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Abstract. Semi-infinite minimax fractional programming problems with both inequality and equality
constraints are considered. The sets of parametric saddle point conditions are established for a new class
of nonconvex differentiable semi-infinite minimax fractional programming problems under

(
Φ, ρ

)
-invexity

assumptions. With the reference to the said concept of generalized convexity, we extend some results of
saddle point criteria for a larger class of nonconvex semi-infinite minimax fractional programming problems
in comparison to those ones previously established in the literature.

1. Introduction

A semi-infinite programming problem is a mathematical programming problem with a finite number
of variables and infinitely many constraints. In recent years, semi-infinite optimization has become an
active field of research in applied mathematics. This is due to the fact that this model naturally arises in an
abundant number of applications in different fields of engineering, control theory, mathematics, economics
and others. For a wealth of information pertaining to various aspects of semi-infinite programming,
including areas of applications, optimality conditions, duality relations, and numerical algorithms, the
reader is referred, for instance, to [13], [15], [17], [21], [22], [25], [28], [29], [30], [33], [34], [40], [43], [44], [48],
[49], [52], [53], [54], [55], [56], [57], [58], and others.

In the context of nonlinear optimization theory, the characterization of a constrained optimum as a
saddle point of the Lagrangian function is known to be heavily dependent upon convexity properties
of the underlying extremum problem. To the best of our knowledge, there are only a very few works
available dealing with saddle point criteria for semi-infinite programming problems. López and Vercher
[39] gave characterizations of optimal solutions in the nondifferentiable convex semi-infinite programming
problem related to a Lagrangian saddle point. Rückman and Shapiro [45] studied an augmented Lagrangian
approach to semi-infinite problems and presented necessary and sufficient conditions for the equivalence
of an optimal solution and a saddle point in the considered class of semi-infinite programming problems.
Ito et al. [31] formulated convex semi-infinite programming problems in a functional analytic setting
and, by using the saddle point condition, proved that the set of multipliers satisfying the Karush-Kuhn-
Tucker necessary optimality conditions coincides with the set of solutions to the dual problem. Guerra-
Vázquez et al. [23] applied two convexification procedures to the Lagrangian of a nonconvex semi-infinite
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programming problem. Under the reduction approach, they showed that, locally around a local minimizer,
the considered semi-infinite programming problem can be transformed equivalently in such a way that
the transformed Lagrangian fulfills saddle point optimality conditions. Recently, Antczak [9] considered
a semi-infinite minimax fractional programming problem with both inequality and equality constraints.
For the considered semi-infinite minimax fractional programming problem, he gave characterizations of
an optimal solution by a saddle point of the scalar Lagrange function and the vector-valued Lagrange
function defined for such an optimization problem. Further, Antczak established the equivalence between
an optimal solution and a saddle point of the scalar Lagrange function and the vector-valued Lagrange
function in the considered semi-infinite minmax fractional programming problem under several

(
p, r

)
-

invexity assumptions.
Optimization problems with a finite number of constraints, in which both a minimization and a max-

imization process are performed, are known in the area of the mathematical programming as minimax
(minmax) problems. Problems of this type arise frequently in the area of game theory, in economics, in
best approximation theory, and in a great variety of situations involving optimal decision making under
uncertainty. Minimax programming problems have been the subject of immense interest in the past few
years. Minimax fractional programming refers to minimizing the maximum of fractional functions. Dur-
ing the last three decades, much attention has been paid to optimality conditions for minimax fractional
programming problems (see, for instance, [1], [3], [7], [11], [19], [32], [35], [36], [37], [38], [46], [47], [51], [53],
and others).

In this paper, we consider a class of more general minimax fractional programming problems than
those ones mentioned above, that is, semi-infinite minimax fractional programming problems with both
inequality and equality constraints. The main purpose of this paper is to use the concept of

(
Φ, ρ

)
-

invexity to establish saddle point criteria for such a class of nonconvex semi-infinite minimax fractional
programming problems. In the presence of both inequality and equality constraints, by making use of
necessary optimality conditions, we present the characterization of an optimal solution as a saddle point of
the Lagrangian function defined for the considered semi-infinite minimax fractional programming problem
with

(
Φ, ρ

)
-invex functions (with respect to, not necessarily, the same ρ). However, a suitable assumption

is also imposed on all parameters ρ, with respect to which the functions constituting the considered vector
optimization problem are

(
Φ, ρ

)
-invex. We illustrate the results established in the paper by the example of

a nonconvex semi-infinite minimax fractional programming problem with
(
Φ, ρ

)
-invex functions. Based

on this example, we also show that the equivalence between an optimal solution and a saddle point of the
classical Lagrange function in such a class of nonconvex semi-infinite minimax fractional programming
problem does not hold under other generalized convexity notions previously defined in the literature.

