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A Viscosity Iterative Algorithm for the Optimization Problem System

H. R. Sahebi?, S. Ebrahimi?®
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Abstract. In this paper, we suggest and analysis a viscosity iterative algorithm for finding a common
element of the set of solution of a mixed equilibrium problem and the set the of solutions of a variational
inequality and all common fixed points of a nonexpansive semigroup. This algorithm strongly converges

to an element which solves an optimization problem system. Finally, some examples and numerical results
are also given.

1. Introduction

Throughout this paper, we always assume that H is a Hilbert space and C is a nonempty, closed convex
subset of H. Let T : C — C be a mapping. The fixed points set of T is denoted by F(T), that is

F(T)={xe C:x=Tx}.

The mapping T is called nonexpansive if ||Tx — Ty|| < |[x — yl||, for all x,y € C. Also,amap f:C — Cisa
A—contraction on C if there exist a constant A € [0,1) and x, y € C such that |[f(x) — f(y)ll < Allx — yll. The
strong(weak) convergence of {x,} to x is written by x, — x (x, — x) as n — oo.

For any x € H, there exists a unique nearest point of x in C, denoted by Pcx such that

lx = Pex|] < |lx = yll, forall y € C.

Pc is called the metric projection of H onto C.

A family S = {T(s) : s € [0, +o0)} of mappings of C into itself is called a nonexpansive semigroup on C, if it
satisfies the following conditions:

(i) T(O)x = x forall x € C;
(ii) T(s+1t) =T(s) o T(t) foralls,t > 0;
(iii) NIT(s)x — T(s)yll < llx — yl| forall x,y € Cand s > 0;

(iv) forall x € C, s = T(s)x is continuous.
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The set of all common fixed points of S is denoted by F(S), that is,
F(S)={xeC:T(s)x =x,s € [0, +00)}.

Let F: Cx C — Rbe a bi-function and ¢ : C — R | J{oo} be a proper extended real-valued function. The
classical mixed equilibrium problem [1] is to find x € C such that

F(x,y) + ¥(y) 2 P(x), forall y € C. 1)

The solutions set of (1) is denoted by MEP(F, ¢). One can see if x is a solution of problem, then x € domy =
{x e C:¢Y(x) < oo}.

If ¢ = 0, then the mixed equilibrium problem (1) is reduces to the followings equilibrium problem [1]:
finding x € C such that

F(x,y) >0, forally € C. 2)

The solutions set of (2) is denoted by EP(F).
Let ¢ : C — H be a mapping. A variational inequality problem (denoted by VI(C, ¢)) is to find x € C such
that

(px,y—x)>0, forally € C. 3)
The map G : C — H is p—inverse strongly monotone, if there exists a positive real number p > 0 such that
(Gx = Gy,x — y) > plIGx — GylI*, forallx,y € C.
Recall that A is a strongly positive bounded linear operator on H , if there exists a constant 1 > 0 such that
(Ax, x)y > qlx|l?, for all x € H. 4)

In 2009, Li et al. [13], motivated and inspired by Marino and Xu [15], introduced the following two iterative
algorithms for the approximation of common fixed points of one parameter nonexpansive semigroup
{T(s) : s € [0, +o0)} on a nonempty closed convex subset C in a Hilbert space:

Xn = any flxn) + (I - anA)% f:n T(s)xuds, 5)

Yna1 = any flxn) + (I - anA)i fo ” T(s)ynds, (6)

where A : C — H is a linear bounded strongly positive operator and f : H — H is a—cotraction, {a,} and
{sn} are sequences in [0, 1) and [0, +o0), respectively .

In 2010, Cianciaruso et al. [4] introduced the following iterative method (by improving Plutieng and
Punpaeng [18]), that include equilibrium and fixed points problems for nonexpansive semigroups S =
{T(s)}s20 on a Hilbert space H

x1 € H chosen arbitrary,
G(un, y) + %(y — Uy, Uy — Yu) 20, forall y€H, ) 7)
Xne1 = AV f(20) + (I — a,,A)sln 05" T(s)u,ds, forall n >0

where A : C — H is a linear bounded strongly positive operator and f : H — H is a—contraction . They
proved, the iterative algorithm {x,} which is defined by (7) strongly converges to a common element of
z € F(S) () EP(F) and solved the variational inequality

(yf = A)z,p—z) <0, forall p € F(S) ﬂ EP(F).
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Kang et al. [8] considerd an iterative algorithm {x,} in a Hilbert space as follows :

L
Xn+1 = Othf(xn) + Buxn + (- ,BH)I - anA)a L T(s)xnds.

Under the certain condition, the sequence {x,} strongly converges to a unique solution of the variational
inequality

((yf — A)x",x —x*) < 0,¥x € F(T).

By intuition from [2], we suggest and analysis an iterative algorithm for finding a common element of the
set of solution of a mixed equilibrium problem and the set of solutions of a variational inequality and all
common fixed points of a nonexpansive semigroup in the framework of a Hilbert space.

2. Preliminaris

Let G be a monotone mapping of C into H. We have :
x € VI(C,G) & x = Pc(x — AGx), A > 0.

