsilon\right\}\right|.$$

Hence

$$\left\{r \in \mathbb{N} : \frac{1}{h_r^{\alpha}} \left| \left\{ k \in I_r : \left| d\left(x, A_k\right) - d\left(x, A\right) \right| \ge \varepsilon \right\} \right| \ge \delta \right\}$$

$$\subseteq \left\{r \in \mathbb{N} : \frac{1}{\ell_r^{\beta}} \left| \left\{ k \in J_r : \left| d\left(x, A_k\right) - d\left(x, A\right) \right| \ge \varepsilon \right\} \right| \ge \delta \frac{h_r^{\alpha}}{\ell_r^{\beta}} \right\} \in I$$

for all $r \in \mathbb{N}$, where $I_r = (k_{r-1}, k_r]$, $J_r = (s_{r-1}, s_r]$, $h_r = k_r - k_{r-1}$, $\ell_r = s_r - s_{r-1}$. Now taking the limit as $r \to \infty$ in the last inequality and using (1) we get $S_{\theta'}^{\beta}(I_w) \subseteq S_{\theta}^{\alpha}(I_w)$.

(ii) Omitted. □

Theorem 2.14. Let $\theta = (k_r)$ and $\theta' = (s_r)$ be two lacunary sequences such that $I_r \subseteq J_r$ for all $r \in \mathbb{N}$, α and β be fixed real numbers such that $0 < \alpha \le \beta \le 1$. Then we have

- (i) If (1) holds then $N_{\theta'}^{\beta}[I_w] \subset N_{\theta}^{\alpha}[I_w]$,
- (ii) If (2) holds and $\{A_k\} \in L_{\infty}$ then $N_{\theta}^{\alpha}[I_w] \subset N_{\theta'}^{\beta}[I_w]$.

Proof. Omitted. □

Theorem 2.15. Let $\theta = (k_r)$ and $\theta' = (s_r)$ be two lacunary sequences such that $I_r \subseteq J_r$ for all $r \in \mathbb{N}$, α and β be fixed real numbers such that $0 < \alpha \le \beta \le 1$. Then

- (i) Let (1) holds, if a sequence is strongly $N_{\theta'}^{\beta}$ $[I_w]$ –summable to A, then it is $S_{\theta}^{\alpha}(I_w)$ –statistically convergent to A.
- (ii) Let (2) holds and $\{A_k\}$ be a bounded sequence, if a sequence is $S^{\alpha}_{\theta}(I_w)$ –statistically convergent to A then it is strongly $N^{\beta}_{\alpha'}[I_w]$ –summable to A.

Proof. (i) Omitted.

(*ii*) Suppose that $S_{\theta}^{\alpha}(I_w) - \lim A_k = A$ and $\{A_k\} \in L_{\infty}$. Then there exists some M > 0 such that $|d(x, A_k) - d(x, A)| \le M$ for all k, then for every $\varepsilon > 0$ we may write

$$\frac{1}{\ell_r^{\beta}} \sum_{k \in J_r} |d(x, A_k) - d(x, A)| = \frac{1}{\ell_r^{\beta}} \sum_{k \in J_r - I_r} |d(x, A_k) - d(x, A)| + \frac{1}{\ell_r^{\beta}} \sum_{k \in I_r} |d(x, A_k) - d(x, A)| \\
\leq \left(\frac{\ell_r - h_r}{\ell_r^{\beta}} \right) M + \frac{1}{\ell_r^{\beta}} \sum_{k \in I_r} |d(x, A_k) - d(x, A)| \\
\leq \left(\frac{\ell_r - h_r^{\beta}}{\ell_r^{\beta}} \right) M + \frac{1}{\ell_r^{\beta}} \sum_{k \in I_r} |d(x, A_k) - d(x, A)| \\
\leq \left(\frac{\ell_r}{h_r^{\beta}} - 1 \right) M + \frac{1}{h_r^{\beta}} \sum_{k \in I_r} |d(x, A_k) - d(x, A)| \\
+ \frac{1}{h_r^{\beta}} \sum_{\substack{k \in I_r \\ |d(x, A_k) - d(x, A)| < \varepsilon}} |d(x, A_k) - d(x, A)| \\
\leq \left(\frac{\ell_r}{h_r^{\beta}} - 1 \right) M + \frac{M}{h_r^{\alpha}} |\{k \in I_r : |d(x, A_k) - d(x, A)| \ge \varepsilon\}| + \frac{\ell_r}{h_r^{\beta}} \varepsilon$$

and so

$$\left\{r \in \mathbb{N} : \frac{1}{\ell_r^{\beta}} \sum_{k \in J_r} |d\left(x, A_k\right) - d\left(x, A\right)| \ge \delta\right\}$$

$$\subseteq \left\{r \in \mathbb{N} : \frac{1}{h_r^{\alpha}} \left| \left\{k \in I_r : |d\left(x, A_k\right) - d\left(x, A\right)\right| \ge \varepsilon\right\} \right| \ge \frac{\delta}{M}\right\} \in I,$$

for all $r \in \mathbb{N}$. Using (2) we obtain that $N_{\alpha'}^{\beta}[I_w] - \lim A_k = A$, whenever $S_{\theta}^{\alpha}(I_w) - \lim A_k = A$. \square