2. The Concept of
(
Φ, ρ
)
-Invexity

The following convention for equalities and inequalities will be used in the paper.
For any x = (x1, x2, ..., xn)T, y =

(
y1, y2, ..., yn

)T, we define:
(i) x = y if and only if xi = yi for all i = 1, 2, ...,n;
(ii) x > y if and only if xi > yi for all i = 1, 2, ...,n;
(iii) x = y if and only if xi = yi for all i = 1, 2, ...,n;
(iv) x ≥ y if and only if x = y and x , y.
In this section, we provide some definitions and some results that we shall use in the sequel. Further, for

convenience of a common reader, we recall the definition of certain classes of generalized invex functions
which we need to prove the main results in the paper. Namely, in [16], Caristi et al. introduced a new class
of nonconvex scalar functions, called

(
Φ, ρ

)
-invex functions. Now, we give an extension and generalization

of this definition to the vectorial case.
Let X be a nonempty subset of Rn and the function f :

(
f1, f2, ..., fk

)
: X→ Rk be differentiable at u ∈ X.

Definition 2.1. If there exist a function Φ : X×X×Rn+1
→ R, where Φ (x,u, ·) is convex on Rn+1, Φ (x,u, (0, a)) = 0

for all x ∈ X and every a ∈ R+ and ρ =
(
ρ1, ..., ρk

)
∈ Rk such that, the following inequalities

fi(x) − fi(u) = Φ
(
x,u,

(
∇ fi (u) , ρi

))
(>), i = 1, ..., k (1)
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hold for all x ∈ X, then f is said to be a (vector)
(
Φ, ρ

)
-invex ((vector) strictly

(
Φ, ρ

)
-invex) function at u on X.

If the inequalities (1) are satisfied at each u, then f is said to be a
(
Φ, ρ

)
-invex (strictly

(
Φ, ρ

)
-invex) function on X.

Definition 2.2. Each function fi, i = 1, ..., k, satisfying the inequality (1) is said to be
(
Φ, ρi

)
-invex (strictly

(
Φ, ρi

)
-

invex) at u on X. If the inequality (1) is satisfied at each u, then fi is said to be a
(
Φ, ρi

)
-invex (strictly

(
Φ, ρi

)
-invex)

function on X.

Remark 2.3. Note that the definition of a
(
Φ, ρ

)
-invex function generalizes and extends many generalized convexity

and generalized invexity notions previously introduced in the literature. Indeed, there are the following special cases:

i) If Φ
(
x,u,

(
∇ fi (u) , ρi

))
= ∇ fi (u) (x − u), ρi = 0, i = 1, ..., k, then we obtain the definition of a differentiable

vector-valued convex function.
ii) If Φ

(
x,u,

(
∇ fi (u) , ρi

))
= ∇ fi (u) η (x,u) for a certain mapping η : X × X → Rn and, moreover, ρi = 0,

i = 1, ..., k, then we obtain the definition of a differentiable vector-valued invex function (in the scalar case,
k = 1, see, Hanson [26]; in the vectorial case, see, Egudo and Hanson [20]).

iii) If Φ
(
x,u,

(
∇ fi (u) , ρi

))
= 1

bi(x,u)∇ fi (u) η (x,u) for a certain mapping η : X×X→ Rn, bi : X×X→ R+\{0} and
ρi = 0, i = 1, ..., k, then

(
Φ, ρ

)
-invexity reduces to the definition of a vector

(
b, η

)
-invex function (see, Bector

[10]).
iv) If Φ

(
x,u,

(
∇ fi (u) , ρi

))
= ∇ fi (u) (x − u) + ρ ‖θ (x,u)‖2, where θ : X × X→ Rn, θ (x,u) , 0, whenever x , u,

then
(
Φ, ρ

)
-invexity reduces to the definition of a vector ρ-convex function (see, in the scalar case, Vial [50]).

