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Fixed Point Results for Multivalued Hardy-Rogers
Contractions in b-Metric Spaces

Cristian Chifu?®, Gabriela Petrusel®

?Babes-Bolyai University Cluj-Napoca, Faculty of Business

Abstract. The purpose of this paper is to present some fixed point results in b-metric spaces using a
contractive condition of Hardy-Rogers type with respect to the functional H. The data dependence of the
fixed point set, the well-posedness of the fixed point problem, as well as, the Ulam-Hyres stability are also
studied.

1. Preliminaries

In 1973, Hardy and Rogers ([5]) gave a generalization of Reich fixed point theorem. Since then, many
authors have been used different Hardy-Rogers contractive type conditions in order to obtain fixed point
results. In what follows we shall recall, pure randomly, some of them.

In 2009, Kadelburg, Radenovic and Rasic ([6]), gave some common fixed point results in cone metric
spaces. Radojevic, Paunovic and Radenovic ([7]) have obtained some coincidence point theorems in
complete metric spaces. Sgroi and Vetro ([9]) have presented some results for # —contractions in complete
and ordered metric spaces. Finally, Roshan, Shobkolaei, Sedghi and Abbas ([8]) gave some common fixed
point results in b-metric spaces.

In this paper we shall give some fixed point results for multivalued operators in b-metric spaces using a
contractive condition of Hardy-Rogers type with respect to the functional H. The data dependence of the
fixed point set, the well-posedness of the fixed point problem, as well as, the Ulam-Hyres stability are also
studied.

Because we shall work in b — metric spaces, we'll start by presenting some notions about this kind of
metric spaces.

Definition 1.1. Let X be a nonempty set and let s > 1 be a given real number. A functiond : X x X — R, is said to
be a b-metric if and only if for all x, y,z € X, the following conditions are satisfied:

l.dx,y)=0=x=y;

2.d(x,y)=d(y,x);
3.d(x,y) <s[d(x,z)+d(z,y)].
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In this case, the pair (X, d) is called b — metric space with constant s.

Remark 1.2. The class of b-metric spaces is larger than the class of metric spaces since a b-metric space is a metric
space when s=1.

Example 1.3. Let X={0,1,2} and d : X x X — R, such that d(0,1) = d(1,0) =d(0,2) =d(2,0) =1,d(1,2) =
d2,1)=a>2,d(0,0)=d(1,1) =d(2,2) = 0. We have

d(x,y) < g [d(x,z) +d(z,y)], forx,y,ze X.

Then (X, d) is a b-metric space. If a > 2 the ordinary triangle inequality does not hold and (X, d) is not a metric
space.

Example 1.4. The set I’ (R) = {(xn) C R| 11?11 lx, P < oo},O < p < 1, together with the functional d : I’ (R) X

[} 1/}’7
F(R) - Ry, d(x,y) = (ligl (x - y(p) , is a b-metric space with constant s = 27,

Example 1.5. Let X = Randd : XxX — R,,d(x,y) = Ix - y(B . The (X, d) is a b-metric space with constant s = 3.

Definition 1.6. Let (X, d) be a b — metric space with constant s. Then the sequence (x,)nen C X is called:

1. convergent if and only if there exists x € X such that d (x,,x) = 0, asn — oo;
2. Cauchy if and only if d (x,, ) = 0, as n,m — oo.

Definition 1.7. Let (X,d) be a b — metric space with constant s. If Y is a nonempty subset of X, then the closure Y
of Y is the set of limits of all convergent sequences of pointsin'Y, i.e.,

Y = {x € X: A(x)neN, Xn — X, as n — oo},

Definition 1.8. Let (X, d) be a b — metric space with constant s. Then a subset Y C X is called:

1. closed if and only if for each sequence (x,)nen C Y which converges to x, we have x € Y;
2. compact if and only if for every sequence of elements of Y there exists a subsequence that converges to an element

of Y;
3. bounded if and only if 5(Y) :={d(a,b) :a,b € Y} < 0.
Definition 1.9. The b — metric space (X, d) is complete if every Cauchy sequence in X converges.
Let us consider the following families of subsets of a b-metric space (X, d):

PX) = (Y|Y € X},P(X):={Y e P(X)[Y # 0};Pp(X) := {Y € P(X)| Y is bounded },

Py(X) :={Y e P(X)| Y is closed} ; P,(X) := {Y € P(X)| Y is compact}

Throughout the paper the following fuctionals are used:
e the gap functional: D : P(X) X P(X) —» R,
D(A,B) = inf{d(a,b) |la € A, b e B}.
In particular, if xg € X, then D (xo, B) := D ({xo},B) .
o the Pompeiu-Hausdorff generalized functional: H : P(X) X P(X) — R, U {400},
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H(A, B) = max{p(A, B), p (B, A)},

where p : P(X) X P(X) = R, U {+o0} defined as
p(A, B) = sup{D(a, B) | a € A},

is called the excess generalized functional.

