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Abstract. The purpose of this work is to give some new algebraic properties of the orthogonality of a
monic polynomial sequence {Q,},>o defined by

Qu(x) = Pu(x) + 5, Pyoq(x) + t,Ppa(x) + r,Pr3(x), n=>1,

where r, # 0,n > 3, and {P,},»0 is a given sequence of monic orthogonal polynomials. Essentially, we
consider some cases in which the parameters r,, s,, and t, can be computed more easily. Also, as a
consequence, a matrix interpretation using LU and UL factorization is done. Some applications for Laguerre,
Bessel and Tchebychev orthogonal polynomials of second kind are obtained.

1. Introduction and Preliminaries

Let {P,,},>0 be a sequence of monic orthogonal polynomials with respect to a regular linear functional u.
We define a new sequence of monic polynomials {Q,},>0 by the M-N type linear structure relation

M-1 N-1
Qu(x) + Z 2jnQn-i(x) = Pp(x) + Z binPn-i(x), n>1,

i=1 i=1

where M and N are fixed positive integer numbers, and {a; ,}, and {b; ,},, are sequences of complex numbers
with ap-1,,bn-1,n # 0. The study of the regularity of the sequence {Q,}:>0 is said to be an inverse problem.
This problem has been studied in some particular cases. Indeed, the relations of types 1-2 and 2-1 have
been studied in [9], the 1-3 type relation in [2], the 2-2 type relation in [4] and the 2-3 type relation in [1]. In
addition, the 1-N type relation with constant coefficients has been analyzed in [3].

Recently, in [8] and for M = 1, N = 4, F. Marcelln and S. Varma determine necessary and sufficient conditions
such that {Q,},>0 becomes also orthogonal.

This article is a continuation of [8]. It deals with some new results about the sequence {Q,},>0 defined by

Qn(x) = Pp(x) + 8, Pp—1(x) + t,Py—a(x) + r,Py—3(x), 71, #0, n=>23.
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Firstly, we give some new results concerning the regularity conditions of the sequence {Q,},»0. In particular,
we obtain a new characterization of the orthogonality of this sequence with respect to a linear functional
v, in terms of the coefficients of a cubic polynomial g such that q(x)v = u. Indeed, it is known [17] that up
to some natural conditions the M - N type structure relation leads to a rational transformation ®u = Wo
where ® and W are polynomials. Secondly, since the cases 1-2 and 1-3 type structure relation have been
already considered in previous works (see [2, 9]), we obtain necessary and sufficient conditions so that the
above 1-4 relation can be decomposed in three 1-2 relations or two relations of types 1-2 and 1-3 and then
proceed by iteration. This study is based on the factorization of g(x). We will study the case when {P,},,>¢ is
symmetric and {Q,},>0 is quasi-antisymmetric. In any situation, the matrix interpretation of this problem
in terms of monic Jacobi matrices is done carefully. Finally, we give a detailed study of three examples.

Now, we are going to introduce some basic definitions and results. The field of complex numbers is
denoted by C. The vector space of polynomials with coefficients in C is denoted by # and its dual space is
presented as #’. We will simply call polynomial every element of  and linear functional to the elements
in P’. We denote by (u, f) the action of u € £’ on f € . In particular, we denote by (1), := (1, x"),n >0,
the moments of u.

For any linear functional v and any polynomial & let hv, 6., and (x — ¢)"'v be the linear functionals defined

by: (hv, f) := (v,hf), (O, f) := f(c) and <(x— c)‘lv,f> := (v, 6.f) where (&f)(x) = %, c €(C,
f € P. Then, it is straightforward to prove that for c € C, and v € ', we have [15]

(x =) ((x = 0)v) = v = (V)od, (1.1)

(x-o)((x-c)'v) =v. (1.2)

A linear functional u is called regular if there exists a sequence of polynomials {P,},>o (deg P, < n) such
that (u, P,Py) = 16nm , ta#0, n>=0.
Then deg P, = n,n > 0 and we can always suppose each P, is monic. In such a case, the sequence {P;},>0
is unique. It is said to be the sequence of monic orthogonal polynomials with respect to u. In the sequel
it will be denoted as SMOP. It is a very well known fact that the sequence {P,},>¢ satisfies the recurrence
relation (see, for instance, the monograph by Chihara [6])

Pyio(x) = (x - ,Bn+1)Pn+1(x) - 7/11+1Pn(x) , n=0,

Pi(x)=x-Bo, Polx)=1, (1.3)

with (‘Bn,ynﬂ) eCxC-{0}, n=0.Byconvention we set )y = ().

The linear functional u is said to be normalized if (u)g = 1. In this paper, we suppose that any linear
functional will be normalized.

2. Some Algebraic Properties

In the sequel {P,},>0 denotes a SMOP with respect to a regular linear functional u. By giving three
sequences of complex numbers {s,},>1, {tn}n>2, and {r,},>3, we define a new sequence of monic polynomials
{Q,}i>0 such that

Qi(x) =Pi1(x) +s1,
Qa(x) = Pa(x) + 52P1(x) + £, (2.1)
Qu(x) =Pu(x)+s,Pp-1(x) + t,Pya(x) + 1r,Pr3(x), n>3, withr,#0, n>3.

Let us recall the following result:
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Theorem 2.1. [8] {Qy}n=0 is an SMOP if and only if as well as y17,73 # 0 with

Sp-1Vn = SpYn-1+t tn(,Bn—2 - ﬁn) + 1y — e, 122,
tiiPn = taynoa+t rn(,Bn—?a - ﬁn)r n=3,
rn—l?n = TuYn-3, N >4,
where
ﬁn = ﬁn+sn_5n+1/ n>0,
V~n = Vn + tn - tn+1 + Sn(ﬁn—l - 5n —Sp + Sn+1)/ nz= 1/

WithSOZt():tl:}’o:Tl:I’z:O.
Furthermore, {Qy}n>0 satisfies the three-term recurrence relation

Qn+2(x) = (.X - ﬁn+1)Qn+1(x) - )7n+1Qn(X), n>0,
Qi1(x) = x — Po, Qo(x) = 1.

