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Abstract. In this paper, we derive a DDVV-type inequality for submianifolds in a Riemannian manifold
of nearly quasi-constant curvature. Moreover, two inequalities involving the Casorati curvature and the
scalar curvature are obtained.

1. Introduction

According to Chen’s cornerstone work [3], one of the most important problems in submanifold theory
is to establish simple relationships between the main extrinsic invariants and the main intrinsic invariants
of submanifolds. The basic relationships discovered until now are inequalities and the study of this topic
has attracted a lot of attention during the last two decades [5,8,9,11–15,17–23].

In 1999, P.J. De Smet, F. Dillen, L. Verstraelen and L. Vrancken introduced a new extrinsic invariant
called the normal scalar curvature, and posed an inequality for submanifolds in real space forms involving
the scalar curvature (intrinsic invariant), the normal scalar curvature (extrinsic invariant) and the squared
mean curvature (extrinsic invariant), known as DDVV conjecture, which has later been proved by J. Ge, Z.
Tang [10] and Z. Lu [16] in different ways. Recently, the similar DDVV inequality has been obtained for
Lagrangian submanifolds in complex space forms by I. Mihai [17], and the author also proved an analogous
inequality for slant submanifolds in complex space forms.

On the other hand, the Casorati curvature of a submanifold is an extrinsic invariant defined as the
normalized square of the length of the second fundamental form. And it was preferred by Casorati over
the traditional Gauss curvature because it corresponds better with the common intuition of curvature [2].
Therefore it is of great interests to obtain optimal inequalities for Casorati curvatures of submanifolds
in different ambient spaces. S. Decu, S. Haesen and L. Verstraelen obtained some optimal inequalities
involving the scalar curvature, and they also proved an inequality involving the holomorphic sectional
curvature and the Casorati curvature of a Kaehler hypersurface in complex space forms [9].

In [4], B.Y. Chen and K. Yano generalized the notion of real space forms to quasi-constant curvature
manifolds, which was further extended to nearly quasi-constant curvature manifolds by U.C. De and A.K.
Gazi in [7]. In [18], C. Özgür studied Chen inequalities for submanifolds of a Riemannian manifold of
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quasi-constant curvature. Those inequalities later have been generalized to submanifolds of a Riemannian
manifold of nearly quasi-constant curvature by C. Özgür and A. De in [19]. Also, some other basic
inequalities involving the squared mean curvature and the Ricci curvature, the scalar curvature and the
sectional curvature for submanifolds of this kind of ambient space are obtained in [12,23].

The main purpose of this paper is to continue to establish geometric inequalities for submanifolds in a
Riemannian manifold of nearly quasi-constant curvature. In Section 3, we obtain a DDVV type inequality
in terms of the squared mean curvature, the normalized normal scalar curvature and the scalar curvature.
In Section 4, we establish two inequalities which are concerned with the Casorati curvature.

2. Preliminaries

In [4], B.Y. Chen and K. Yano introduced the notion of a Riemannian manifold (N, 1) of quasi-constant
curvature. Its curvature tensor R̄ satisfies

R̄(X,Y,Z,W) =ā[1(X,Z)1(Y,W) − 1(X,W)1(Y,Z)] + b̄[1(X,Z)T(Y)T(W) − 1(X,W)T(Y)T(Z)
+ T(X)T(Z)1(Y,W) − T(X)T(W)1(Y,Z)], (1)

where ā, b̄ are scalar functions, and T is a 1-form defined by

1(X,P) = T(X) (2)

and P is a unit vector field. It is easy to see, the manifold reduces to a real space form of constant curvature
of ā if b = 0.

Later, U. C. De and A. K. Gazi [7] generalized the notion of Riemannian manifold of quasi-constant
curvature to Riemannian manifold of nearly quasi-constant curvature whose curvature tensor satisfies

R(X,Y,Z,W) =a[1(X,Z)1(Y,W) − 1(X,W)1(Y,Z)] + b[1(X,Z)B(Y,W) − 1(X,W)B(Y,Z)
+ B(X,Z)1(Y,W) − B(X,W)1(Y,Z)], (3)

where a, b are scalar functions, and B is a non-zero symmetric tensor filed of type (0,2). If b = 0, then
the manifold reduces to a real space form. It’s known that the outer product of two covariant vectors
is a covariant of type (0,2), but the converse is not true, in general [7]. Hence, if B = T ⊗ T for a 1-
form T, a Riemannian manifold of nearly quasi-constant curvature reduces to a Riemannian manifold of
quasi-constant curvature.