A set valued mapping Q : H — 2 is called monotone, if for all x,y € H, f € Qx and g € Qy imply
(x -y, f —g) = 0. A monotone mapping Q : H — 2H is maximal if the graph of Q (denoted by Graph(Q)) is
not properly contained in the graph of any other monotone mapping. Itis known that a monotone mapping
Q is maximal if and only if for (x, f) € HXH,{x—y, f —g) > 0 for every (y, g) € Graph(Q) implies that f € Qx.
Let Ncv be the normal cone to Catv € C, thatis, Ncv = {w e H: {x —v,w) < 0,VYx € C} and define

_ | Gu+Ncv ifveC
Qx‘{w ifo¢C ®

then Q is the maximal monotone and 0 € Qv if and only if v € VI(C, G) [19].
Suppose ¢ : C — R|J{+00} is a real-valued function. To solve the mixed equilibrium problem for a
bi-function F : C X C — R, let us assume the followings:

(A1) F(x,x) =0forallx € C;
(Az) Fis monotone,ie., F(x,y)+ F(y,x) <0forallx,y € C;

(A3) Foreachx,y,zeC, tlirélF(tz + (1 -t)x,y) <Fx,v);

(A4) For each fixed x € C, y — F(x, y) is convex and lower semicontinuous;
(As) For each fixed y € C, x = F(x, y) is weakly upper semicontinuous;

(B1) Foreachx € Candr > 0, there exist a bounded subset D, C C and y, € C such that for each z € C\D,,
F(z, yx) + P(yx) = P(2) + 2(yx — 2,2 = x) <0,

(B2) Cisabounded set.

Lemma 2.1. ([16]) Let C be a nonempty closed convex subset of a Hilbert space H and {T(s)}sso be a nonexpansive
semigroup on H . Then, for every h > 0

t t
% fo T(s)xds—T(h)% fo T(s)xds|| = 0.

lim su
t—oo pxeC
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Lemma 2.2. ([22]) Let {x,,} and {y,} be bounded sequences in a Banach space X such that
Xps1 = AuXy + (1 - An)yn/ n=0,
where {A,} is a sequence in [0, 1] such that

0< liFn infA, <limsupA, < 1.

t—o0

Assume

lim sup(|[yn+1 = yall = IXp41 — x4ll) <0,

t—o00
then tlir?olly,1 —x,4l=0.
Lemma 2.3. ([26]) Let {s,} be a sequence of nonnegative real numbers satisfying
Su+1 < (1 = yn)sy + Oy, forall n >0,
where {y,} is a sequence in (0,1) and {0} is a sequences of real numbers such that
(i) limy, =0 and YL yn = o]

(ii) 1imsup6—” <0 or Y |0u] < oo

t—o0 Vn

then tlimsn =0.

Lemma 2.4. ([17]) Let C be a nonempty closed convex subset of H .
Let F : Cx — Rbea bi-function satisfies (A1) — (A5) and 1 : C — R {400} be a proper lower semicontinuous and
convex function. Assume either (B1) or (B2) holds . For r > 0 and x € H, define a mapping T, : H — C as follows :

T,(x)={zeC:F(z,y) + ¢(y) + %(y -z,z—x)2(z),Yy € C},
forall x € H. Then the following hold :
(1) Ty(x)#0,¥xeH.
(2) T, is singel-valued .
(3) T, is firmly nonexpansive , that is , for any x,y € H
ITx = TylP < (Tox = Try, x = y).

(4) F(T,) = MEP(E, ¢).
(6) MEP(F, v) is closed and convex.

3. Viscosity Iterative Algorithm

The viscosity method has been successfully applied to various problems coming from calculus of
variations, minimal surface problems, plasticity theory and phase transition. It plays a central role in the
study of degenerated elliptic and parabolic second order equations [10], [12], [14]. First abstract formulation
of the properties of the viscosity approximation have been given by Tykhonov [23] in 1963 when studying ill-
posed problems (see [5] for details). The concept of viscosity solution for Hamilton-Jacobi equations, which
plays a crucial role in control theory, game theory and partial differential equations has been introduced
by Crandall and Lions [3]. Recently, the viscosity iterative algorithm have received rapid development,
see, for example, [6], [9], [11], [21], [20], [24] and [25]. In this section, we introduce a viscosity iterative
algorithma for finding a common element of the set of solution for an equilibrium problem (involving a
bi-function defined on a closed convex subset) and the set of fixed points of a nonexpansive semigroup.
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Theorem 3.1. Let

o H be a real Hilbert space, C be a nonempty closed convex subset of H,

o Fi,Fy, ..., Fibe bi-functions from C x C to R satisfying (A1) — (A5),

o U1, Y, ..., Py be proper lower semicontinuous and convex functions form C to R | J{oo},

f: C — C bea A—contraction,

F(S) = {T(s) : s € [0, +00)} is a nonexpansive semigroup on C,

G : C — H be a p—inverse strongly monotone map,

A be a strongly positive linear bounded operator on H with coefficient 1> 0and 0 <y < 1,

the conditions (B1) or (B2) holds .

F(S) N, MEP(F;, ;) N VI(C,G) # 0,

{xn} be a sequence generated by x; € C, ul e C forallie(1,2,---,k} in the following manner:

where {a, ), {Bn} and {A,,} are the sequences in (0,1) and {r,} C (0,00) , {t,} C (0,2p) are a real sequence.