Remark 1. When {Q,},>0 is an SMOP, then (2.2)-(2.4) can be written as
r3 =t(B1 — P2 —s2+53) +S2y1 —sily2 +tr —t3 +52(B1 — P2 — 52 + 53)],

ty =13+ 13(B2 — B3 — 53 +854) +53y2 —S2[y3 + 13—ty +53(B2 — B3 — S5 +54)],

tn+3 tn+4
Vn+l —
Tn+3 Tn+4

Sn+5 = Sp+4 + ﬁn+4 - ,Bn+1 + Vn+2, N >0,

Tn+4
tn+5 = tn+4 + Sn+4(ﬁn+3 - ﬁn+4 — Sp+4 t+ Sn+5) - rn

Vn+l + Vnsa, 120,
n+3

s
Thes = rn+4(1 - ﬁyn-ﬂ) + Sp+4) n+3 + tn+4(ﬁn+2 - ﬁn+4 —Sp+a t+ Sn+5)/ nz 0/

where the initial conditions are

¢ .
(@) t, ts, ty, 51, S2, 53,and s=8 4 fa o= ift2 =0,
27 F3s Y4y 21y 92/ 93/ 4= f371 +73(l30—l33—53)—:225(;3::344*'53(!32—53—53)), ifty £ 0, trs — 13 £ 0.

t3y1 + 13(Bo — B3 — 83)
15
{ Y1 —t2+51(ﬁo—‘81 -5 +Sg) ;&0,
Furthermore, t,, t3, ts, S1, Sz, S3, Sa verify { Yo +ty —t3 +5(f1 — P2 — 52 +53) # 0,
y3+t3—t4+53(ﬁ2—ﬁ3—53+54) # 0.

(b) ta, t3, 51, 52, 53, 54, and ty = s3(fo — B3 —s3) + Y3 + 13—

Theorem 2.2. The following statements are equivalent:

, if t, #0, 13 = t53.

2479

2.2)
2.3)
(2.4)

(2.5)
(2.6)

2.7)

(2.8

(2.9)

(2.10)

(2.11)

() {Quluzo is an SMOP with (Bu)n and (V) given by (2.5) and (2.6) the corresponding sequences of recurrence

coefficients.
(ii) It holds 717,73 # 0 together with the initial conditions (2.8) and

tr(ys +t3 — ty +53(B2 — B3 — 53 +54)) = t3y1 + 13(B2 — B3 — 53 + 54).

(2.12)



M. Sghaier, L. Khaled / Filomat 31:8 (2017), 2477-2497 2480

and there exist three complex numbers a, b and c such that, forn > 1

t
Ay = 7’”+2 ﬁn ﬁn+1 - ﬁn+2 + Sp43 = 4, (2.13)
n+
1
B, = r_)/n[sn+27/n+1 + tnpo(Spe3 — ,3n+2 - ﬁn+1)] = Vutl = Vn+2 — Vn+3 T bt
n+
(Sn+1 - ﬁn+2 - ﬁn+1)(ﬁn+1 + ﬁn) + Sn+3(sn+3 — Sp+4 — ﬁn+2 - ﬁn+3) 5n+1 b (214)
1
Cn = :7n[?n+1(7/ﬂ+2 + Sn+2(5n+3 - ﬁn+2)) + tn+2(5n+3(ﬁn+3 - ﬁn+2 + Sp43 — sn+4)
n+

+ ﬁn+1 (,Bn+2 - Sn+3) —Vn+2 — Vn+3 + tn+4)] + Vn+l(,8n+2 - Sn+3)

+ (Sn+a = Pre3)(Prs2Pret — Vns2) + Prus1(Vna3 — tusa) + Tnya = C. (2.15)

Furthermore, if u and v are the linear functionals associated with the sequences {Py}n>0 and {Qy}n=0, respectively,
then

g(x)v = —ku, (2.16)
with g(x) = x> + ax*> + bx + ¢, k € C - {0}.

Proof. Notice that, by Remark 1, {Q,},>0 is an SMOP if and only if the condition 717,73 # 0 and the initial
conditions (2.8), (2.12) and the above Eqs (2.9)-(2.11) hold. To conclude the proof we need to show that Egs.
(2.13)-(2.15) are equivalent to (2.9)-(2.11).

o We first prove that (2.9)-(2.11) = (2.13)-(2.15). Using (2.9), we get,

AI’H—l = AH+2/ nz= 0. (2.17)

Hence (2.13). Now, we will deduce (2.14).
Multiplying the expression (2.11) by y,12/7n+4, We obtain

t Sn+4 i’
Yn+1Yn+2 t Vn+2(5n+4 - ﬁn+2 ﬁn+3) s —Vn+3Vn+2 t )/n+2(5n+5 - ,8n+3 - ﬁn+4)
n

rn+ 7[ rn
rn+5
+(1- Vn+2-
Yn+4

Sn+3

Besides, from (2.10) we have, forn > 0

s bt s t
3 V1Y n+2 + _Vn+2(sn+4 - ﬁn+2 ﬁn+3) = n_+4)/n+3)/n+2 + n_+47/n+2(sn+5 - ,Bn+3 - ﬁn+4)
Tn+3 Tn+ Tn+4 Tn+4
+ Via2 = Vnes — tuss + e — 5n+5(ﬁn+4 - ﬁms — Sp45 + 5n+6)- (2-18)
Using (2.17) in the expression of t”“‘y"*z which appears in the right hand side of the above formula, we
obtain
BTL+2 = Bn+1, n> 0. (2.19)

Hence (2.14). Now, we will deduce (2.15).
Multiplying (2.10) by yn+2)n+3/n+4, We get
+ (Sn+4 ﬁn+3) Vn+27/n+3 = M + (Sn+5 ,Bn+4) Vn+27/n+3
Tn+3 T4
tn+4 B tn+5
o e

Vn+1Vn+2) n+3

Vn+2Yn+3-
Tn+4
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Using (2.9) and (2.10), we have, forn > 0

tn+5yn+3

p Vn+2 = [Vn+5 +tues — fnte t Sn+5(,3n+4 — Bu+s — Sn+s + Sn+6)]
n+4

[tn+4

. VYne2 = Bue2 + Puss — Sn+s + Sn+6l,
n+

and, therefore, forn > 0

V1Y n+2)Y n+3 Vn+2Yn+3) n+4
——— 4+ (Sn+a — ,Bn+3) 7/n+2)/n+3 = ————— 4+ (Sp45 — ,Bn+4) J/n+27/n+3
Tn+3 Tn+4

tn+4
+ r_yn+2 []/VH—S - Vn+5 - tn+5 + tn+6 - Sn+5(ﬁn+4 - ,Bn+5 — Sp+5 + Sn+6)]
n+4

