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Bessel Wavelet Transform on the Spaces with Exponential Growth
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Abstract. The Bessel wavelet transform on y, and Q, type spaces of exponential growth are investigated
and their properties discussed by using the theory of the Hankel transform. Using this said theory, the
integral equation of Fredholm type is defined and some examples associated with this integral equation are
given.

1. Introduction

From Zemanian [6, 7] and Betancor - Mesa [1], the Hankel integral transformation is defined by

(haf)(y) = fo () ),y € (0,00, 12—, M

where ], is the Bessel function of the first kind.
If f € L'(0,00) and &, f € L!(0, 00), then inverse Hankel transform is defined by

7= [ G e Hwy @
0
Let f € L1(0, %), g € L'(0, o0) then Hankel convolution of f and g is
(0w = [ feody, ©)
0
where
@) =g = [ o@Dyt 2z @
0
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and D,(x,y,2) = fooo 43 (xt) 2 () (YD) 2 () (202 Tu(zt)dt, x,y,z € (0,00), provided that the above

integrals exist.
If f and g in L1(0, o), then

I (Ftg)() = X772 (1 () (1u9)(0)- ®)

J.J.Betancor and Mesa [1] defined the space x, which consists of all smooth complex-valued function ¢(x),
x € (0, o) satisfies the following norm

LA\
View(®) = sup | (x 15) (T Eg(x))| < o0, (6)
x€(0,00)
for every k,m € INy.
The semi norm for ¢ € x, is given by
To(@®) = sup [x#2SiG@)|,  kmeNo, )

x€(0,00)

where S, = xH %xzf’” %x‘“‘%, induces on x, the same topology as defined by {yi m}k -y
7 M 0
From [1], Q, as the space of all complex-valued functions ® which is like [4] and satisfy the following two

conditions

1. z‘“‘%CD(z) is an even entire function.
2. For every k,m € Ny, the following norm is given by

wf (@) = sup (1+[z%)"z" 2(z)| < . (8)

k,m
[Imz|<k

The boundedness properties of Bessel functions are given below:

Q). || < cd™, zec )
). F?HV @) < Ce™, zeCl>1 (10)

where Hf,l ) denotes the Hankel function of the first kind of order u and C is a positive constant depending
on u in (9) and (10).

From [5], we recall the Bessel wavelet transform of a function f € L2(0, ) with respect to a Bessel wavelet
Y € L?(0, ) is

(By)(b,0) = fo f@OTapa) = a3 fo f<t>¢(§,§)dt. a1

If ¢ € L?(0, o0) and f € L*(0, o), then using the techniques of [5], we have

(Byf)(b,0) = fo (002, (B33 ()3 () @) 12)

In this paper, the Bessel wavelet transform on x,(I) and Q,(I) spaces are investigated and it is shown
that Bessel wavelet transform By, : x,(I) — x.(I X I), By : Q.(I) — Qu(I X I) are linear and continuous.
Applying the continuity property of the Bessel wavelet transform, some properties of Hankel convolution
are studied. Various examples of Fredholm integral equation associated with Hankel convolution and the
Bessel wavelet transform are discussed.
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2. The Bessel Wavelet Transform on the Spaces x, and @,

In this section the properties of Bessel wavelet transform on x, and @, type spaces are studied.

Lemma 2.1. If ¢ € x,(I), I = (0, 00) then we have the following estimate

9

q
(0‘1%) (rap)(a(E + ik + 1))' < Y (‘r’)cywi-” 1€+ i(k + 1P

r=0

)/;;_LO(IP)F(Zy —2r+2g+1), (13)
wherea > 0, u > r—q—3 and C,, = CXA,,, with arbitrary constant Cand Ay, = (u+3)(u+3—2)..(u+ 31 -2(r-1)).