Suppose

x1 €C,
F1@, y) + 1) — i) + 2y —u u = x,) > 0, forall y e C,
Fx(?, ) + a(y) — o) + Ly = ul?,u) = x,) > 0, forall y e C,

Fe® ) + vi(y) — Pr@®) + y - u® u® — x>0, forally e C,

w4

a)n = k 7
Zp = PC(wn - tnGa)n)/
Yn = Anwn + (1 - An)zn/

Xt = Q) f() + P + (L= Bu)] = anA)L [ T(s)ynds,

)

(C1) lime, =0, o, = 00,
n—oo

n=1

(C2) limA, =0,

(C3) 0 <liminff, <limsupp, <1,

n—o0

n—oo

(C4) liminfr, > 0, and lim|r,41 — 14| =0,

(C5) {t.} C[a,b], fora,b € (0,2p) and lim|t,1 —t,| =0,

(C6) lims, = oo, and limsupl|s,+1 — sul| is finite.

Then

n—oo

n—oo

(i) the sequence {x,} is bounded,

(i) lim|lxy1 — x40l = O,
n—co

2253
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(iii) lim||lw, — x,|| =0,
n—00

(iv) lim |G, - Gpll =0, p € MEP(F;, ) (| VI(C,G)

Sp 1 Sn
(v) lim||x, — slf T(S)yuds|| = 0 and lim ||y, — s_f T(S)y,ds|| = 0.
n—oo 0 n—oo 0

n n

Proof. By the same argument in [7],
(1 - ﬁn)l - Al <1 - Bn — anm.
For any x, y € C, it follows that

(I =t G)(x) = I =t GYWIP = Il(x = y) = tu(Gx = GY)IP
llx = yI* = 2typ = 2t,pllGx = GyIP* + 511Gx — GyIP|l )

llx = yIP? + tu(t, = 2p)IIGx — Gyl

IIA -

Therefore, I - t,G is nonexpansive . Since t, € (0,2p), G is a p—inverse strongly monotone map, we see that
(I = £4)Gx — (I = £)Gyl* < Ilx — yII*.
Let p € F(S) ﬂle MEP(F;, i) 1 VI(C,G). Notice that, foralln > 1,1 <i <k ,u,(f) can be re-written as
ufq') = Trf;"xn/ then
sy = pll = IT 060 = T,0pll < Il = pll, (10)

hence

u = pll < |lx, = pll. (11)

=

k
llwn = pll = I
=1

1

From the fact that Pc and I — t,G are nonexpansive and p = Pc(p — t,Gp), we obtain

Iz, —pll = IIPc(wn — taGwy) — Pe(p — t,Gp)ll
< A =t G)w, = (I = t,G)pll (12)
< lwy = pll.
By (11) and (12), one has
Iy, —pll = lAwwn + 1 = Ay)z, —pll
< Aallwn = pll + (1 = Ap)lizy = pll
13
< lwy —P|| (13)
< lxy = pll.
(i) : We have
1 (™
IxXpe1 = pll = lawyf(xn) + Buxn + (1 = )] = oznA)S— f T(s)ynds = pll
n Jo
1 [
< aully f(x) = Apll + Bullxn = pll + 11I((1 = )] — anAIIIIS— f T(s)ynds — pll
n Jo

1 ™
< aulllyfCa) =y fEI + 11y f(p) = Apllt + Bulltn = pll + (1 = pu — atut) f IT(s)ynds — pl|

n Jo
< apAylleg = pll + anlly f(p) = YApIl + Ballxn — pll + (1 = B — aut)llyn — Pl
< apAyllxg = pll + anlly f(p) — vApll + Ballxy = pll + (1 = B — aun)llx, — plI
= {1 = (an(m=yADHx, = pll + aully f(p) = yApll

I - Apl|

< max(lx, - pl), VLA,

n-yA
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By a simple inductive process,

llyf(p) — Apll
I = pl < maxly —pil, PO 2, (14)
This implies that the sequence {x,} is bounded. Also , {f(x,)}, {y,} and {Z f > T(s)yuds} are bounded.
(ii) Forie(1,2,--- k},ul = T, x, € domy; and
n+1 =T},..,Xns1 € domip;. Also , forall y € C
Fi(uty, ) + i(y) = i) + — <y ) = x,) 2 0, (15)
F; L O 4 >0 16
l( n+1’ +¢) }/) lzb(unJrl Fosl <y_un+1/un+1 _xn+1> = Y. ( )
In view of (A2) and take y = u ;in(15)and y = u )in (16), we obtain
@) (l) _
o) () M = Xn _ My TXn1 17
o, B ) >0 7)
It follows that
iy = i ) =)+ i — 1 = X)) 2 0. (18)
Since lim infr,, > 0, without loss of generality, there exists a > 0 such that r,, > a for alln > 1. Hence
n—oo
- - - 1/' -
11® = w1 < 11, = u e = xall + 11 - ﬁnmfjil — Xpall}, (19)
n+
1)
i 1
1 = uDN < par = xall + =——Irs1 — 72 M, (20)
n+1
where M; = max{llus) — xull,n € N}
Therefore, we obtain
1 k . .
lwner = @ull < £ 3 14y =l < ner = all + Mirr = 1l @1)
i=1

where M = ¢ 1yk 1 M
From which it follows that

||PC(a)n+l - tn+1G(Un+1) - PC(a)n - tnGa)n)”
(wis1 = trs1Gwnr) = (Wn = ti1Gwy) + (W5 = ti1Gwy) — (Wy — £, Gawy) |
lwns1 = wnll + ltns1 — talllGanll.