+ (ﬁn+2 — Buss — Suss + 5n+6)[7/n+5 + tues — ture + 5n+5(ﬁn+4 — Buts — Suss + Sn+6)]-
Using (2.18) in the expression 2222222 for i > 0, the last equation becomes

Vn+1Yn+2)Y n+3

tht
ots + (Sn+4 ﬁn+3) Vn+17/n+2 + 7n+2 [Sn+4(sn+4 — Sn45 — ﬁn+3 - ﬁn+2 + ﬁn+4) + ﬁn+3ﬁn+2
n+ T+

7/n+2]/n+3)/n+4 Sn+4

—Vn+3 — Vn+a +bpas| = . + (5n+5 ,3n+4) Vn+27/n+3
n+4

T Enta
T4

Vn+2 [Sn+5(sn+5 Sn+e — ﬁn+4 - ﬁn+3 + ,Bn+5) + ﬁn+4,3n+3 — Vn+d — Vn45 + tn+6] + yn+2(sn+4 - ,Bn+3)

+ (ﬁn+2 = Bu+s + Buss — Sn+s + Spte — Sn+4)[7/n+5 +tyes — fnte t 5n+5(,5n+4 — Buss — Sn+s + 5n+6)]-

Using (2.17), for n + 1 instead of 7, in the expression i’;—jymz which appears in the right hand side of the
above formula, we obtain

Cn+2 = C7I+1I nz 0. (2.20)

Hence (2.15).

e Next we show that (2.13)-(2.15) = (2.9)-(2.11).
Notice first that (2.13)-(2.15) are equivalent to (2.17), (2.18) and (2.20).
From (2.17), we can derive (2.9).

Taking into account the new expression of %fy"” obtained from (2.18) and t’”sy”” obtained from (2.17)
written for n + 1 instead of n, we can reformulate (2.20)

Vn+2YVn+3

r
(Vn+1 + rn+3

Tn+3 n+4

Then, we deduce (2.10).
Taking into account the new expression of Z:i ¥n+2 obtained from (2.17), the (2.18) reads as

[_Sn+4(sn+5 - ﬁn+4 — Sp+4 — ﬁn+3) = bpra + bpas — yn+4]) =

Vn+2 [T’n+4

p Sn+3)Yn+1 — Sn+4Yn+3 — tn+4(sn+5 - ﬁn+4 + ,Bn+2 - Sn+4) - rn+4]
n+4

Tn+3
= —Vn+5 — tnis + tyya — Sn+5(ﬁn+4 - ﬁn+5 —Sn+5 t Sn-¢—6)-
From (2.4) and (2.6), we have

Vn+2

[Sn+377n+4 — Sp+4Yn+3 — tn+4(5n+5 - ,8n+4 + ﬁn+2 - 5n+4) —Thya + Vn+5] =0,
n+4

therefore (2.11) holds.
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To conclude the proof, it remains to deduce the relation between the functionals u and v in terms of
the constants a, b and c. If we expand the linear functional u in the dual basis {—x

{Qj}i0 (see [15]) and taking into account (2.1), then

3
<u/ Q]> 13 tr S1
= v = + +—01+1
! ; (v, Q?)Q]v 717273 @ 7172 Q 71 Qurlfo

© Qz }i=0 of the polynomials

Introducing the polynomials Q3;, O, and Qs given by (2.1) and the explicit expression of the polynomials
P1, P, and P; given by recurrence relation, we obtain

3 tys 517273

uzm[x (__ﬁ()_ﬁl ﬁ2+s3)x2+(
VlV 7/3

+ Bo(B1 + B2) —v1— Y2 —5s3(Bo + P1) + t3)x + —

—(Bo+p1— Sz) )/3 + B1p2
+(s1 —/30) 7/27/3
+(Bof1—y1 +t2 — Szﬁo)%fs — BoP1f2 + y1P2 + y2fo + s3(Pof1 — y1) — t3Po + 7’3]0-

Taking into account, (2.2) where n = 2, 3, (2.3) for n = 3 and (2.6) withn =1, 2, 3, we get

fz)/s

—— —Po—P1—P2+s3=A, (2.21)
517/2)/3
—(Bo+p1— 52) 7/3 + B1P2 + Po(B1 + B2) — Y1 — Y2 — 83(Bo + p1) + 3 = By, (2.22)
7/1)/327/3 +(s1— 50) 7/27/3 +(Bof1— Y1+t — Szﬁo)g?a = Bop1P2 + y1P2 + ¥2P0
+53(BoP1 — y1) — taﬁo +7r3=Cr. (2.23)
3 2 3 2 . V172)'3
Then —ku = (x° + A1x” + Bix + Cy)v = (x° + ax” + bx + ¢)v, with k= - ]
3

Remark 2. The converse problem, i.e. the analysis of the regularity of a linear functional v such that there
exists a polynomial g(x) such that g(x)v = —ku, k € C —{0}, has been studied by many authors. In particular,
in [10], [11] and [12] the cases g(x) = x* and g(x) = x> have been deeply analyzed.

3. Reducible Cases

The next Theorem will play an important role in the sequel.

Theorem 3.1. [9] Let {S,}uz0, be a SMOP with respect to a linear functional w, {u,}n>1 a sequence of complex
parameters and {Z, )5 a simple set of monic polynomials, such that

Zy=Sp+ UnSp-1, n 21, with p, # 0. (3.1)

Suppose also that (€,, Pn)uzo is the set of parameters of the recurrence relation of the sequence {S,}nzo0. Then, {Z,}nz0
is an SMOP with respect to a linear functional S if and only there exist complex numbers x1 # €9 — yy such that, for
n>1,

n

En — st — % —x, =1 3.2)

Furthermore,

(x —x1)9 = (0 — x1 — p1)w. (3.3)
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Notice that if {Qy}s>0 satisfies (2.1), then the polynomials Q, cannot be represented as a linear
combination of the at most three consecutive polynomials Py, P,—; and P,, . A natural question arises:
Can the SMOP {Q,},>0 be generated from {P,},>¢ in two or three steps with the help of some intermediate
SMOPs? The interest of this question is to simplify the computation of the parameters s, ¢, and r,, in each
case via one of the other parameters noted a,, b, and c,.