Proof. We have
(1d) i 9)©) = ( d—) [ ooy

J
J

) (©y) " Ju(oy) o) Y (y)dy

q q- r r
Y, (r)( ) o Ju(oy) (U_%) o2y 2 y(y)dy. (14)

r=0

00

Therefore, we obtain

d\’ i . o0 .
(v-l%) (h;,¢><v>=Z(Z) (1) Ay o1 fo @) usgr09) Y2 () dy.

r=0

The following estimate can be obtained from (9),

( - 4 ) ()@ <

q )
Z (Z) C# |U|,u+%—2r sup |e(k+1)yy—‘u—%¢(y)| f e—yy2,u+2q—27+ldy, lf IIm vl <k
0 0

y€(0,00)

q
< Z (r) Cy o]+27% Vi o@) T = 27 +2q +1).

r=0

Putting v = a (£ +i(k + 1)), we get

q
()t

9

< Z ( )c I |E ik + TR WL Qu =27 +2q +1).
r=0

Theorem 2.2. Bessel wavelet transform By, is a continuous linear map from x ,(I) to x,(I X I) for u > —%.
Proof. Let ¢ € x,(I). Then by using (12) and [1], we have

d\ . ® ,
(—1)‘7(191%) b B0, = f bHIE + i) (D(E + i)

x (& + i) ™% (lyp) (& + i) () (a(& + im))dE.
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Therefore,
I q
d d 1
_1\vl 122 -1 —U=5
1) (a da) (b db)b By, 9)(b,0)

00
< f b‘#"i‘%
—00

1
(a‘ld%) () @t + i)

(b(E + i) HHOL, (0 + in)| (& + im)? (€€ + iny =2 (up) (€ + i)

dé

- !
< pErice™ I &+ iny? (& + iy (nu) (2 + i) (a_lj_a) (ha) (e + i)

Using Lemma 2.1 and putting = k + 1, we have

I q
oo

1

< C.C b7H" =3 ght=2r+3 —bz(i)y£+lo(¢) reu-2r+21+1)
r=0

Xf |é +l(k+ 1)|[J—27’+21+q+%

(& + ik + 1)) P77 () (& + ik + 1) de.

Now, letz=& +i(k+1)

I q
¢kt (a‘lé) (b‘lc;ib) b2 (By, )(b, a)

!
< C bH =3 gh=2r+3 _bZ(r)kaO(‘P)F Qu-2r+2i+1)

r=

X sup (1+|z|2)m |z—H—% hy(j) (z)|f <1+|z|2)_m |Z|H—2V+21+q+%dz,

|Imz|<k+1

is convergent for large value of m. [1, Theorem 2.1], we get

o (a X ) (b‘ ;b) b4 (By, )b, a)
1
< c;b—u—q—%au—m%e—b Z (i) " Lo TQ@u = 2r +21+1) {’75+z,o(¢) + q;jﬂ/m(qb)} .

r=0

Theorem 2.3. The Bessel wavelet transform By, is a continuous linear mapping from Qu(I) to Q,(I X I).

Proof. Let ¢ € Q. Suppose (Bwp) (z,a) = D(z,a) wherez =b+ib,b,b' €landa € .

ik, ) = j:(zx)_”]y(zx)x“; () (@)% () ).
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Taking the absolute value of the above equation, we get
‘a‘”_%z‘”_%(l)(z, a)‘

< fo"" (20, (2) 'xm% (hyti)) (X)l '(ax)‘#—% (hyll’) (ax)’ dx

00
<C f exllmzl
0

ek xh3 (hy(p) (x)‘ su}:)

x#+%(hy¢)(x)|kax)—#-%(hng(axo‘dx

<Csup

xel
Forx>1,1>u+ % and in the view of [1, Theorem 2.1,pp.38-39], we have

F2u+1)

|a W2z (2, a)| < ka+11(¢) C‘)k+1l(‘1b) (ak)u+l

For x € (0, 1), using the arguments of [1, Theorem 2.1, pp.38-39], we have

I2u+1)

‘a—y—%z—ﬂ—%q)(z,a)‘ < Ca)y (Qb) (IP) (ak)2u+1 ’

where n € N and n > u + 1. Taking (15) and (16), B is continuous from Q,(I) to Q,(I X I).

Lemma 2.4. Let ¢ be a Bessel wavelet, then it can be written in the terms of Hankel transform as

Tppa(x) = b2 Iy [(Ou) T (b () (),

where a, b are dilation and translation parameters respectively.

Proof. Using (11) and putting £ = u, we get

i =at [ ¢<z>( [ Gt ot e e oz

= fow (fow(zau)%]y(azu)ll’(z)dz) u‘#—%(xu)%]H(xu)(bu)%]#(bu)du

- f 4= e ] e (0], o) () @

0

= b3 Iy [(0u) (D) () au) | (o).