1Z41 = zull

IA A

In view of (21), we obtain that

1Zns1 = Zull < llxn41 = Xall + Mty = 74l + [tra1 = talllGaonll. (22)
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It follows

1Yns1 = Yall = A pr1@ner + (1 = Aps1)zp1 — Apwn — (1 = Ay)z4l|
= Ans1(@ns1 — @n) + (Apsr = Ap)wn + (1= Api1)znar — (1= Aps1)zn + (1= A1)z — (1= Ay)zall
= A1 (@ns1 — @n) + (A1 — Aoy + (1= A1) (@Zna1 — 2n) + (An — Ans1)zall
< Al = @ull + 1Anar = Anl(lwnll + [1zall) + (1 = Apsr)llznr1 = zall
< Mpsillwnss = wull + A1 = Anl(llwnll + l1zall) + (1 = Apralxne1 = xull + Mlrnser = 7al + [tne1 = talllGanll},

from which it follows that
IYne1 = Ynll < lxnsr = 2ull + 11 = Anl(llnll + lzall) + Mlrnia = 1l + lEnsa — tulllGaonll- (23)
On the other hand
”sL
I,

lyne1 = yull +

Sl T(8)Yn+1ds — o T(S)yndsll
T Y — T(S)yn]ds + (5 = D) [ ITE)yn = TE)plds + = [ [T6)y, — T(s)pldsl|

2|5n+1 Srzl

===y = pll-

Sn+1

IA

Thus, we obtian from (23)

= [ T()yuads — L [ T(s)yuds]

Sn+
1 (24)
< st = xull + Asr = Aulllnll + zall) + Mlrusa = ral + st = talllGanll + 2221y, — pl].
Now, suppose X, = 22/ (x”)”(ll__[fn”)l_a"A)A where A, = Os" T(s)yads. It follows from (24)
an+17/f(xn+l) +((1- ﬁn+1)1 — 1 A) Ay an)/f(xn) +(1- ,Bn)l - a,A)A,
St = Zall = | - [
1- ﬁn+1 1- ,Bn
_ ”0(n+1)/f(xn+1) + (1- ﬁn+1)An+1 _ A1 AN _ an)/f(xn) _ (1 _ﬁn)An + ayAA, I
1_,Bn+1 1_ﬁn+1 1_ﬁn+1 1_ﬁn 1_ﬁn 1_ﬁn
04
= I 0 fGu) — Abw) + 1 ﬁ T (AN = yfn) + (Anet = A
a
< 3 _"/; 1y fGener) = Al + 7= ﬁ AN, = Y fEanll + [1Ana1 = Aul
a
< T @) - Adwall + 1= ﬁn ANy =y fen)
2|s
i1 = 3l 4 M = 7+ 22y, i s = 601Gl + e = Aol + )
n+

Thanks to the conditions (C1)- (C2) and (C4) — (C6), we conclude that

lim Sup(”ZrH—l - Zn” - ”xn+1 - xn”) <0

n—o0

By lemma 2.2, we arrive at
lim [|Z,, — x,]| = 0. (25)
n—oo

It follows that

lim b1 =, = im (1= BTy = %]l = 0. (26)
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(iii) : Foranyi=1,2,--- ,k, we have

la) = plP = I 0% = T,opl?
(T,,g)xn - T,g:‘)}?, Xn — P>

IA

1 . .
5 W) = pIP + 1l = pIP = s = p = x5+ pIP)

1 - .
= 0 = pIP + lhes = plP = N = xl),

2 i 2
% = pIP = 11?2,

IA

Hence

. .
= ||>:,-;1%(||u£?—p>||2

< %z,-zlnui?—pn}f | (27)
< b = pIP = LX) — xl P

In viwe of (27) and (13), we obtain that

llatny f(xn) + Buxn + (1 = Bu)] — anA)A, — plP

”an(yf(xn) - AP) + ﬁn(xn - P) + ((1 - ﬁn)l - anA)(An - P)”z
anlly f(xn) = AplP? + Bullxy — pI* + (1 = Bu — aun))lA, — plI?
anlly f(xn) = Apl® + Bullxn = pI* + (1 = Bu — anmllyn — pIP
anlly f(xn) = Apl? + Bullxy — pI* + (1 = B — ann)llw, — plP

llwn = pll

[1Xp41 — P”z

IANIN A

IA

k
1 i
ally () = AplP + Bullx = pIP + (1 = B = aum)lfes = pIP = 2 Y 1) = xl)
i=1

IA

k
1 i
allyfea) = Apll + b = pI* = (1= B = ) Y, ) = P
i=1

It follows that

k
1 i
(L= Bo =)z Y e =xall? <l = pI + aally fen) = ApIP = s = pIP
i=1

= ltws1 = xull(lxn = pll + 1xns1 = pll) + aully f(xa) — Apll®.
Thanks to the condition (C1) and (26), we conclude that

lim [ — x,|| = 0, (28)
n—oo

also
lim ||w, — x| = 0. (29)
n—o0

(iv) : Let z;, = Pc(p — t,Gp) it follows from (9) that

12, = 2, I IPc(@n = taGawn) = Pe(p = t.Gp)IP

< |l (@n = taGan) = (p — tGp)IP
= |l(@n = p) = ta(Gwy — Gp)II*
< lxy - P”z +ta(t, — ZP)”Gwn - GPHZ