From now on, let {P,,},>0 and {Q,},>0 be two SMOPs with respect to the regular linear functionals # and v,
respectively which are related by (2.1).

3.1. The split of a 1-4 relation in three 1-2 relations.

Proposition 3.2. Let {a,}u>0, {bn}nz0 and {c,}ns0 be three sequences of nonzero complex numbers. The representation
(2.1) can be written as, for n > 1

Qn = Ry + Ry,
Ry= Ry+buRy1, (3.4)
R, =P, +a,Py4,

where , {R,} =0 and {R,},=0 are two SMOPs, if and only if there exist two complex numbers
a, B, such that

Vn
D, : =fp—lp1—— =aq, n>1,
" Vnt+ an(ﬁn—l - ﬁn —a, + ﬂn+1) (35)
Ey: :ﬁn+an_an+1_bn+1_ b :ﬁ/nZL
n
and
fne1 (Spe1 = A1 — bus1)by
An+1 = Sn+1 — + ,n>1,
. 2 3.6
n+2 )
bpy2 = Sp+2 — Apin — , n>1, (3.6)

bn+1an
Cn =Sn_an_bnr n>1,

witha # 81— b1, ar # o — by.
Under such conditions, a and B are two of the zeros of q(x) := x> + ax* + bx + c.
() ()

wa¥ M e

Furthermore,
respectively.

v are the linear functionals respect to which {Ry}n>0 and Ry} ns0 are orthogonal,

Proof. From Theorem 3.1 and the two first equations of (3.4), we have (3.5) and
(x—a)wy = -Au, (x—P)wy = —cw, (3.7)

where @, B, A and ¢ are certain complex numbers, A, € # 0, w; and w;, are the linear functionals with
respect to which {R,},>0 and {R,}>0 are orthogonal, respectively. Substituting R, and R, in (2.1), we get

Q1 =Ry +s1—a1—by,

Q2 = Ry + (52 — a2 = bo)Ry + [t2 — a1 (52 — a2) — ba(s2 — a2 — )],

Qu = Ry + (s — @y — by)Ryc1 + [ty — ap1(Su — an) = byo1(Sy — ay — by)IRy2
+ [rn — analtn — an-1(sp — an)Pn-s, n 23,

then we also have t,, = (s, — a, — by)b,,—1 + a,-1(s, — ay,) for all n > 2 and r, = a,-»(s, — a, — b,)b,—1 for all
n > 3, thus, s, # a, + b, for every n > 3. Hence (3.6) follows and, furthermore s; # a; + by, 52 # a» + b, hold.



M. Sghaier, L. Khaled / Filomat 31:8 (2017), 2477-2497 2484

Moreover, since {Ry},0 is an SMOP with respect to w,, being {Q,},>0 an SMOP with respect to v, then using
Theorem 3.1, we find
(x=y)o = —pw,, (3.8)

where y and u are complex numbers, p # 0. Thus,

q(x)o = —ude(x — a)(x — B)(x — y)v.

Since v is regular this gives k = uAe and a, f and y are the zeros of g(x).

Conversely, from Theorem 3.1, (3.5) implies that the sequence {R;} 5o defined by R, = P, +a,P,-1, n > 1,
and R, = R, + byR,_1, n > 1, are SMOPs with respect to the linear functionals w; and w, such that
(x — @)wy = ku and (x — B)w, = K'wq where k, k' € C — {0}, respectively.

We have s, # a, + b,, n > 1. Taking t, = (s, — ay — by)bp—1 + ap-1(5p —an), 1 = 2, and 1, = ay_»(s, — ay —
b,)b,-1, n > 3, we obtain

R, =P, + (bn + an)Pn—l + bnan—lpn—Zr nx2,
Qu =Py +5,Pp1+ (50 — an — bp)by_1 + an_1(54 — a,))Pp2 + ay_o(sy — ay — by)by_1Py_3, 123,
Qu=R,+ (G, —a,—b)R,1, n>1.

O

A matrix interpretation. If wy, w, and v denote the corresponding linear functionals for {R,},>0, {Rn}nzo
and {Q,},»0, respectively, defined by (3.4), (3.7) and (3.8), then it is well known (see [7]) that

(x—a)P, = 1314+1 + dnlgn/
(x— ﬁ)Rn = Ry1 + d;an/ (3.9)
(x =Y)Ry = Qus1 +d;Qu, n 20,
with d,d;d;] # 0.
Lets # = (PO/P1/'~')T/ R = (ROIRll"')T/ @ = (ROIRL“')T/ and Q = (QO/ Ql/"')T and ]7)/ ]R/ ]ﬁ and ]Q the
corresponding monic Jacobi matrices. Then, the recurrence relations for such SMOPs read
P=JpP,  xR=JgR,  R=H, 2Q=]Q (3.10)

On the other hand , from (3.4) and (3.9) we have the matrix representations

73 = L1P, (x - Oé)P = U1R,
R=LR,  (x=pR=UH, @3.11)
Q=LR  (x-))R=U:Q

where L1, L, and L3 are three lower bidiagonal matrices with 1 as entries in the diagonal and U;, U, and
Us are upper bidiagonal matrices with 1 as entries in the upper diagonal given explicitly by

1 1 1
ay 1 b1 1 S1—4a; — bl 1
a 1 b, 1 Sy—ay—Db 1
L, = ’ ) s L= ’ | L= e A
as . b3 .. . .

dy 1 dy 1 i 1

d 1 a1 a; 1
d 1 a, 1 a1
U, = , Up = and U3 =

ds A dy
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Notice that from (3.10) and (3.11), we get

Jp —al = ULy,
Jr —al = Lilh,
Jr — BI = ULo,
Jg — BI = LUy,
Jg =yl = UsLs,
Ja—yI = L3Us.

As a consequence we can summarize the process as follows.

Step 1. Given Jp, from L; and (3.12) we get Uj.
Step 2. From (3.13) we get Jz.
Step 3. Given Jg, from L, and (3.14) we get U,.
Step 4. From (3.15) we get Jz.
Step 5. Given J, from L3 and (3.16) we get Us.
Step 6. From (3.17) we get Jq.

Notice that this is essentially the iteration of canonical Geronimus transformations (see [18]).