Let T : X — P(X) be a multivalued operator. A point x € X is called fixed point for T if and only if
x € T(x).

The set Fix(T) := {x € X| x € T(x)} is called the fixed point set of T, while SFix(T) = {x € X| {x} = T (x)} is
called the strict fixed point set of T. Notice that SFix(T) C Fix(T).

The following properties of some of the functionals defined above will be used throughout the paper
(see [1], [4] for details and proofs):

Lemma 1.10. Let (X,d) be a b-metric space with constant s > 1, A, B € Py (X). Then

D (x,B) <d(x,b), forany b € B;

D(x,B) <H(A,B), forany x € A;

D(x,A) <s[d(x, y)+D(y,A)], forallx,ye X, AcX;

D (x,A) = 0 ifand only if x € A;

Forany q>1,a € A, there exists b € B such that d (a,b) < qH (A, B);

d (xn, xn+,,) < sd (X, Xpe1) + 52d (Xpa1, Xpa2) + ... + 577 1d (x,,+p_2,xn+,,_1) +sP714 (x,,+p_1,xn+p) ,foranyn € N
and p € IN".

AN i e

2. Fixed Point Results
In this section we shall present our main fixed point theorem for multivalued Hardy-Rogers operators.

Theorem 2.1. Let (X, d) be a complete b-metric space with constant s > 1 and T : X — P(X) a multivalued operator
such that:

(i) there exist a,b,c € Ry,a+b+2cs < S and b+ cs < 1 such that
H(T(x), T(y)) < ad(x, y) + b[D(x, T(x)) + D(y, T(y))] + c[D (x, T (y)) + D (y, T (x))],

forallx,y € X;
(ii) T is closed;

In these conditions Fix (T) + @.

Proof. (i) It's easy to see that because a + b+ 2cs < 5, a+b+cs <a+b +2cs < %5 and hence,
s—1
s(@+b+cs) < -~

On the other hand, since b + ¢s < %, we obtain

1-b—-cs
s(@a+b+cs)

1 1-b—cs
Letxo € Xand 1 <g < 5 77a.
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There exists x; € T(xg) such that

H(T (x0), T (x1)) < ad(xo,x1) + b[D(xo, T (x0))) + D(x1, T (x1))] + ¢ [D (xo, T (x1)) + D (x1, T (x0))] -
By Lemma 1.1. we have:

D(xo, T (x0)) < d(xo,x1);

D(x1,T(x1)) < H(T(x), T (x1));

D(x1,T(x0)) = 0;

D(xo, T (x1)) < sl[d(xo,x1) + D(x1, T (x1))] < s[d(xo, x1) + H(T (x0), T (x1))]-
Hence

H(T(x0), T(x1)) < ad(xo,x1)+bd (xo,x1) + bH(T (x0) , T (x1)) + csd (xo, x1) + csH(T (xo) , T (x1))

(1—=b—=cs)H(T (xp), T (x1)) < (a+ Db+ cs)d (xo, x1)

Since b + ¢s < % < 1 we have

H(T (xo), T (x1))

a+b+cs
< —- .
hS 1_b_csd(xolx1)

Using again Lemma 1.1., there exists x, € T (x;) such that

d(x1,x2) < qH(T (x0), T (x1))
a+b+cs

A

d(x1,x) <

ql—b—cs

d (xo,x1) .

Letqihe =g <1 <1

1-b—cs
Hence

d (x1,x2) < ad (xo,x1) -

Continuing this process we shall obtain that there exists a sequence (x;),cn, With x, € T (x,,-1), such that
d (xy, Xp41) < o'd (x9.x1) for each n € N.
This inequality implies that (x,),cy is @ Cauchy sequence, see [3]. Hence there exists x € X such that

X, — X,as n — oo,

Now, we shall prove that x € T (x).