Here are two examples of a Riemannian manifold of nearly quasi-constant curvature.

Example 2.1 Let (R4, 1) be a Riemannian manifold endowed with the metric given by

ds2 = 1i jdxidx j = (x4)
4
3 [(dx1)2 + (dx2)2 + (dx3)2] + (dx4)2.

Then (R4, 1) is a Riemannian manifold of nearly quasi-constant curvature, which is not a Riemannian
manifold of quasi-constant curvature. Detailed explanations were given in [7] (see also [19]).

Example 2.2 Let N(c) be a real space form. If N(c) has a semi-symmetric metric connection with
closed associated 1−form ω, then N(c) is a space of nearly quasi-constant curvature with respect to the
semi-symmetric metric connection. More details can be found in [19].

Let (Mn, 1) be an n-dimensional submanifold in an (n + m)-dimensional Riemannian manifold (Nn+m, 1̄)
of nearly quasi-constant curvature defined by (3). The Levi-Civita connection on N and M will be denoted
by ∇̄ and ∇, respectively.

For vector fields X, Y tangent to M, and a vector field ξ normal to M, the Gauss and Weingarten formulas
can be expressed by

∇̄XY = ∇XY + h(X,Y), ∇̄Xξ = −AξX + ∇⊥Xξ,
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where h is the second fundamental form of M, ∇⊥ is the normal connection and Aξ is the shape operator of
M which is related with h by

1(AξX,Y) = 1̄(h(X,Y), ξ).

Denote by R̄ and R the Riemannian curvature tensors associated to ∇̄ and ∇, and we denote by R⊥ the
normal curvature tensor of M, then the Gauss equation and the Ricci equation are given respectively by

R(X,Y,Z,W) = R(X,Y,Z,W) + 1̄(h(X,Z), h(Y,W)) − 1̄(h(X,W), h(Y,Z)), (4)

R⊥(X,Y, ξ, η) = R(X,Y, ξ, η) + 1̄(h(X,AξY), η) − 1̄(h(Y,AξX), η), (5)

for vector fields X,Y,Z,W tangent to M, and vector fields ξ, η normal to M.
In Nn+m, we choose a local orthonormal frame

e1, . . . , en, en+1, . . . , en+m, (6)

such that, restricting to Mn, e1, . . . , en are tangent to Mn. For convenience, we use the following convention
on the range of indies:

i, j, · · · = 1, · · · ,n, α, β, · · · = n + 1, · · · ,n + m.

We write hαi j = 1̄(h(ei, e j), eα). Then the mean curvature vector
−→
H is given by

−→
H =

1
n

n+m∑
α=n+1

(
n∑

i=1

hαii)eα,

and we call H = ‖
−→
H‖ the mean curvature of M.

The submanifold is called totally geodesic if h = 0 and minimal if H = 0. The submanifold is called
invariantly quasi-umbilical if there exist m mutually orthogonal unit normal vectors en+1, . . . , en+m such that
the shape operators with respect to all directions eα have an eigenvalue of multiplicity n − 1 and that for
each eα the distinguished eigendirection is the same [1].

Let K(ei ∧ e j), 1 ≤ i < j ≤ n denote the sectional curvature of the plane section spanned by ei and e j. Then
the scalar curvature of Mn is defined by

τ =
∑

1≤i< j≤n

K(ei ∧ e j), (7)

and the normalized scalar curvature ρ, the normalized normal scalar curvature ρ⊥ are given respectively
by

ρ =
2τ

n(n − 1)
=

2
n(n − 1)

∑
1≤i< j≤n

K(ei ∧ e j), (8)

ρ⊥ =
2τ⊥

n(n − 1)
=

2
n(n − 1)

√ ∑
1≤i< j≤n

∑
n+1≤α<β≤n+m

(R⊥(eα, eβ, ei, e j))2. (9)

By using (3) one can easily get the following.