3.2. The split of a 1-4 relation in two relations of types 1-2 and 1-3 .
We have to consider two subcases:

3.2.1. 1-2 relation and then 1-3 relation.
Proposition 3.3. Let {a,},>0, {bu}nz0 and {ca}nz0 be sequences of complex numbers,
a, #0, n>1and c, # 0, n > 2. The representation (2.1) can be written as

R, =P,+a,Ppq, n=1,
Qun =Ry+b Ryt +ciRyp, n22,

where {Ry}u>0 is an SMOP if and only if there exists a complex number « such that

Vn
Dn::ﬁn_alﬁl_a_:a/nzll

n

and

;
tnsa = Ane1(Snva — Ane) + ;;2/ nx1,

b,=s,—a, n>1,

Cp =ty — (Sn - an)an—lr nx2,

with t, # [11(52 - 612).

x)

Furthermore, a is a zero of g(x) and Z<—U is the corresponding linear functional of the SMOP {R,},>0.

-

Proof. From Theorem 3.1 and the first equation of (3.18), we have (3.19) and

(x—a)w=-Au,

2485

(3.12)
(3.13)
(3.14)
(3.15)
(3.16)
(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

where o and A are certain complex numbers, A # 0, and w is the linear functional with respect to which

{Ry}us0 is orthogonal. Replacing R, in (2.1), we get

Q1 =Ry +s1—ay,
Q2 =Ry + (52 —a2)Rq + to — (52 — ap)ay,

Qn = Rn + (Sn - an)Rn—l + [tn - (Sn - an)”n—l]Rn—2 + [rn - (tn - (Sn - an)an—l)an—Z]Pn—IS/ nz 3.
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Then we have r,, — (t, — (s, — a,)a,-1)a,—> = 0 for all n > 3 and the conditions t,, # a,-1(s, — a,) for each
n > 3. Hence (3.20) follows and, furthermore f, # (s — a2)a; holds. Moreover, since {R;},>o is an SMOP
with respect to w, being {Q,},>0 an SMOP with respect to v, then using Theorem 2.2 in [2] we find

(* + Bx +y)0 = pw, (3.22)

‘U./\

Since v is regular, this gives k = uA and « is a zero of g(x).

Conversely, given {a,},>1 in the above conditions, from Theorem 3.1, (3.19) implies that the sequence
{Ru}uso defined by R, = P, + a,P,—1, n > 1, is an SMOP with respect to a linear functional w such that
(x — a)w = ku where k € C — {0}.

Taking r,, = (t, — (Sy — Ax)An-1)an—2, n > 3, we have t,, # (s, — an)a,-1, 1 > 2. So, we can write

Qn =Py +5,Py1 +t,Pyn + (tn - (Sn - an)an—l)an—ZPn—B
=Ry +(sy —ay)Ry—1 + (t, — (5p — ay)an-1)Ry—2, n > 2.

[m]

A matrix interpretation. In the sequel, we present a matrix interpretation of these results in terms of the
monic Jacobi matrices associated with the SMOPs {P,},50, {Ry}n=0 and {Q,},>0, respectively.

Let P = (Py, P1,..)T, R = (Ry, Ry,..)T and Q = (Qy, Qi,...)T be the column vectors associated with
these orthogonal families, and Jp, Jz and Jq the corresponding monic Jacobi matrices. Then, the recurrence
relations for such SMOPs read xP = JpP, xR = JgR and xQ = [oQ.

If w denotes the corresponding linear functional for {R,},s0, given by (3.21), then it is well known (see
[7]) that

(x—a)P, =Ry41 +d,R,, n>0, with, d, #0.

Then, from the first equation of (3.18), we get
R =LP, (x —a)P = UR, (3.23)

where L is a lower bidiagonal matrix with 1 as diagonal entries and U is an upper bidiagonal matrix with 1
as entries in the upper diagonal given explicitly by

1 do 1
a1 di 1
L= @ 1 and U = d 1
as 1 d3
Thus, we get
Jp —al = UL (3.24)
and
Jr—al =LU (3.25)

The previous process is known as Darboux transformation and Jx is said to be the Darboux transform of Jp
(see[5]).
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On the other hand, from (3.22) and the classical Christoffel formula (see [7]) we can express (x> + fx + )R
using the matrix representation

(* +px +7)R = NQ,

where N is a banded upper triangular matrix such that nxx2 = 1 and nj = 0 for j — k > 2. Next, we will
describe a method to find the matrix Jq using the matrix Jg and the polynomial x* + fx + ). From the first
equation of (3.18), we may write = MR where

1 0 O
bp 1 0 0
Co bz 0
M= 0 ,

with, b, =s, —a,, n > land ¢, = t, — (Sy — an)au-1, n > 2, then xMR = JoMR and, as a consequence,
JrR = M gMR. Thus, we get
Mg = JaM.

Thus (x* + Bx + )R = NMR, and then

Jr +Blr+yI=NM. (3.26)
But, from (x> + fx + 7)Q = MNQ, we get

Ja+Bla+yl=MN. (3.27)

As a conclusion, we can summarize our process as follows.

Step 1. Given Jp , from L and (3.24) we get U.

Step 2. From (3.25) we get Jx.

Step 3. Given Jz , we find the polynomial matrix J% + fJz + y1.
Step 4. From M and (3.26) we find N.

Step 5. From (3.27) we obtain the polynomial matrix ]é + BJa + VL

Step 6. Taking into account that Jq is a tridiagonal matrix, from step 3 we can deduce Jq, since (Jq + gl)z =

MN -y -1

3.2.2. 1-3 relation and then 1-2 relation.
Proposition 3.4. Given three sequences of complex numbers {a,}ns0, {bulnso and {cplnz0, by # 0, n > 2 and
¢y #0, n>1, then (2.1) can be written as

Ry =Py +ayPy1+b,Pyp n>2,

3.28
Qn :Rn+can—1/ n2 1, ( )

where {Ry}uz0 is a SMOP, if and only if y; + b; — bi1 + ai(Bic1 — Bi — ai + aix1) # 0, for i = 1, 2 and there exist two
complex numbers o, B, such that

a
D, : ﬁ[%ﬁl + bys1 — by + an+1(ﬁn = Bus1 — Ap1 + An2)] + Api1 — Br-1—PBn
n+
=a,n>1,
1 (3.29)
E,: [Vn+1 — b+ an+1(ﬁn - ﬁn+1 —dpy1 + an+2)][7n + by — by + an(“nﬂ - ﬁn)]

bn+l
+bn — Vn-1 + (an+1 - ,Bn)(an - ‘Bn—l) = ﬁ/ nz 1/
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and

- Tntl
Ansl = Spy1 = 3o, N 22,

but1 = tuer — @ns1 — Sus1)an, n 21, (3.30)

Ch=Sy,—a, n>1,

with ay # s1, a» # So.