Observe that

[1Xp+1 — P||2

It follows that

INIA

Il IA

IA

IANIA
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anlly f(xn) = Apll® + Bullxn = pI? + (1 = Bu — aun)llAn — pIP

aully f(xn) = AplP + Bullxn — pIF + (1 = B — awllyn — pIP

anlly f(xn) = Apl® + Bullxn — pIP + (1 = B — an)ll{Au(wn — p) + (1 = A)(zn — 23) I}
anlly f(xn) = Apl® + Bullxy = pIP + (1 = Bu — aw) Aullwn — pI?

+(1 - Bn — ann)(l = Allzn — 2:1”2

anlly f(xn) = Apl® + Bullxn = pI* + (1 = Bu — anmAullwn — pI?

+(1 = Bu — an)(d = Al (wn = p) = ta(Gawy — Gp))IP

anlly f(xn) = Apll® + Bullxy = pI + (1 = Bu — aw)Aullwn — pI?

+(1 - Bn — a1 = A)llxn — p”2 + t(tn — ZP)HGCUn - GPHZ}

aully f(xn) = AplP + (1 = amllxy = pl* + (1= Bu = au)(1 = A)tu(ts — 2p)lIGewy — Gplf?
anlly f(xn) = Apl* + llxn = pIF + (1 = Bu — a1 = Aya(b — 2p)||Gewy — GplP.

0< (1-By—amd-AyaRp - b)lIGw, — Gplf?

IAIA

aully f(xn) = Apll? + llxn — pI* = |11 — plP
anlly f(xn) = Apl? + l1xne1 — Xull(lxn = Pl + X041 — plD)-

The condition (C1) and (26) imply

lim |G, — Gp|| = 0. (30)
n—oo

(v) : Notice that

2
Iz — pll

IA

<

= NI~ N -

llzn = 232
<(C‘)n - tnGwn) - (P - tnGp)/Zn - P)

1
{ll(wn = t.Gawn) = (p = t.GP)IP + llza = pIP} - E{”(wn — t,Gawy,) = (p = t.Gp) = (2, = p)IP)
llwn = pIP +llzs = pIP = @n = 22) = ta(Gwn = Gp)IP}
{llwn = pIP + llzs = pl? = (lwn = 24l + £l1Gw, = GpI? = 2tn(@y = 24, Gy — Gp))}

{llwn = pIP + 1120 = pIP = llwn = 2l = GGwy = Gpl + 2t = 20, G = Gp)))

From which follows that

l1zs = PIP < llwn = pIP = llwn = 2al? = £lIG@y = Gpl? + 2t(ws — 24, Gy — Gp).

On the other hand, by some manipulation,

[1Xp41 — P||2

IN

IA

anlly f(xn) = Apl® + Bullxn — pIP + (1 = Bu — atun)lly — pII?

anlly f(xn) = Apll® + Ballxn = plI* + (1 = Bn — anlIAn@wn + (1 = Az, — plI?
anlly f(xn) = Apll® + Bullxn = pIP + Au(1 = By — annllwn — pI®

+(1 = A1 - ABH - an’?)HZn - P||2

aully f(xn) = Apll® + Ballxn = pIP + Au(1 = B — aun)llwy — plP

+(1 = By — axillwn — pIF = llzu — wall* = E1IGw, — Gpl* + 2t {wy — 2y, Gy )}
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< anlly f(xn) = ApllP + Bullxn = pIPF + Au(1 = By — annllwn — pIF + (1 = By — an)llxs
—plP = (1 = Bu — axllwn = zal* = 21 = B — |Gy — GplI* + 2, (1 = By — ayn){wy — zn, Gy — Gp)}
< an||Yf(xn) - APHZ + [lx, — P||2 + /\n(l - ,Bn - ann)”wn - P||2
—(1 = Bu — anllwy, — zal* = 2(1 = Bu — axlIGwy, — GplI* + 2t,(1 = B — aullwy — zullllGew, — Gpll,
then

(1= Bu = anllwn = zal? < aally fan) = AplP + In = pIP = X1 = pIP + Au(1 = B = awnllwn — pI?
~t5(1 = Bu = Gy, = GplP + 2t,(1 = B = aun)llwn = zulllGws = Gpll.

By vitrue of (26) and (30) with conditions (C1) — (C2), we arrive at
lim |lwy, — z4]| = 0. (31)
Since ||y — zull = Aullwn — z,l| then lim ||y, — z,]| = 0. We observe that

”]/n — Al < IAR = x0ll + |Ixy = @ull + llwn = zall + 1|z, — ]/n”
From which it follows that lim ||y, — Ayll = 0 or
n—00

. 1 ™
lim ||y, - s_f T(s)yndsl| = 0. (32)
0

n

On the other hand, it follows from definition of {x,} that

IA: = xall < X1 — xall + [l — Agll
< e = xall + “an)/f(xn) + ,ann + ((1 - ﬁn)l = apA)An — Ayl
< I — xall + an”)/f(xn) — AN + ﬁn”xn = Aull,
That is,
A= ll € bt =l + oy () — AN
n n = 1_,Bn n+1 n 1_ﬁn7/ n nll-
In view of (C1) and (26), we see that
Lim||A,; — x| = 0. (33)
n—oo
O

Theorem 3.2. Suppose that all assumptions of Theorem 3.1 are hold. Then the sequence {x,} strongly converges to a
point % , where X € F(S) (N'_, MEP(F;, ;) N\ VI(C, G) solves the variational inequality

(A=yf)x,x—x) 2 0.