¢ (ax) K2 (I’l“l)ll) (ax)’ f ) ek x2utl g
0

2463

(15)

(16)

(17)

O

Theorem 2.5. If f € )('” and Y € x, then btz (B¢f) (b, a) € Oy,, where X/# and 6y, denote the dual and multiplier

of X, respectively.
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Proof. Suppose f € x,, and ¢ € x,. Then

(Byf) (b, a) = (f#s) ()
= (f, w¥a)

= <Z S’;,(e”x"‘"% fo, Tb¢a>
k=0
= <Z xEIf, Tb(sﬁ%)> :

k=0
Using Lemma 2.4, we get

v )\0,a) = I 2y Tty
Bo) 0 =Y [ e o, [0 1, 00n(shean] W
k=0

= Z fo‘w erxx_%l—%fk(X)be% hy [(bt)_f’]#(bt)hy¢(at)(at)2k] (x)dx.
k=0

(b %) b (Byf) (b, a)

et (B e BE) £ (1,90 a1) (0]

<sup
xel

e(”l)"x—ﬂ—%hy ((bt)‘#‘”]#m(bt) p2 k) (hyyb)(at)) (x)' x ra® f ) |e‘x fk(x)l dx
0

< C'a? sup | 0¥y (084" Tun OOy at) (x)’ .

xel
Since i € vy = (1,1)(@t) € Qy and ()", (bt) € O, (Multiplier of Q,).
Therefore 20 (bt) ™7 ], (bE) () (at) € Q.. [1, p.42] we get the following expression

‘(b*%)"a +a”) b 2By f)(b,a)| < C'e”.

This shows that (1 +a*)"'b7#"Y2(B, f)(b,a) € 0, . O

3. Applications

In this section motivated from [2, p.214], we introduce the Fredholm integral equation associated with
Hankel convolution on Xy space.
The Fredholm integral equation is defined by

f F(Og(x, DAt + Af(x) = ux), (18)

0

where g(x) and u(x) are given functions and A is a known parameter. From (3), we can write (18) as
(f#9)(x) + Af(x) = u(x). (19)

Theorem 3.1. Let f € L'(0, 00) and g € L'(0, o). Then solution of (19) is

(hu)(&)
(42 (hug)(E) + A)

) = fo (x) 2] (xE) 20)
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Proof. Taking Hankel transform of (19) and using (5), we get
E2 (y fYE hug)(E) + Al (E) = () ()

(huu)(&)
(h. &) = - . (21)
S S @0
From the inversion formula (2), we can find the solution
* (huu)(E)
_ O] (xE 1 u
fo = [ e T
[

Theorem 3.2. Let f € x,, g € xu- Then
(f#9) () + Af(x) € Xy (22)

Proof. From [1, Proposition 3.2], the Hankel convolution is a continuous linear mapping from x, X x, into
Xu- This implies that (f#g) € x,.
Since f € x,, therefore

(f#g) () + Af(x) € xp-

Example 3.3. We take u(x) = x**2¢~*" with Rea > 0, Rep > —1and f = gin (18). Then from (21), we have

2 1 1 2
[ )] = &5y (x+2e7) (&)
62H+1
= (261)’“”'1
From [3], we have

fl) = 2T a2,

,r2/4a

This x*+1e>*" € y,, and the solution f(x) = 215 yutl g2 ¢ Xu-

Theorem 3.4. Let i) € x, C L'(0, 00) be a Bessel wavelet. Then
(huu)(E)

(£ 2 () (€) + )

Proof. Putting g = ¢,(b) in (19) and from (21), we have
(ru1)(E)

(&2 (o) (€) + A)

With the help of inversion formula of Hankel transform, we get (23). 0O

£b) = fo 1L (bEYBE) 2 (23)

(h,uf)(é) =

(24)

Example 3.5. Solve the integral equation

« t b
j(; f(f)kb(a/;)df:u(b),

where Y(x) = 2'T'(v + 1)x‘V‘%]H+V+1(x).
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Solution. From (24) and [3, p.26], we get

1
h.f)(&) = (h 13 1 1
( }f)( ) =( y”)( )g—P_ihH(zvr(V + 1)x_v_§]y+v+l (x))(a&)
1
= (hyu)(é)m, Rev > -1, R€[U > —1.

Taking v = (u + 3), [3, p-32] and (5), we have,

(4 PE) = Iy (it P2im 2 -y (2] Si”;‘c) ©

1

F) = u# V2270012 - ) (;—‘)“ ’ sin’.
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