Lemma 2.1 Let Mn be a submanifold isometriclly immersion into a Riemannian manifold Nn+m of
nearly quasi-constant curvature whose curvature tensor satisfies (3), then with respect to the frame field
defined by (6), we have R(eα, eβ, ei, e j) = 0.
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3. DDVV-Type Inequality

First, we recall the following theorem ,which is also known as DDVV conjecture.

Theorem 3.1 ([8]) Let Mn be a submanifold isometriclly immersion into a Riemannian manifold Nn+m

which is a space with constant sectional curvature c̃. Then

ρ + ρ⊥ ≤ H2 + c̃. (10)

The equality case holds if and only if, with respect to some suitable orthonormal frame e1, . . . , en+m, the
shape operators of Mn in Nn+m take the following forms

Aen+1 =


λ1 + µ 0 0 · · · 0

0 λ1 − µ 0 · · · 0
0 0 λ1 · · · 0
...

...
...

. . .
...

0 0 0 · · · λ1


, Aen+2 =


λ2 µ 0 · · · 0
µ λ2 0 · · · 0
0 0 λ2 · · · 0
...

...
...

. . .
...

0 0 0 · · · λ2


,

Aen+3 =


λ3 0 0 · · · 0
0 λ3 0 · · · 0
0 0 λ3 · · · 0
...

...
...

. . .
...

0 0 0 · · · λ3


, Aen+4 = Aen+5 = · · · = Aen+m = 0. (11)

where λ1, λ2, λ3 and µ are real functions on Mn.
In this section, we generalize Theorem 3.1 to submanifolds in Riemannian manifolds of nearly quasi-

constant curvature as follows

Theorem 3.2 Let Mn be a submanifold isometriclly immersion into a Riemannian manifold Nn+m of
nearly quasi-constant curvature whose curvature tensor satisfies (3). Then we have

ρ + ρ⊥ ≤ H2 + a +
2b
n

tr(B |M), (12)

where tr(B |M) is the trace of B restricted to Mn. The equality holds if and only if the shape operators take
the desired forms as (11) with respect to some suitable frame.

Proof Due to Gauss and Ricci equations, we can get the following from (10) (see [16])∑
α

∑
i< j

(hαii − hαj j)
2 + 2n

∑
α

∑
i< j

(hαi j)
2
≥ 2n

[∑
α<β

∑
i< j

(
n∑

k=1

(hαikhβjk − hαjkhβik))2
] 1

2 . (13)

From (4) and (7) we have

τ =
∑
i< j

Ri ji j =
n(n − 1)a

2
+ b(n − 1)tr(B |M) +

∑
i< j

∑
α

[hαiih
α
j j − (hαi j)

2], (14)

which together with (5) and (9) gives

ρ⊥ =
2τ⊥

n(n − 1)
=

2
n(n − 1)

√∑
i< j

∑
α<β

[∑
k

(hαikhβjk − hαjkhβik)
]2
. (15)

On the other hand, we have

n2H2 =
∑
α

(
∑

i

hαii)
2

=
1

n − 1

∑
α

∑
i< j

(hαii − hαj j)
2 +

2n
n − 1

∑
α

∑
i< j

hαiih
α
j j. (16)
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Combining (13), (15) and (16), one can easily obtain

nH2
− nρ⊥ ≥

2
n − 1

∑
α

∑
i< j

[
hαiih

α
j j − (hαi j)

2]. (17)

Plunge (14) into (17), we get,

nH2
− nρ⊥ ≥

2
n − 1

[
τ −

n(n − 1)
2

a − (n − 1)btr(B |M)
]
,

or, equivalently,

H2
− ρ⊥ ≥

2
n(n − 1)

[
τ −

n(n − 1)
2

a − (n − 1)btr(B |M)
]
,

which together with (8) gives (12).
The equality case of (12) at a point p ∈ Mn holds if and only if we have equality in (17). According to

[16], the shape operators take the desired forms as (11) with some respect to suitable frame. �

Using B = T ⊗ T in (12), we get the following.