We have:
D@, T(x) <
<
H(T(xn), T(x))
Hence

D@, T(x) <

Sd(x/ xn+1) + SD (xn+1r T (x))
sd(x, xp11) +sH (T (x,), T (x)) .

ad(xy, x) + b[D(xy, T (xn)) + D(x, T (x))] + ¢ [D (x, T (x4)) + D (x5, T (x))]
ad(xy, x) + bd(x,, xp+1) + bD(x, T (x)) + cd(xy41, X) + csd(xy,, x) + csD(x, T (x)).

IN A

sd(x, xp41) + asd(x,, x) + bsd(x,, x,+1) + bsD(x, T (x)) +
csd(xpa1, X) + cs2d(x,, x) + cs?D(x, T (x)).

If n — oo then we obtain (1 —bs — CSZ) D(x, T (x)) <0.
Since b+ cs < % we have that bs + cs? < 1 and hence, D (x, T (x)) = 0. This implies that x € T (x) and hence

Fix(T)#@. O
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An existence and uniqueness fixed point result for multivalued Hardy-Rogers operators is the following:

Theorem 2.2. Let (X, d) be a complete b-metric space with constant s > 1 and T : X — P(X) a multivalued operator
such that:

(i) thereexista,b,c € Ry,a+ b+ 2cs < 35;21 and b + ¢s < % such that

H(T(x), T(y)) < ad(x, y) + b [D(x, T(x)) + D(y, T(y))] + ¢ [D (x, T (y)) + D (y, T (x))],

forallx,y e X;
(ii) T is closed;

If SFix (T) + @ then SFix (T) = Fix(T) = {x}.

Proof. Let x € SFix (T) and suppose that there exist y € Fix(T), y # x.

d(x,y) D(T®),y) <H(T(x),T(y))

ad(x, y) + b[D(x, T(x)) + D(y, Ty)] + ¢[D (x, T (y)) + D (y, T (x))]

ad(x, y) + 2cd(x, y).

Hence (1 —a—2c)d(x,y) <0.

Sincea +2c <a+b+2cs < 5! < 1, we shall obtain that d(x, y) = 0 which implies that x = y and this is a

contradiction.
In conclusion SFix (T) = Fix(T) = {x}. O

IAIA

An example illustrating our theorem is given in what follows.

Example 2.3. Let us consider the following two sets (see [2]):
M, = {%Im =0,1,3,9,.;n=3k+1ke ]N};
My = {%m=1,39,27,.in=3k+2keN}.
Let X = My UM,. DefineT: X — Ry,

| {ax, Bx},xeM
T(x)—{ {ﬁX}, X€M21 ’

where0 < p<a<1.
Notice that T is not a Hardy-Rogers operator with respect to the metric d(x, y) := |x — y| (see [2]), but it becomes

a Hardy-Rogers operator with respect to the b-metric (with constant s = 3) defined by d (x, y) = |x - y|3.

Proof. We shall prove that there exist 4, b, c € R, such that T is a Hardy-Rogers with respect to d. We shall
have four cases:

(1) X,y € M,
In this case p(T (x), T (y)) = (ax - ay|3 =a®d(x,y) and p(T (y), T (x)) = |ay - ozx|3 = a®d (x, y) and hence
H(T (x), T (y)) = a’d (x, y).
(2) XYy € MZ
In this case p(T (x), T (y)) = |x - ﬁy'3 = p%d (x,y) and p(T (y), T (x)) = |y - ﬁx|3 = B%d (x,y) and hence
H(T (%), T(y)) = p*d (x,y) < a®d (x, ).
(3) X €M1,y e M,
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In this case p(T (x),T(y)) = |04x—ﬁy|3 and p(T (), T (x)) (ﬁy—ax(B and hence H(T (x), T (y))

(ax - /3y|3.