In this case q(x) = (x —x1)(x? + ax + B) where x; € C and (x — x1)v is the linear functional associated with the SMOP
{Rn}nzO-

Proof. From Theorem 2.2 in [2], we have (3.29) and
(* + ax + p)w = Au, (3.31)

where a,  and A are certain complex numbers, A # 0, and w is the regular functionals with respect to
which {R,}n>0 is orthogonal. Replacing R, in (2.1), we get

Q1 =Ry +s1—ay,
Q2 =Ra+ (82— a)Ry +ty — by — (s2 —a2)a,
Qu =Ry + (50 — an)Ry—1 + [ty — by — (54 — an)an-11Pu—2 + [y — (Sp — @n)by-1]Pp-3, n > 3.

Therefore t, — b, + (s, —a,)a,—1 =0 foralln >2and r, — (s, —a,)b,—1 = 0forall n > 3. Thena, #s,, n>3.
Hence (3.30) follows and, furthermore, a; # s; and a4, # s, hold. Using the second equation of (3.28) and
Theorem 3.1, we have

(x =y =-kw, (3.32)

where y and k; are complex numbers, k; # 0. Thus, since by hypothesis we also have

g(x)o = k%(x -7 +ax + B)v.

This gives k = k1A and then y is one of the zeros of g(x) := x> + ax? + bx + ¢ because v is regular.
Conversely, given {a,},>1 and {b,},>> in the above conditions, from Theorem 2.2 in [2], (3.29) implies
that the sequence {R,},»o defined by Ry =1, R; = P1 + ;Py, R, = Py + a,Pp—1 + b,Pyp, n > 2,is an SMOP
with respect to a regular linear functional w such that (x* + ax + B)w = ku where k € C — {0}.
Taking t, = b, + (s, — an)a,-1, n > 2 and r, = (s, — a,)by—1, n > 3. So, we can write

Qn = Pn + snPn—l + (bn + (Sn - an)an—l)Pn—Z + (Sn - an)bn—lpn—?) = Rn + (Sn - an)Rn—ll n>1.

When {P,},>0 is symmetric.

Assume that the sequence {P,},>¢ is orthogonal with respect to a symmetric linear functional u (i.e. (4)2n+1 =
0,n > 0). Then B, = 0,n > 0, and there exist two polynomial sequences {V,},>0 and {V},},,=0 such that for all
1, Pyu(x) = Vy(x?) and Payeq = xV,(x?).

It is known (see [6]) that {V,;},>0 and {V},},50 are SMOPs with respect to the linear functionals o, and
xa, where (0, x") = (u, ¥*"), n > 0.

It’s clear that the polynomials Q, defined by (2.1) can not be symmetric because 7, # 0 for all
n > 3. Suppose that the sequence {Q,}.>0 is orthogonal with respect to a linear functional v such that xv is
symmetric and regular, then v is said to be quasi-antisymmetric (for more information about these linear
functionals please see [14] and [16]). From (2.16), we obtain (ax + c)ox, = 0 then a = ¢ = 0 because 0y, is
regular. Therefore, the relation between the linear functionals u and v is (x* + b)xv = —ku. Noting w = xv,
then (x? + b)w = —ku and from Proposition 2.1 in [13], there exists a symmetric sequence {R,},>o orthogonal
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with respect to w and satisfying (3.28). Thus a,, = 0. From Proposition 3.4, we obtain b, = t, and s,,,1 = 2.

Furthermore, there exist {G,},>0 and {G},},>0 SMOPs with respect to 0., and xoy,, respectively, satlsfylng
Qan(x) = Gu(x®) + 0,xG%_(x),  Qanr1(x) = 1,G(x?) + xG}y(x%), n > 0,

with 6, # Oand A, # 0, n > 0. In this case, from (3.28), we have for n > 0, Q, = R,, + s,R,,—1, 6, = sou,
Ay = Sou41 and

Ron(x) = Gu(x?),  Raps1(x) = xGj,(x?),
where
Gu(x) = Vyu(x) + 12, Vo (x),  G(x) = Vi (x) + trp1 V5 (%).

The coefficients s, t», and t,4+1 can be computed using Theorem 3.1.
Moreover, the parameters f8, and 7, of the recurrence relation of the sequence {Q,},>o are defined by

ﬁn =8y —Sp1, 120, (333)
Pn=—s5, n>1 (3.34)

Indeed, taking 8, = 0in (2.5) and a = 0 in (2.13) , we get (3.33) and

~~

n+2

= —Sp+3-
Tn+2

Using (2.3) for n + 2 instead of 1, we obtain

_[tn+177n+2 - 7’”+2(Sn+3 - Sn+2)] = —Sp+3,
Tn+2

and introducing f,41 = g”*i, thatis, forn > 1
n+.

P2 = —S2s. (3.35)
From (2.23) and (3.35), for n=1, we obtain

7172 V2 .t
—s%u - s%s%y— — 83t — ;/1)—2 — 831 + 13.
r3 r3 r3
Inserting t, = :—i, we obtain
2
s
— 29[ + s11=0
r3
Then, we deduce 7; = —s2.
Using (2.15) and (2.2)-(2.6), we get

VoV ¥ S t
7/2);37/4 + (52— 51)5773774 —[s3p1 +y1+y2—tz— ﬁ1ﬁz]i74

+ (B2 — Po + B3 — 54)y1 — (52 — B3)y2 + V3P1 — Pita + P1P2ss — P1Pofs +1a = Co.
From B, =0, 3= —s3, 74 = —s; and t3 = %, we obtain

S22 222
V2538, 53535
. .
T4 T4

Therefore j, = —s5.
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A matrix interpretation. We will describe a method to find the matrix Jg using the matrix Jp and the
polynomial x* + ax + .
Taking into account the first equation of (3.28) we may write R = MP where M = (m;) is a banded lower
triangular matrix such that mx =1, and my; =0 fork - j > 2,

1 0 0 ...
am 1 0 O
b aa 1 . 0
M= 0 ,
b, a, 1 0
0o ... 0

then x MP = Jg MP and, as a consequence, JpP = Mg MP. Thus, we get
Mp = JrM.