v) If Φ
(
x,u,

(
∇ fi (u) , ρi

))
= ∇ fi (u) η (x,u) + ρ ‖θ (x,u)‖2 for a certain mapping η : X × X → Rn, where

θ : X×X→ Rn, θ (x,u) , 0, whenever x , u, then
(
Φ, ρ

)
-invexity reduces to the definition of a vector ρ-invex

function (with respect to η and θ) (see, Craven [18]).
vi) If Φ

(
x,u,

(
∇ fi (u) , ρi

))
= F

(
x,u,∇ fi (u)

)
, where F (x,u, ·) is a sublinear functional on Rn, then

(
Φ, ρ

)
-invexity

notion reduces to the definition of F-convexity introduced by Hanson and Mond [27], and considered by Gulati
and Islam [24] in a vectorial case.

vii) If Φ
(
x,u,

(
∇ fi (u) , ρi

))
= F

(
x,u,∇ fi (u)

)
+ ρd2 (x,u), where F (x,u, ·) is a sublinear functional on Rn and

d : X × X → R, then
(
Φ, ρ

)
-invexity notion reduces to the definition of

(
F, ρ

)
-convexity introduced by Preda

[42] and considered by Ahmad [2].
viii) If Φ

(
x,u,

(
∇ fi (u) , ρi

))
= 1

bi(x,u)

(
F
(
x,u,∇ fi (u)

)
+ ρd2 (x,u)

)
, where F (x,u, ·) is a sublinear functional on Rn,

bi : X × X → R+\{0} and d : X × X → R, then
(
Φ, ρ

)
-invexity notion reduces to the definition of

(
b,F, ρ

)
-

convexity introduced by Pandian [41].

3. Semi-Infinite Minimax Fractional Programming and Saddle Point Criteria

Now, we consider the following semi-infinite minimax fractional programming problem:

ϕ (x) = min
x∈X

max
15i5p

fi(x)
1i (x)

subject to G j(x, t) 5 0 for all t ∈ T j, j = 1, ..., q, (SMFP)

Hk(x, s) = 0 for all s ∈ Sk, k = 1, ..., r,

x ∈ X,

where fi : X→ R, 1i : X→ R, i ∈ I = {1, ..., p}, are real-valued functions defined on a nonempty convex open
subset X of Rn such that, for each i ∈ I, fi(x) = 0, 1i (x) > 0 for all x ∈ X, T j, j = 1, ..., q, and Sk, k = 1, ..., r,
are compact subsets of a complete metric space, x → G j(x, t) is a function on X for all t ∈ T j, for each
k ∈ K = {1, ..., r}, x → Hk(x, s), is a function on X for all s ∈ Sk, for each j ∈ J and k ∈ K, t → G j(x, t) and
s→ Hk(x, s) are continuous real-valued functions defined, respectively, on T j and Sk for all x ∈ X satisfying
the constraints of problem (SMFP).
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Let
D :=

{
x ∈ X : G j(x, t) 5 0 for all t ∈ T j, j = 1, ..., q, Hk(x, s) = 0 for all s ∈ Sk, k ∈ K

}
be the set of all feasible solutions of (SMFP) and let T̂ j (x) denote T̂ j (x) =

{
t ∈ T j : G j(x, t) = 0

}
.

Definition 3.1. The tangent cone to the feasible set D in problem (SMFP) at x ∈ D is the set

T (D; x) ≡
{
h ∈ Rn : h = lim

n→∞
tn (xn

− x) such that xn
∈ D, lim

n→∞
xn = x, and tn > 0 for all n = 1, 2, ...

}
.

Definition 3.2. Let x ∈ D. The linearizing cone at x for problem (SMFP) is the set defined by

C (x) ≡
{
h ∈ Rn :

〈
∇G j(x, t), h

〉
5 0 for all t ∈ T̂ j (x) , j = 1, ..., q,〈

∇Hk(x, s), h
〉

= 0 for all s ∈ Sk, k = 1, ..., r
}
.

Definition 3.3. The problem (SMFP) satisfies the generalized Abadie constraint qualification at a given point x ∈ D
if the following relation

C (x) ⊆ T (D; x)

holds.

Now, we give a useful lemma which we use to prove the main results in the paper.

Lemma 3.4. [54] For each x ∈ X,

ϕ (x) ≡ max
15i5p

fi(x)
1i (x)

= max
λ∈Λ

∑p
i=1 λi fi(x)∑p
i=1 λi1i (x)

,

where Λ =
{
λ =

(
λ1, ..., λp

)
∈ Rp : λi ≥ 0 ∧

∑p
i=1 λi = 1

}
.