We have to consider the following cases:

3 E 3
, and hence H(T (x), T ()) = |ax - py| = &® |x— Ey' < a’lx - By

3.1. If x > y, then |x - §y| < |x—ﬁy

@D (x,T(y)).
3.2. If x < y, then:

,andhence H(T (x), T (y)) = lax - ﬁy‘B =p° FY— yr <p (ax - y|3

Ifx < ﬁy,then‘%x— y‘ < |ozx— y

BD(y,T(x) <a’D(y, T (x)).
If x > By, then we have another two cases:

3
If ax < By, then |Fx— y‘ < |ozx— y|, and hence H(T (x), T (y)) = |ax _‘3]/|3 =g FX - y' <
B |ax - y|3 =fD(y, T(x)<a’D(y,T(x)).
3
If ax > By, then |x— §y| < |x—ﬁy, and hence H(T (x), T (y)) = )ax—ﬁy)a =a |x— gy <
3
& - pyf = D%, T(y)).
(4) XEMz,]/ € M;
In this case p(T (x),T(y)) = |ﬁx—ay|3 and p(T(y),T(x)) = 'ay—ﬁxf and hence H(T (x), T (y)) =
(ay - 5x|3.
Just like in the previuos case, we have to consider the following cases:
41. x>y
3
Ify < B, |5y —x| < |ay - x|, and hence H(T (x), T (y)) = (ay—ﬁx|3 =p %y—x| < Blay - x(3 =
D (x,T(y)) <a®D(x, T(y)).
If y > Bx, then we have another two cases:
3
If ay < Bx, then %y—x| < |ay—x, and hence H(T (x), T (y)) = |ay—ﬁx|3 =B %y—xl <
3
Play = =D T(y) <a®D(T(y)).
3
If ay > Bx, then |y— §x| < |y—ﬁx, and hence H(T (x), T (y)) = )ay—ﬁxf = a3|y— gx <
3
ad )y - ﬁx| =a*D(y, T (x)).
42 x<y
3
In this case we have |y - gx' < |y—ﬁx, and hence H(T (x), T (y)) = |ay —,BX)3 = a3 |y— gx <

a3 )y - ﬁx|3 =a*D(y, T (x)).

Hence, we can conclude that H(T(x), T(y)) < &®d(x, y) + &°D (x, T (y)) + a*D (y, T (x)), for all x, y € X.

If, for example o = = %, then T : X — P(X). If we consider a = ¢ = a® and b = 0, then, for s = 3, all the
assumptions on 4, b, ¢ in Theorem 2.1 are fulfilled and the operator T defined above satisfies the conditions
of the theorem. [

In what follows we shall present a data dependence theorem for multivalued Hardy-Rogers operators
in a complete b-metric space.

Theorem 2.4. Let (X, d) be a complete b-metric space with constant s > 1, T1, T, : X — P(X) be two multivalued
closed operators which satisfy the following conditions:
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(a) there exists 1 > 0 such that H(T1(x), T2(x)) < 1, forall x € X;
(b) there exist a;, bj, c; € Ry, a; + bj + 2¢;s < S and b; + ¢is < 1 such that

H(Ti(x), Ti(y)) < aid(x, y) + bi [D(x, Ti(x)) + D(y, Ti(y)] + ¢; [D (x, Ti (y)) + D (v, Ti ()],

forallx,y € X,i€{1,2}.
In these conditions we have:
ns
—smax {A1, Ay}’

H(Fix(T1), Fix(Ty)) < 1

ait+bi+cis -
ZUhETEA;‘ = m,l € {1,2}

Proof. We'll show that for every x] € Fix(T1), there exists x;, € Fix(T>) such that

51
1- SAz‘

d(xi, x5) <

Let x] € Fix(Ty) arbitrary and let 1 < g < ;j;ﬁ% As in the proof of Theorem 2.1. we construct a

sequence (x,)ueN C X of successive approximations of T, with xo := x] and x; € T>(x]) having the property:
A(xp, Xpe1) < ayd(xo, X1)

for each n € N, where oy = q% <1
If we consider that the sequence (x,),en converges to x5, we have that x; € Fix(T2). Moreover, for each
n > 0, we have:

1 - (sap)’
A(xn, Xnip) < saﬁl_(—soi)d(xo,xl), peN"

Since sap < 1, letting p — oo we get that
n

say
d(x, x3) < d(xg,x1),¥Yn € IN.
1- L%

Choosing n = 0 in the above relation, we obtain

S S S
A3, 11) £ T H(Ty (), To(x)) < o,
— Sy

d(x;, xy) < <
(1, %) 1-say 1-sa,

Interchanging the roles of T; and T, we obtain that for every u € Fix (T), there exists v € Fix (T;) such
that

s
d(u,0) < 10—,
1- St

where a; = q% <i

Thus, letting g ™\, 1, we obtain the conclusion. [

3. Well-Posedness of the Fixed Point Problem
In what follows we shall prove a well-posedness results with respect to the functional D.