Proof. LetI = ﬂi;l F(S) YMEP(F;, ;) " VI(C,G). Thus Pr(I - A +yf) is a contraction of H into itself . Since
H is complete , then there exists a unique element ¥ € H such that

x=Pr(l—-A+yf)@.

Next, we show

Sﬂ
lim sup{(A -y )%, % — sl f T(s)ynds) < 0.
n Jo

n—o0
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Letx = Prxl. Set

a4 @) — A

II={yeH:Iy—x|l <lx: -l Y }.

It is clear, ITis nonempty closed bounded convex subset of H which is T(s)-invariant for each s € [0, o) and
{x,} CII. We may assume S = {T(s) : s € [0, o0)} is a nonexpansive semigroup on IL It follows from Lemma
2.1 that

lim suplll f T(s)ynds — T(h)l f T(s)yuds|| = 0. (34)
n— o0 Sn 0 S‘rl 0
Let A, = % fos" T(s)yuds , since {A,} C ITis bounded, there is a subsequence {A,,/.} of {A,} such that
limsup{(A — y /)%, X — Ay) = im{(A = y /)X, X — Ay))- (35)
n—oo ]_)00

As {Ay,} is also bounded , there exists a subsequence {A”fz} of {A,;} such that A”fz — &. Without loss of
generality, let An]. — & . Now, we prove the following items :

(i) &€ F(S) = Mss1 F(T(s)):
Assume & # T(h)¢ for some h € [0, o). In view of (32) and Opial’s condition, we obtain
liminfllA,, — &)l < liminflA,, - T()E]
j—oo j—oo
liggglf(llf\n, = T A |l + [IT(R)An; — T(R)ENN)

IN

IA

lim inf|A,, - ]|
j—oo

That is a contradiction . Hence & = T(h)&, i.e., & € F(S) = (,»1 F(T(s))

(ii) &e ML, MEP(E;, y)).
Forall 1 <i <k, we see that

; ; 1 (i
Fi(u), ) + i) = i) + =y = i) = ) 2.0, forall y € C.

It follows from (A2) that

@ _
o — (@ @ T
Yi(y) — Yi(uy) + <y —u,/, — )y > Fl(u,,],,y), forally € C.

1j

Thanks to the condition (C4) and (28), we conclude that

Xp — U,

lim inf]| || = lim inf rlllxn - ui,ll =0. (36)

n

In view of (30) and (28), we obtain u,(j]) — ¢
Since ¢;, 1 < i < k are weakly lower semicontinus, it follows from (A4) and (36) that

Fi(y, &) + i(&) = ¢i(y) <0, forall y € C.
Letx, = rx + (1 —r)é such that 0 < r < 1 and x € C. It is clear that x, € C, thus

Fi(xr, &) + ¢i(&) = ¢i(xr) < 0.
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In view of (A1)-(A4) and convexity of ¢;, we obtain

0 = Fi(xrr xr) + 1;l}i(xr) - l/}i(xr)
< rFi(x, x) + (1 = 1)Fi(xy, &) + ripi(x) + (1 = 1)i(x,)
= 1r(Fi(x,, x) + ¥i(x) — ¢i(x,)) + (1 = 1) (Fi(xy, &) + (&) — Yi(xy))
< r(Filx, x) + Pilx) — Pixy).

From which it follows
Fi(xy, x) + ¥i(x) — Yi(x,) = 0.

By virtue of weakly lower semi-continuity of ¢; and (A3), we get
Fi&y)+¢i(y) —¢i(&) 20, forally € C.

This shows that & € (&, MEP(E;, ).

(iii) & € VI(C, G):
Let N¢ be the normal cone of C at v € C. We define a set-valued ® : H — 2H as follows:

| Gv+Nco, ifveC,
Qv—{@ ifogC

We knowe @ is maximal monotone and 0 € @, if and only if v € VI(C,G) . Let (v, w) € Graph(®). Since
w— Gov € Ncv and z,, € C, we have

(v -z, w - Gv).
Hence

(0 =z, 24 — (W — t,Gwy)) 2 0,

that is
Zy — @
(v —2z,, = "+ Gw,) > 0.
n
Moreover,
(0=zp,w) = (v-2zy,G0)
Zn; = W,
> (v-— zn/,Gw —(v— Zn;s — + Ga)nj)
nj
Zyn, — W,
= (v—2z,,Gv— — - — Gw,;)
nj
Zn; — W
= (0 =2y, G = Gzp;) + (0 = 2y, Gzy; = Gwy;) — (U =z, ; )
nj

Zn, — Wy

> (v —2y,Gzy, — Gwn) — (V= 2y, ’t -y
nj
Zn; — W,
> o =2y, 1G2s, = Gall = llo = 2, =l
e

]
Since G is p—inverse strongly monotone and lim [|z,; —wy|| = 0, then (v —¢&, w) > 0. Also @ is maximal
n—oo

monotone, then & € ®10. Thus & € VI(C,G).
From which it follows that & € F(S) ﬂ;‘zl MEP(F;,V;) Y VI(C,G).
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Since & = Pr(I — A+ yf)(&), we have

lim sup((A — )%, % — sl f ' T(s)ynds)
n— oo n Jo
= limsup((A — )X, % — Ay (37)

=((A-yf)x,x— &) <0.