For the considered semi-infinite minimax fractional programming problem (SMFP), we now give the
parametric necessary optimality conditions established by Zalmai and Zhang [54].

Theorem 3.5. Let x ∈ D be an optimal point in the considered semi-infinite minimax fractional programming
problem (SMFP) with the corresponding optimal value equal to v = max15i5p

fi(x)
1i(x) , the functions t→ G j(x, t), t ∈ T j

and s→ Hk(x, s), s ∈ Sk be continuously differentiable at x, the generalized Abadie constraint qualification (Definition
3.3) be satisfied at x and the set cone

{
∇G j (x, t) : t ∈ T̂ jm (x) , j = 1, ..., q

}
+ span

{
∇Hk (x, s) : s ∈ Sk, k = 1, ..., r

}
is

closed. Then, there exist λ ∈ Λ =
{
λ =

(
λ1, ..., λp

)
∈ Rp : λ ≥ 0,

∑p
i=1 λi = 1

}
and integers w0 and w, with 0 5 w0 5

w 5 n + 1, such that there exist w0 indices jm, with 1 5 jm 5 q, together with w0 points tm
∈ T̂ jm (x), m = 1, ...,w0,

w −w0 indices km, with 1 5 km 5 r, together with w −w0 points sm
∈ Skm , m = 1, ...,w −w0 and w real numbers µm

with µm > 0, m = 1, ...,w0 such that the following conditions are satisfied:

p∑
i=1

λi
[
∇ fi(x) − v∇1i(x)

]
+

w0∑
m=1

µm∇G jm (x, tm) +

w∑
m=w0+1

µm∇Hkm (x, sm) = 0, (2)

λi
[

fi(x) − v1i(x)
]

= 0, i = 1, ..., p. (3)

For the considered semi-infinite minimax fractional programming problem (SMFP), we define the
vector-valued Lagrange function L, where each its component is defined by

Li

(
z, λ, µ, v,w,w0, t, s

)
= λi

[
fi (z) − v1i (z)

]
+

1
p

 w0∑
m=1

µmG jm (z, tm) +

w∑
m=w0+1

µmHkm (z, sm)

 . (4)

Now, we give the definition of a vector saddle point of the vector-valued Lagrange function L in the
considered semi-infinite minimax fractional programming problem (SMFP).
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Definition 3.6. A point
(
x, λ, µ, v,w,w0, t, s

)
is said to be a saddle point of the vector-valued Lagrange function L

defined for the considered semi-infinite minimax fractional programming problem (SMFP) if,

i) L
(
x, λ, µ, v,w,w0, t, s

)
5 L

(
x, λ, µ, v,w,w0, t, s

)
∀µ ∈ Rw,

ii) L
(
x, λ, µ, v,w,w0, t, s

)
� L

(
x, λ, µ, v,w,w0, t, s

)
∀x ∈ D.

Theorem 3.7. Let
(
x, λ, µ, v,w,w0, t, s

)
be a saddle point of the Lagrange function in the considered semi-infinite

minimax fractional programming problem (SMFP). Then x is optimal in problem (SMFP).

Proof. Since
(
x, λ, µ, v,w,w0, t, s

)
is a saddle point of the vector-valued Lagrange function in the considered

semi-infinite minimax fractional programming problem (SMFP), by Definition 3.6, conditions i) and ii) are
satisfied. Thus, by condition i) and the definition of the vector-valued Lagrange function L, the following
inequalities

λi
[

fi (x) − v1i (x)
]
+ 1

p

[∑w0
m=1 µmG jm (x, tm) +

∑w
m=w0+1 µmHkm (x, sm)

]
5 λi

[
fi (x) − v1i (x)

]
+ 1

p

[∑w0
m=1 µmG jm (x, tm) +

∑w
m=w0+1 µmHkm (x, sm)

]
, i ∈ I

(5)

hold for all µ ∈ Rw. Thus, (5) gives

w0∑
m=1

µmG jm (x, tm) 5
w0∑

m=1

µmG jm (x, tm). (6)

Hence, for µm = 0, m = 1, ...,w0, (6) yields

w0∑
m=1

µmG jm (x, tm) = 0. (7)

Using x ∈ D together with µm > 0, m = 1, ...,w0, we obtain

w0∑
m=1

µmG jm (x, tm) 5 0. (8)

Thus, by (7) and (8), it follows that
w0∑

m=1

µmG jm (x, tm) = 0. (9)