Corollary 3.4 Let M be an n-dimensional submanifold of an (n + m)-dimensional manifold N of
quasi-constant curvature whose curvature tensor satisfies (1) and (2). Then we have

ρ + ρ⊥ ≤ H2 + a +
2b
n
‖P>‖2,

where P> is the tangential components of P on M, and the equality holds if and only if the shape operators
take the desired forms as (11) with respect to some suitable frame.

Remark 3.5 If b = 0, then we can get Theorem 3.1.

4. Inequalities for Casorati Curvature

The squared norm of h over dimension n is called Casorati curvature of the submanifold of M, i.e.,

C =
1
n

n+m∑
α=n+1

n∑
i, j=1

(hαi j)
2. (18)

Suppose x ∈M, L is a r-dimensional subspace of TxM spanned by e1, · · · , er, r ≥ 2. The Casorati curvature
of L is defined by

C(L) =
1
r

n+m∑
α=n+1

r∑
i, j=1

(hαi j)
2. (19)

Following [9], we can define the normalized δ − Casorati curvatures δC(n − 1) and δ̂C(n − 1) by

[δC(n − 1)]x =
1
2
Cx +

n + 1
2n

inf
{
C(L) | L a hyperplane of TxM

}
, (20)

[δ̂C(n − 1)]x = 2Cx −
2n − 1

2n
sup

{
C(L) | L a hyperplane of TxM

}
. (21)

In this paper, we obtain two inequalities in term of the normalized δ − Casorati curvature δC(n − 1) as
follows.
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Theorem 4.1 Let (Mn, 1) be a Riemannian submanifold in an (n + m)-dimensional Riemannian manifold
N of nearly quasi-constant curvature whose curvature tensor satisfies (3). Then we have

ρ ≤ δC(n − 1) + a +
2b
n

tr(B |M). (22)

The equality holds if and only if the submanifold M is invariantly quasi-umbilical with trivial normal
connection in N, such that with respect to some suitable frame e1, · · · , en+m the shape operators take the
following forms

Ae1 =


µ · · · 0 0
...

. . .
...

...
0 · · · µ 0
0 · · · 0 2µ

 , Ae2 = Ae3 = · · · = Aen+m = 0,

where µ is a real function on Mn.

Remark 4.1 If b = 0, (22) is due to the inequality (4.1) in [22].

Proof Consider the following function which is a quadratic polynomial in the components of the second
fundamental form

P =
1
2

n(n − 1)C +
1
2

(n + 1)(n − 1)C(L) − 2τ + n(n − 1)a + 2(n − 1)btr(B |M). (23)

From (18) and (14) we have

2τ = n2H2
− nC + n(n − 1)a + 2(n − 1)btr(B|M).

Assuming, without loss of generality, that L is spanned by e1, · · · , en−1, it follows that

P =
n(n + 1)

2
C +

(n − 1)(n + 1)
2

C(L) − n2H2

=
∑
α

{
n

n−1∑
i=1

(hαii)
2 +

n − 1
2

(hαnn)2 + 2(n + 1)
∑

1≤i< j≤n−1

(hαi j)
2 + (n + 1)

n−1∑
i=1

(hαin)2
− 2

∑
1≤i< j≤n

hαiih
α
j j

}

≥

∑
α

{
n

n−1∑
i=1

(hαii)
2 +

n − 1
2

(hαnn)2
− 2

∑
1≤i< j≤n

hαiih
α
j j

}
. (24)

For α = n + 1, · · · ,n + m, let us consider the quadratic forms

fα : Rn
→ R,

fα(hα11, · · · , h
α
nn) = n

n−1∑
i=1

(hαii)
2 +

n − 1
2

(hαnn)2
− 2

∑
1≤i< j≤n

hαiih
α
j j.

The matrix of fα is

Fα =


n · · · −1 −1
...

. . .
...