Finally, we prove that the sequence {x,} strongly converges to X. We have

Inr =X = llany f@n) + Buxn + (1= Bu)] — anA)Ay — x|
= llan(yf(xn) — A%) + Ba(xn — %) + (1 = )] — uA)(A, — DI
= aﬁll)/f(xn) - AJ—C||2 + ||ﬁn(xn - J_C) + ((1 - ﬁn)l - “nA)(An - J_C)”z
+2{Bu(xn — X) + (1 = Bu)I — anA) (A — X), an(y f(xn) — AX))
< anllyf(en) — AZIP + {Bullxy — %l + (1 = Bu — aullyn — X1}
200X — X, Y f(x) — AX) + 20, (1 = B — )N\ — X,y f(x) — AX)
< allyf(n) = AZIP + {Bullxn — 2l + (1 = Bu — ann)llx, — %I}
+2a,(1 — Bn — OlnTI)U\n - X, yf(xn) - Vf(f)) +2a,(1 - Bn — OénT])U\n - X, )/f(f) - Ax)
+20, B (xn = %, Y f(Xn) = (X)) + 200Buxn — %,y (%) — AX)
< apllyfe) — AZIP + (1= an)?lix, — &I
20y l1Xn = X f (xn) = fFEO + 2a0fulxn — X,y f(X) — AX)
+20, (1 = B — an) Y 1A = I f (xn) — fFEN + 200(1 = B — ant)){(Ay — X, ¥ f(X) — AX)
< agllyf(xn) = Azl + (1 = aun)?llx, — 2P + 20, By Allx, — 5
+205nﬁn<xn - X, Vf(x) - Ax) + Z(Xn(l - ﬂn - OénT])V/\len - J_C”z
+2a,(1 — Bn — 0(,,7’])<An - X, Vf(ff) - Ax)
= aﬁllyf(x,,) — AR+ (1 - 2a,n + aﬁnz + 2a, YA - 2a§lm/)\)||xn — x|
+20,Bu( X — X,V f(%) — A%) + 204(1 = B — )Ny — X, Y f(X) — AX)
< 1= (20 — aun? = 2y A + 20,y D)}Ix, — T
+anlly f(xn) — A% + 2a,Bu(x, — %, 7 f(%) — AX)
+2a,(1 — Bn — annXAn - X, )/f(J_C) - Ax).
Suppose that

en = ullyf(xn) = ATIP +2B,(xs — X, 7 f(X) = AT) + 2(1 = B — )Ny — X, 7 f(X) = AT),
thus
1 = XU < {1 = @, (20 = @rp® = 2y A + 2,y HIxy = XU + ey (38)
It follows from (37) and Lemma 2.3 that

limsupe, <0

n—oo

which implies that the sequence {x,} strongly converges to . [J

4. An Application in Optimal Problem Systems

In this section , we consider the following optimization problem :

. 1
mlnxeF(T)§<Axr x) — g(x), (39)
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where F(T) is the set of fixed points of T : C — C and g is a potential function for y (i.e, g(x) = v f(x) for
x € H).

Theorem 4.1. Let H be a real Hilbert space, C be a nonempty closed convex subset of H, and f : C — C be a
A—contraction. Let A be a strongly positive linear bounded operator on H with coefficient n > 0 and 0 <y < ¥ and
T : C — C be a nonexpansive mapping such that F(T) # 0 . Suppose {x,} be a sequence generated by x1 € C and:

Xn+l = any,f(xn) + BuXn + (- ,Bn)l - a,A)Txy, (40)

where {a,}, {Bn} and {A,} are sequences in Theorem 3.1. Also, the conditions (C1) and (C3), in Theorem 3.1, are hold.
IfF(T) is a compact subset of C , then the sequence {x,} strongly converges to a point %, where X € F(T) which solves
the optimization problem (39).

Proof. For {T(s)}sso =T, A=1,A,=0,9; =0, F;=0,Vie {1,2,...,k},and G=0,Pc =1, y, = x,, in
Theorem 3.1, the sequence {x,} strongly converge to a point ¥, where X € F(T) which is the unique solution
of the following variational inequality

(A=yf)x,x—%) > 0,¥x € F(T). (41)

Note that F(T) is a compact and convex subset of C and
1
E(Ax, x)—gx):C—>R (42)

is a continuous mapping. By Weierstrass theorem , there exists ¢ € F(T) which is a minimal point of
optimization problem (39). On the other hand, (41) is the optimality necessary condition for the optimization
problem (39) [26]. This implies

(A=yf)e,x—e)y>0,Yx € F(T). (43)