On the other hand, from (3.31) and the classical Christoffel formula (see [7]) we can express (x> + ax + )P
using the matrix representation

(x* + ax + B)P = NR,

where N is a banded upper triangular matrix such that 34,2 = 1 and 1 ; = 0 for j —k > 2.
Thus (x* + ax + B)P = NMP, and then

Jp+ajp+pl=NM. (3.36)
But, from (x> + ax + B)R = MNR, we get
Jg +ajg + Bl = MN. (3.37)
By (3.32), it is well known (see [7]) that
(x =Y)Ry = Qpi1 +d,Qu, n >0, with, d, #0.

Then, from the second equation of (3.28), we obtain

QA=LR, x-»R=UQ, (3.38)
where
1 dy 1
g 1 d1 1
L= c 1 and U = d 1

Thus, we get

Jg —yl=UL (3.39)
and

Jo—yI=LU (3.40)

As a conclusion, we can summarize our process as follows.
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Step 1. Given Jp , we find the polynomial matrix J%, + afp + pl.

Step 2. From M and (3.36) we find N.

Step 3. From (3.37) we obtain the polynomial matrix Jz + aJz + fI.

Step 4. Taking into account that Jg is a tridiagonal matrix, from step 3 we can deduce Jg, since (Jg + %I)2 =
MN = (B - $)L.

Step 5. Given Jg , from L and (3.39) we get U.

Step 6. From (3.40) we get Jq.

4. IMustrative Examples

(@) Let {P, = L'},50 be the sequence of monic Laguerre polynomials orthogonal with respect to the
linear functional u defined by the weight function x*¢™x(+) With @ > 1. We can take the auxiliary
polynomials R,(x) = Lff‘_l)(x) and R,(x) = Lff_z)(x) orthogonal, respectively with respect to w; and w».
These polynomials satisfy R,,(x) = L% (x) + nLila_)l(x), and R,(x) = L V(x) + nLg"__ll)(x) (see [6]). Furthermore,
we have the following equations

xwy =au, xw; = (a—1w;.

Then, the new sequence {Q,},>0 such that Q,(x) = R,(x) + ¢,R,-1(x) is orthogonal with respect to the linear
functional v satisfying xv = (¢ — 1 — ¢1)w, . Thus

Yv=ku, k=al@a-1)(a-1-q).

According to Proposition 3.2, the polynomials Q, satisfy the relation (2.1) where s, = ¢, + 21, t, = (2n -
2)s, —3n(n—1), n > land r, = (n—1)(n —2)(s, —2n), n > 1. Itis well known that the recurrence coefficients
of L*? o> laref,=2n+a—-1,n>0and y, =n(n+a—2), n>1(see[6]).

Using formula (3.2) for this case, having x; =0andc; =1+a - “C—_ll, by induction we can derive that,
for a > 1, and a # 2, the values of the parameters ¢, in terms of ¢; are

Tl =1 =)+ (c1 —1 T(n+a-1)
( )( 1)+ (1 —-1) T(i1) >1, (4.1)

n , Nz
Tla - 1)(a—1-c1) + (o - )

and then v is regular if and only if
IFMIl(a-D)a-1-c1))+ (1 —-DI'n—-2+a)#0, n>1.
Notice that if « € IN — {2} then ¢, is a rational function of n, namely,

_ Ta-Da-1-c)+ (@ -Na+n-2)..(n+1) 51
T T -Da-1-)+ @ -D@+n-3).n ="

If a = 2, then, by induction, we can also obtain, for n > 2

a-Da+3+..1+1

@-DA+i+..+2)+1

4.2)

Cp =

and v is regular if and only if
1 1
(Cl_l)(l+§+'"ﬁ)+1¢0' n>1.
We have

v = (a—cy —1)xtw, + O. (4.3)
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In particular for o > 2, we can write
(0( - Z)U = ((X —C] — 1)T/U3 + (C1 - 1)(50, (44)

where w3 is the corresponding linear functional for monic Laguerre polynomials LY, 50
(@)

A matrix interpretation. IfP,=L,’, a>1,and a, = b, = n, we obtain
a+1 1 0 . 0
a+1 a+3
Jpr=| 0 2@+2) . - 0 (4.5)
: . . . 1
0 0 nn+a) 2n+a+1
1
11
and  (L)wr = (Lt =| 2 : (4.6)
n 1

From (3.12), we obtain

a 1
a+1 1
(U3t = a+2 1 )
a+n
thus,
a 1
a a+2 1
Jr)nr1 = L)1 (Ur)par =
1
nmn+a-1) a+2n
Using (3.14), we obtain
a—1 1
a 1
(Un)ysr = a+1 1
a+n-1
Then by (3.15), we get
a-—1 1

a-1 a+1 1

(]Q)n+1 = (LZ)n+1(u2)n+1 =

. 1
nnm+a-2) a—-1+2n
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From (3.16), we have
a—1-0c 1
a+1-c
(u3)n+1 = 2

1
2n+a—1—-cpe1

With ¢, = s, —2n satisfiesc,;1 =2n+a—1— n(%f_z), n > 1. Then ¢, is defined by (4.1) and (4.2).
Using (3.17), we get

a—-1-¢ 1
C1(6¥-1-C1) Cl+% 1

J@n+1 = (L3)u+1(Us)ps1 = . (4.7)
. . 1

n(n+a—2)
Cn

(n+a—-3-c,) o+
(2) Let {P, = U, }u=0 be the sequence of monic Chebyshev polynomials of the second kind, orthogonal with
respect to the linear functional u = U defined by the weight function (1 — x?)!/2x(_11)(x) with the recurrence
coefficients i = 0, n > 0, and y = %, n > 1. Consider the SMOP {R,, = T,,},,»0 orthogonal with respect to

the Chebyshev linear functional of first kind w = 7". We have (see [6])

1
R,=U, - Zﬂnfzz nx2,

and (x> - Dw = —%u. The new polynomials Q,, such that Q, = R, + s,R,-1, n > 1, satisfy the relation

(2.1) with t, = —} and r,, = —1s,. Thus xv = —2w, and v is quasi-antisymmetric. It is well known that the
recurrence coefficient of R, are Y =0, n >0, y¥ = }L, n>2,and )y = % (see [6]).