...
−1 · · · n −1
−1 · · · −1 n−1

2

 .
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By a straight calculation, one can get the characteristic polynomial is

|λE − Fα| =

∣∣∣∣∣∣∣∣∣∣∣∣
λ − n · · · 1 1
...

. . .
...

...
1 · · · λ − n 1
1 · · · 1 λ − n−1

2

∣∣∣∣∣∣∣∣∣∣∣∣ = λ(λ −
n + 3

2
)(λ − n − 1)n−2.

Hence the eigenvalues of matrix of fα are

λ1 = n + 1, λ2 = n + 1, · · · , λn−2 = n + 1, λn−1 =
n + 3

2
, λn = 0.

Therefore, fα is positive semidefinite, i.e.

fα ≥ 0. (25)

Consequently

P ≥ 0. (26)

Then, from (23) and (26) we can derive inequality (22).
In the following, we consider the equality case of (22). Equality holds in the inequality (24) if and only if

hαi j = 0, i , j ∈ {1, . . . ,n}. (27)

The critical points hc = (hα11, · · · , h
α
nn) of fα are solutions of the following system of linear homogeneous

equations

∂ fα
∂hα11

= 2nhα11 − 2
n∑

i=2
hαii = 0,

∂ fα
∂hα22

= 2nhα22 − 2hα11 − 2
n∑

i=3
hαii = 0,

...
∂ fα

∂hαn−1,n−1
= 2nhαn−1,n−1 − 2hαnn − 2

n−2∑
i=1

hαii = 0,

∂ fα
∂hαnn

= (n − 1)hαnn − 2
n−1∑
i=1

hαii = 0.

(28)

On the other hand, we set

kα = hα11 + · · · + hαnn, (29)

here kα is the trace of the matrix (hαi j), which is invariant no matter how hαi j changes. As for the system of
linear homogeneous equations (28), the rank of its coefficient matrix is n − 1 which is less than n, therefore
(28) has non-zero solutions.

By using (28) and (29), the equality in (25) holds if and only if

hα11 = hα22 = · · · = hαn−1,n−1 =
kα

n + 1
, hαnn =

2kα

n + 1
, (30)

for all α ∈ {n + 1, . . . ,n + m}.
Combining (27) and (30), we see that P = 0 if and only if

hαii =
kα

n + 1
, hαnn =

2kα

n + 1
, i = 1, . . . ,n − 1,
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and

hαi j = 0, i , j ∈ {1, . . . ,n},

for all α ∈ {n + 1, . . . ,n + m}.
Thus for this case, from (5), (27) and Lemma 2.1, we know that the normal connection of M is flat, that

is the normal curvature tensor R⊥ vanishes. Then we conclude that the equality holds if and only if the
submanifold M is invariantly quasi-umbilical with trivial normal connection in N, such that with respect to
suitable tangent and normal orthonormal frames e1, · · · , en+m the shape operators take the following forms

Aen+1 =


µ · · · 0 0
...

. . .
...

...
0 · · · µ 0
0 · · · 0 2µ

 , Aen+2 = Aen+3 = · · · = Aen+m = 0. (31)

�
Analogously, working with the function

Q = 2n(n − 1)C +
1
2

(1 − 2n)(n − 1)C(L) − 2τ + n(n − 1)a + 2(n − 1)btr(B|M),

instead of P in the proof of Theorem 4.1, we obtain a similar inequality involving δ̂C(n − 1) as follows.

Theorem 4.2 Let (Mn, 1) be a Riemannian submanifold of an (n + m)-dimension Riemannian manifold
Nn+m of nearly quasi-constant curvature whose curvature tensor satisfies (3). Then we have

ρ ≤ δ̂C(n − 1) + a +
2b
n

tr(B |M). (32)

The equality holds if and only if the submanifold M is invariantly quasi-umbilical with trivial normal
connection in N, such that with respect to some suitable frame e1, · · · , en+m the shape operators take the
following forms

Aen+1 =


2µ · · · 0 0
...

. . .
...

...
0 · · · 2µ 0
0 · · · 0 µ

 , Aen+2 = Aen+3 = · · · = Aen+m = 0,

where µ is a real function on Mn.
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