References

- [1] Y. Altın, M. Et, M. Başarır, On some generalized difference sequences of fuzzy numbers, Kuwait J. Sci. Engrg. 34(1A) (2007) 1–14.
- [2] M. Başarır, Ş. Konca, On some spaces of lacunary convergent sequences derived by Nörlund-type mean and weighted lacunary statistical convergence, Arab J. Math. Sci. 20(2) (2014) 250–263.
- [3] A. Caserta, G. Di Maio, and L. D. R. Kočinac, Statistical convergence in function spaces, Abstr. Appl. Anal., Art. ID 420419 (2011) 11 pp.
- [4] J. S. Connor, The Statistical and strong *p*–Cesàro convergence of sequences, Analysis 8 (1988) 47-63.
- [5] H. Çakallı, Lacunary statistical convergence in topological groups, Indian J. Pure Appl. Math. 26(2) (1995) 113–119.
- [6] H. Çakallı, B. Hazarika, Ideal quasi-Cauchy sequences, J. Inequal. Appl. 2012:234 (2012) 11 pp.
- [7] H. Çakallı, A variation on ward continuity, Filomat 27(8) (2013) 1545–1549.
- [8] R. Çolak, Statistical convergence of order α Modern Methods in Analysis and Its Applications, New Delhi, India: Anamaya Pub, (2010) 121–129.
- [9] R. Çolak, On λ-Statistical Convergence, Conference on Summability and Applications 2011 Istanbul Commerce Univ. May 12-13 (2011) İstanbul.
- [10] P. Das, E. Savaş, S. Kr. Ghosal, On generalizations of certain summability methods using ideals, Appl. Math. Lett. 24 (9) (2011) 1509–1514.
- [11] M. Et, Generalized Cesàro difference sequence spaces of non-absolute type involving lacunary sequences, Appl. Math. Comput. 219(17) (2013) 9372–9376.
- [12] M. Et, Strongly almost summable difference sequences of order m defined by a modulus, Studia Sci. Math. Hungar. 40(4) (2003) 463–476
- [13] M. Et, H. Şengül, Some Cesaro-type summability spaces of order α and lacunary statistical convergence of order α , Filomat 28(8) (2014) 1593–1602.
- [14] M. Et, A. Alotaibi, S. A. Mohiuddine, On (Δ^m, I) –statistical convergence of order α , The Scientific World Journal Volume, Article ID 535419 (2014) 5 pages.

- [15] H. Fast, Sur la convergence statistique. Colloq. Math. 2 (1951) 241-244.
- [16] A. R. Freedman, J. J. Sember, M. Raphael, Some Cesàro-type summability spaces, Proc. London Math. Soc. 37(3) (1978) 508–520.
- [17] J. A. Fridy, On statistical convergence. Analysis 5 (1985) 301-313.
- [18] J. A. Fridy, C. Orhan, Lacunary statistical convergence. Pacific J. Math. 160(1) (1993) 43–51.
- [19] A. D. Gadjiev, C. Orhan, Some approximation theorems via statistical convergence, Rocky Mountain J. Math. 32(1) (2002) 129–138.
- [20] A. Gökhan, M. Et, M. Mursaleen, Almost lacunary statistical and strongly almost lacunary convergence of sequences of fuzzy numbers, Math. Comput. Modelling 49(3-4) (2009) 548–555.
- [21] M. Güngör, M. Et, Δ^r -strongly almost summable sequences defined by Orlicz functions, Indian J. Pure Appl. Math. 34(8) (2003) 1141–1151.
- [22] E. Kolk, The statistical convergence in Banach spaces, Acta Comment. Univ. Tartu 928 (1991) 41-52.
- [23] P. Kostyrko, T. Šalát, W. Wilczyński, I-convergence, Real Anal. Exchange 26 (2000/2001) 669-686.
- [24] P. Kostyrko, M. Mačaj, M. Sleziak, T. Šalát, I-convergence and extremal I-limit points, Math. Slovaca 55(4) (2005) 443-464.
- [25] M. Mursaleen, V. Karakaya, M. Ertürk, F. Gürsoy, Weighted statistical convergence and its application to Korovkin type approximation theorem, Appl. Math. Comput. 218(18) (2012) 9132–9137.
- [26] M.Mursaleen, and S. A. Mohiuddine, Korovkin type approximation theorem for almost and statistical convergence, Nonlinear analysis, 487–494, Springer Optim. Appl., 68 (2012) Springer, New York.
- [27] F. Nuray, W. H. Ruckle, Generalized statistical convergence and convergence free spaces, J. Math. Anal. Appl. 245(2) (2000) 513–527.
- [28] F. Nuray, B. E. Rhoades, Statistical convergence of sequences of sets, Fasc. Math. 49 (2012) 87–99.
- [29] T. Šalát, On statistically convergent sequences of real numbers, Math. Slovaca 30 (1980) 139–150.
- [30] T. Šalát, B. C. Tripathy, M. Ziman, On I-convergence field, Ital. J. Pure Appl. Math. No. 17 (2005) 45-54.
- [31] T. Šalát, B. C. Tripathy, M. Ziman, On some properties of I-convergence, Tatra Mt. Math. Publ. 28 part II (2004) 279–286.
- [32] E. Savas, P. A. Das, Generalized statistical convergence via ideals, Appl. Math. Lett. 24(6) (2011) 826–830.
- [33] E. Savas, On I-lacunary statistical convergence of order α for sequences of sets, Filomat 29(6) (2015) 1223–1229.
- [34] I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly 66 (1959) 361–375.
- [35] H. Şengül, M. Et, On lacunary statistical convergence of order α, Acta Math. Sci. Ser. B Engl. Ed. 34 (2) (2014) 473–482.
- [36] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2 (1951) 73–74.
- [37] B. C. Tripathy, B. Hazarika, Paranorm I-convergent sequence spaces, Math. Slovaca 59(4) (2009) 485-494.
- [38] U. Ulusu, F. Nuray, Lacunary statistical convergence of sequence of sets, Prog. Appl. Math. 4(2) (2012) 99-109.
- [39] U. Ulusu, E. Dündar, I-lacunary statistical convergence of sequences of sets, Filomat 28(8) (2014) 1567–1574.