It is clear ¥ = ¢, since ¥ is the unique solution of (41). O

5. Numerical Examples

First , we present an example for Theorem 3.2..
Example 5.1. Suppose H =R, C =[-1,1] and
Fi(x,y) = =3x* + xy + 2y* and  Fy(x, y) = —5x% + xy + 41,
F3(x,y) = =7x* + xy + 6y* and  F4(x, y) = —9x* + xy + 8%
Also , we consider ¢1(x) = P2(x) = P3(x) = Pa(x) = 3x2, G(x) = i, A =1, f(x) = 5 with coefficient
n= %, y = 1 and T(s) = e as a nonexpansive semigroup on C. It is easy to check that i1, Y, 3,4, A, f

and T(s) satisfy all conditions in Theorem 3.1 . For each r > 0 and x € C, there exists z € C such that, for
any y € C,

Fiz, y) + Y(y) — Y(z) + %(y—z,z—x) >0 o -32° +zy+5y2—322 + %(y—z)(z—x) >0

& 5+ ((r+Dz—x)y—6rz2 —z>+zx >0

Set B(y) = 5ry* + ((r + 1)z — x)y — 6rz> — z> + zx. Then B(y) is a quadratic function of y with coefficients
a=5rb=(r+1)z—xandc = —6rz> — 22 + zx. So
A [(r + 1)z — x]* = 20r(zx — 22 — 612%)
= (r+1)722%2 =2(r + Dxz + x> + 120r*2% + 20rz% — 20rzx
= x%—2(11rz + 2)x + (1211222 + 22rz% + 2°)
= [(x-(11rz +2)
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B(y) > 0 for all y € C, if and only if A = [(x - (11lrz +2))]> < 0.

m _

Xn

By the same argument, for F,, one can conclude

To =u, =457
e
L = b
Lo
T
Hence

Wy =

Lett, =

M

u, +u512)+un

Xn

15r, + 17

©) 4

+u,

n
27 5n

sequence {x,}

Zy =

=n,r, = ;g and A,

191420
1017l+20
Yn = 10,Wn t+
_ 200n2=190n+9

4

a)‘rl/

10n-1
10n

Zn/
160n2-170n+9

Xn+1 =

100012-900n "

Xn + 5001802

1o, 1
Tons n = 30, and B,

_ 2n-1

10n-97

(1-eMw,y.

Therefore , z =

S
11r+1 7/

2264

which yields

we have the following algorithm for the

By using MATLAB software , we obtain the following table and figure of the result, with initial pointx; = 1.

Squence value

n Xy n X n Xn
1 1 11 | 2.287053908x10~° | 21 | 3.762255275x10~13
2 1.006470149 12 4.88149991x10~7 22 | 7.780342962x10714
3 0.3059037033 13 | 1.036076343x1077 | 23 | 1.606482782x107 14
4 0.07945190726 14 | 2.188663486x1078 | 24 | 3.312377978x10715
5 0.01922449408 15 | 4.604863982x10~° | 25 | 6.820908513x1071°
6 0.004465484024 16 | 9.654838368x10710 | 26 | 1.402906653x10~1°
7 0.001010074517 17 | 2.018167853x10710 | 27 | 2.882304587x1017
8 0.0002242641019 | 18 | 4.207385568x10711 | 28 | 5.915770281x10718
9 | 0.00004911325747 | 19 | 8.750678216x10712 | 29 | 1.213039518x10~18
10 | 0.00001064273173 | 20 | 1.816167376x10712 | 30 | 2.48518864x107"7
1.4
12+
1_
08¢
06
04t
02t
D L L L L 1
] 5 0 15 W 2%/ 3 3

lteration steps

Figure 1: The graph of {x,} with initial value x; = 1.
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Example 5.2. Let H=Rand C =[1,2]. For each x € C, we know f(x) = % is a contractive mapping, T(x) = 1 is
a nonexpansive mapping on C and F(T) = {1} , A(x) = 2x is a strongly positive linear bounded operator on H . Let
an =1, B, = 55 and y = 1. Substituting all of the given conditions to the scheme (40), we have

» M =5n+21
n

" + ! +
Xp+1] = ——X —X
T o —1"" " 4n 212 —n X,

Following the proof of Theorem 4.1, we easily obtain the sequence {x,} strongly converge to 1 € F(T), which is the
solution of the optimization problem

. 1
mmxeF(T)§<Axr x) — g(x).

We obtain the following table and figure of the result, with the initial point x; = 2.

Xn n Xn n Xn
2 11 | 0.7992975259 | 21 | 0.9068849985
1.5 12 | 0.8201697889 | 22 | 0.9116063592

0.9097222222 | 13 | 0.8370906671 | 23 | 0.9158706523
0.4930490245 | 14 | 0.8510851663 | 24 | 0.9197413424
0.3762130308 | 15 | 0.8628533176 | 25 | 0.9232706421
0.5332945703 | 16 | 0.8728886137 | 26 | 0.9265019037
0.6270101604 | 17 | 0.8815486756 | 27 | 0.9294714244
0.6922463705 | 18 | 0.8890989313 | 28 | 0.9322098276
0.7385773109 | 19 | 0.8957405173 | 29 | 0.9347431316
0.7729182527 | 20 | 0.901628642 | 30 | 0.9370935844

S0 0N Ul W LS

Sguence value

08¢

06

04r

02 . . . . . .

0 4 10 15 20 25 30 35
lteration steps
Figure 2: The graph of {x,,} with initial value x; = 2.
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