Using Theorem 3.1 for this case, since x; = 0, by induction, the values of the parameters s,, n > 2, are

ﬁo —X1—85 = —2, ie. 51 = 2,
o1 >1
Son - _2_51 - _Z/ nz1, (48)
s
S2n+1 =El=1,ﬂ21-
Then
7 L 7 L nx>1
2n = 3, 2n+l = — 5, = 1,
i i 16 i 4 5 5 (4.9)
Po=—s1=-2, ﬂ1=51—52=1, ﬁ2n=—1, ﬂ2n+1=11n21-
From (3.33)-(3.34), and (4.9), we get
o2 T S | . _ 2 _
V1=-s1=—4, Jou=-5;, = T Voe1 = =85,,, =-1, n>1 (4.10)

The regular linear functional v is given by

v ==2x"tw+ 5.

and b, = —}1, n > 2. Then, the polynomials {Q,}.>0 satisfy the relation (2.1) with, ¢, = —}1, n > 2,and

A matrix interpretation. From Proposition 3.4 where P, = U,, and R, = T,, we havea, =0, n > 0,
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ru = —1s,, n > 3. Therefore
1 0 0 ... 0
s 1
(L)ps1 = 0 s, - .0
: S ¢
0 ... 0 s, 1

From the above results, we have

0 1 o ... 0 0 1 0
/4 0 . 1/2 0
Jpir= 0 174 . - 0 |© Urwa=| 0 1/4
0o ... 0 1/4 0 o ... 0 1/4
Then
-3/4 0 1 0
0o -1/2 :
[Jp)uiP=1=| 116 0o . . 0
: PR |
0 ... 1/16 0 -1/2
From (3.36), we obtain
-12 0 1 ... 0
0 -1/4 :
N)ps1 = 0 |
: )
0 0o 0 -1/4
From (3.39), we get
-5 1
-5, 1
(e —ss 1 ,

—Sn+1

with s, satisfis s, = —2%1, and s,41 = %ﬂ, n > 2. Then s, is again defined by (4.8).
Using again (3.40), we get

-8 1 0 0
-3 51—5) :
J@n+1 = L)ps1(U)ps1 = 0 —Sg 0
: 1
0 ... 0 —s2 8, —Su41

2494
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(3) Let {P, = B{},s0 be the sequence of monic Bessel polynomials orthogonal with respect to the linear
+00

1
functional u = 8% defined by the weight function x*@De~? f e sin(ed)de (0,4 With a > 1 (see

X
[15]). We can take the auxiliary polynomials R, = B! satisfying

nn—1)

Ru(x) = By(x) + 21+ 20— 5)(n -2 + a)2(2n + 2a - 3)

BY_,(x) + B;_»(x)

m-2+a)n+a-1)
orthogonal with respect to the linear functional w = 8471,

This linear functional verifies x*w = mu (see[6]).
According to Proposition 3.4, the new polynomials Q, such that

Qu(x) = Ru(x) + cuRp1(x), n 21, (4.11)
satisfy the relation (2.1) with
Sn = Cn + (211+2&—5)(;—(;:—}1))2(2n+2a—3)’ nzl,
tn = (n—3+2)_(i+a—2) Cn + (Zn+2a75)(:7(’;:r¢11))2(2n+2a73)’ nz2,
and r, = (n-1)(n—2) Cp, 1> 3.

(2n+2a=7)(n-3+a)2(2n+2a->5)
It is well known that the recurrence coefficients of B4~ are

1 2—w

w o _ w _ >
Po a-1""" (n+a—2)(n+a—1)'n_1' (4.12
o n(n+2a —4) 0> 1 12)
Vn T T ont2a-S)(nta-22@n+2a-3)

Using formula (3.2) for this case, having x; = 0, and taking into account (4.12), we can deduce by induction

n+2a—-4 X

n== —, n2x1, 4.13
T T ra-2)2n+2a—5) x| (13
where
2 -1)"AT'(2ac — 3)T 1
a¢§: Xy = (A - )—( J'AT@a = 3)Tn + ),nZO,
2 2a -3 I'(n+2a-3) (414)
a=2  x=1+" uso0 '
_2 n — 2/ = Y

with A = ﬁ +C1.
The linear functional v is regular for every c; such that x,, # 0, n > 0, and it is given by
1 1
Y T P 415
¢ (a -1 Cl)x wr o ( )
In particular for @ > 2, we can write

U:_(Za—32)(0c—2)( L T +c1)x8“_2—((2a2_3) (a%l +c1)—1)60.

A matrix interpretation. We have P, = B, a > 1, and R, = B&~1, then

Bo 1 0 ... 0 © 10 ... 0
n opoe e Y By :

Uphiet=] 0 p, . . 0 |0 Uma=| 0 o . " 0 ,
0 ... 0 ¥u Bu 0 ... 0 yv v
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where f,,, v, and %, y¥ are the recurrence coefficients of BY and B$~!, respectively.
Thus, R = M®P, where

1 0 O 0
a 1
(M)VHl: by a B | ’
0
0 b, a, 1
with
n
n= 7 Z1/
M —2rmmra-1 "
nn-1)

b, = ,n>2.
Qn+2a—-5)(n-2+aP2n+2a-3) "

The polynomials Q,, n > 0, satisfy Q = LR, with

1 0 0 ... 0
g 1
(L)n+1= 0 o .00 ,
: .. .. .0
0 ... 0 ¢ 1

and ¢, defined by (4.13)-(4.14).
Using (3.39) for this case, we obtain

dy 1
d 1
(Ws1 = B 1 ,
dy
where
1
do=py —c1= o1
V;f n Xn-1
dn: w_” = = -, >1.
P = ¢ Mm+a-2)2n+2a-3) x, "
From (3.40), we get
do 1 0 ... 0
C1d0 1+ d1 :
(]Q)n+1 = (L)n+1(u)n+1 = 0 Codq - . 0
: . - . 1
0 0 cudy1 cp+d,
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Then
~ 1
Bo =d0=—m—61,
- n+2a—3 Xn41 n+1 Xn
= +dp1 =— + , n>0,
Pt = st + it n+a-1)2n+2a-3) x, m+a-1)2n+2a—-1)x,11 "
1
V1= _Cl(a — c1),
+2a -3 _
)7n+1 — n(n o ) Xn-1Xn+1 n> 1.

C(m+a-)n+a-2)2n+2a-32 2
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