Definition 3.1. Let (X, d) be a b-metric space with constant s > 1 and T : X — P(X) be a multivalued operator. By
definition, the fixed point problem is well-posed for T with respect to D if:

(i) Fix(T) = {x*};
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(ii) If (xn)nen is a sequence in X such that D(x,, T(x,)) — 0, as n — oo, then x, 4, x*,asn — oo,

Theorem 3.2. Let (X, d) be a complete b-metric space with constant s > 1 and T : X — P(X) a multivalued operator
for which there exist a,b,c € Ry,a + b+ 2cs < Ss‘—zl and b + cs < % such that

H(T(x), T(y)) < ad(x, y) + b [D(x, T(x)) + D(y, T(y))] + ¢ [D (x, T ()) + D (y, T (x))],

forallx,y € X.
If SFix(T) # @, then the fixed point problem is well-posed for T with respect to D.

Proof. Let x € SFix (T) and let (xy,)nen such that D(x,,, T(x,)) = 0, as n — oo.

We have:
d(xy,x) < S[Dxn, T(xn) +H(T (xn), T (x))] < 8D (xy, T (x)) + asd (x, x) + bsD (x, T (x))
+bsD (x, T (x)) + ¢sD (x,, T (x)) + ¢sD (x, T (x,,))
d(x,,x) < sD(x,, T (x,))+asd(x,,x)+bsD (x,, T (x,)) +

+¢52d (x,, %) + ¢s*D (x, T (x)) + ¢s*d (x, x) + cs*D (x, T (x,))
(1 —as — ZCSZ)d (X, x) <s(1+b+cs)D(x,, T(x,)).

a+2cs <a+b+2cs <5 < 1andhence1—as—2cs? > 0.
Thus, we have

1+b+cs

d <§g—mr—--77—
(en, %) < S — s — 2082

D (xn/ T (le)) .
Letting n — oo, we shall obtain that x, 4, x. O

4. Ulam-Hyers Stability

Definition 4.1. Let (X, d) be a b-metric space and T : X — Py(X) be a multivalued operator. The fixed point
inclusion

xeT(x), xeX (1)

is called generalized Ulam-Hyers stable if and only if there exists 1 : Ry — R, increasing, continuous in 0 and with
Y(0) = 0, such that for each € > 0 and for each solution y* € X of the inequation

D(y, T(y) < ¢ (2)
there exists a solution x* of the fixed point inclusion (4.1) such that
d(y’, x7) < P(e).

If there exists C > 0 such that Y(t) := C - t, for each t € R, then the fixed point inclusion (4.1) is said to be
Ulam-Hyers stable.

Theorem 4.2. Let (X, d) be a complete b-metric space with constant s > land T : X — P(X) a multivalued operator
such that:

(i) there exista,b,c € Ry,a+ b+ 2cs < 55;21 and b + cs < % such that
H(T(x), T(y)) < ad(x, y) + b [D(x, T(x)) + D(y, T(y)] + c[D (x, T (y)) + D (y, T (x))],

forallx,y € X;
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(i) T is closed;

If SFix (T) # @, then the fixed point inclusion (4.1) is generalized Ulam-Hyers stable.

Proof. We are in the conditions of Theorem 2.1. and Theorem 2.2, hence Fix (T) = SFix(T) = {x"}. Let e > 0
and y* be a solution of (4.2).

We have
e, y) = DT(),y) <sH(T (), T(y) +sDy, T()
< sad(x",y") +sbD (x", T (x")) +sbD (v, T (y°)) +
+scD (x*, T (y")) + scD (y°, T (x*)) + sD(y", T(y"))
< sad(x,y*) +sbD (v, T (y")) + s*cd(x", y*) +
+5%cD (v, T (y")) + scd(x", y*) + sD(y", T(y")).
Thus

(1 —as —cs — csz) dix*,y") <s(1 +b+cs) Dy, T(y")).

We have thata + (s +1)c <a+2cs <a+b+2cs < 5! < 1 and henceas + cs +cs? < 1
and now we conclude

. . s(1+b+cs)
<2 " ..
e, y) < 1 —as —cs —cs?

Hence, the fixed point problem (4.1) is generalized Ulam-Hyers stable. [
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