We proceed by contradiction. Suppose, contrary to the result, that x ∈ D is not optimal in the considered
semi-infinite minimax fractional programming problem. Then, there exists x̃ ∈ D such that

ϕ
(
x̃
)
< ϕ (x) = v. (10)

Since ϕ
(
x̃
)
≡ max15i5p

fi(x̃)
1i(x̃) , the inequality (10) yields

fi
(
x̃
)
− v1i

(
x̃
)
< 0, i = 1, ..., p. (11)

Thus,
fi
(
x̃
)
− v1i

(
x̃
)
< fi (x) − v1i (x) , i = 1, ..., p. (12)

Multiplying the inequality above by the associated Lagrange multiplier λi, i = 1, ..., p, we obtain

λi
[

fi
(
x̃
)
− v1i

(
x̃
)]
5 λi

[
fi (x) − v1i (x)

]
, i = 1, ..., p, (13)
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λi
[

fi
(
x̃
)
− v1i

(
x̃
)]
< λi

[
fi (x) − v1i (x)

]
for at least one i ∈ I. (14)

Using x ∈ D and x̃ ∈ D together with (9), we get, respectively,

λi
[

fi
(
x̃
)
− v1i

(
x̃
)]

+ 1
p

[∑w0
m=1 µmG jm (x̃, tm) +

∑w
m=w0+1 µmHkm (x̃, sm)

]
5 λi

[
fi (x) − v1i (x)

]
+ 1

p

[∑w0
m=1 µmG jm (x, tm) +

∑w
m=w0+1 µmHkm (x, sm)

]
, i ∈ I,

(15)

λi
[

fi
(
x̃
)
− v1i

(
x̃
)]

+ 1
p

[∑w0
m=1 µmG jm (x̃, tm) +

∑w
m=w0+1 µmHkm (x̃, sm)

]
< λi

[
fi (x) − v1i (x)

]
+ 1

p

[∑w0
m=1 µmG jm (x, tm) +

∑w
m=w0+1 µmHkm (x, sm)

]
for at least one i ∈ I.

(16)

By the definition of the vector-valued Lagrange function, (15) and (16) imply, respectively,

Li

(
x̃, λ, µ, v,w,w0, t, s

)
5 Li

(
x, λ, µ, v,w,w0, t, s

)
, i ∈ I, (17)

Li

(
x̃, λ, µ, v,w,w0, t, s

)
< Li

(
x, λ, µ, v,w,w0, t, s

)
, for at least one i ∈ I, (18)

contradicting condition ii) in the definition of a saddle point of the Lagrange function L defined for problem
(SMFP) (see Definition 3.6). This completes the proof of this theorem.

Theorem 3.8. Let x ∈ D be an optimal point in the considered semi-infinite minimax fractional programming
problem (SMFP) with the corresponding optimal value equal to v = max15i5p

fi(x)
1i(x) . Further, assume that there exist

λ ∈ Λ and integers w0 and w, with 0 5 w0 5 w 5 n + 1, such that there exist w0 indices jm, with 1 5 jm 5 q, together
with w0 points tm

∈ T̂ jm (x), m = 1, ...,w0, w −w0 indices km, with w −w0 points sm
∈ Skm , m = 1, ...,w −w0, and w

real numbers µm with µm > 0 for m = 1, ...,w0, with the property that the necessary optimality conditions (2)-(3) are
fulfilled at x. Assume, furthermore, that any one of the following seven sets of hypotheses is fulfilled:

A) a) fi (·), i = 1, ..., p, is a
(
Φ, ρ fi

)
-invex function at x on D,

b) −v1i (·), i = 1, ..., p, is a
(
Φ, ρ1i

)
-invex function at x on D,

c) G jm (·, tm), tm
∈ T̂ jm (x), m = 1, ...,w0, is a

(
Φ, ρG jm

)
-invex function at x on D,

d) Hkm (·, sm), sm
∈ S+

km
(x) ≡

{
sm
∈ Skm : µm > 0

}
, m ∈

{
w0 + 1, ...,w

}
, is a

(
Φ, ρ+

Hkm

)
-invex function at x on D,

e) −Hkm (·, sm), sm
∈ S−km

(x) ≡
{
sm
∈ Skm : µm < 0

}
, m ∈

{
w0 + 1, ...,w

}
, is a

(
Φ, ρ−Hkm

)
-invex function at x on D,

f)
∑p

i=1 λi

(
ρ fi + vρ1i

)
+

∑w0
m=1 µmρG jm

+
∑

m∈{w0+1,...,w} µmρ
+
Hkm
−

∑
m∈{w0+1,...,w} µtρ

−

Hkm
= 0,

B) a) fi (·) − v1i (·), i = 1, ..., p, is a
(
Φ, ρi

)
-invex function at x on D,

b) G jm (·, tm), tm
∈ T̂ jm (x), m = 1, ...,w0, is a

(
Φ, ρG jm

)
-invex function at x on D,

c) Hkm (·, sm), sm
∈ S+

km
(x) ≡

{
sm
∈ Skm : µm > 0

}
, m ∈

{
w0 + 1, ...,w

}
, is a

(
Φ, ρ+

Hkm

)
-invex function at x on D,

d) −Hkm (·, sm), sm
∈ S−km

(x) ≡
{
sm
∈ Skm : µm < 0

}
, m ∈

{
w0 + 1, ...,w

}
, is a

(
Φ, ρ−Hkm

)
-invex function at x on D,

e)
∑p

i=1 λiρi +
∑w0

m=1 µmρG jm
+

∑
m∈{w0+1,...,w} µmρ

+
Hkm
−

∑
m∈{w0+1,...,w} µtρ

−

Hkm
= 0,

C) a) fi (·) − v1i (·), i = 1, ..., p, is a
(
Φ, ρi

)
-invex function at x on D,

b) µmG jm (·, tm), tm
∈ T̂ jm (x), m = 1, ...,w0, is a

(
Φ, ρG jm

)
-invex function at x on D,

c) µmHkm (·, sm), sm
∈ Skm , m = w0 + 1, ...,w, is a

(
Φ, ρHkm

)
-invex function at x on D,

d)
∑p

i=1 λiρi +
∑w0

m=1 ρG jm
+

∑w
m=w0+1 ρHkm

= 0,
D) a) fi (·) − v1i (·), i = 1, ..., p, is a

(
Φ, ρi

)
-invex function at x on D,

b)
∑w0

m=1 µmG jm (·, tm), tm
∈ T̂ jm (x), is a

(
Φ, ρG

)
-invex function at x on D,

c)
∑w

m=w0+1 µmHkm (·, sm), sm
∈ Skm , is a

(
Φ, ρH

)
-invex function at x on D,

d)
∑p

i=1 λiρi + ρG + ρH = 0,
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E) a) fi (·) − v1i (·), i = 1, ..., p, is a
(
Φ, ρi

)
-invex function at x on D,

b)
∑w0

m=1 µmG jm (·, tm) +
∑w

m=w0+1 µmHkm (·, sm), tm
∈ T̂ jm (x), sm

∈ Skm , is a
(
Φ, ρHG

)
-invex function at x on D,

c)
∑p

i=1 λiρi + ρGH = 0,

F) each component of the vector-valued Lagrange function L
(
·, λ, pµ, v,w,w0, t, s

)
, that is, each function z →

Li

(
z, λ, pµ, v,w,w0, t, s

)
, i = 1, ...p, is

(
Φ, ρi

)
-invex at x on D, where t ≡

(
t1, ..., tw0

)
, s ≡

(
sw0+1, ..., sw

)
and∑p

i=1 ρi = 0,

G) each function ψi

(
·, µ, v,w,w0, t, s

)
= fi (·)− v1i (·) +

∑w0
m=1 µmG jm (·, tm) +

∑w
m=w0+1 µmHkm (·, sm), i = 1, ..., p, is(

Φ, ρi
)
-invex at x on D, where t ≡

(
t1, ..., tw0

)
, s ≡

(
sw0+1, ..., sw

)
and

∑p
i=1 λiρi = 0.

Then
(
x, λ, µ, v,w,w0, t, s

)
is a saddle point of the vector-valued Lagrange function in the considered semi-infinite

minimax fractional programming problem (SMFP).

Proof. First, we prove inequality i) in Definition 3.6. By assumption, x ∈ D is an optimal point in the
considered semi-infinite minimax fractional programming problem (SMFP) with the corresponding optimal
value equal to v = max15i5p

fi(x)
1i(x) and here exist λ ∈ Λ and integers w0 and w, with 0 5 w0 5 w 5 n + 1, such

that there exist w0 indices jm, with 1 5 jm 5 q, together with w0 points tm
∈ T̂ jm (x), m = 1, ...,w0, w − w0

indices km, with w−w0 points sm
∈ Skm , m = 1, ...,w−w0, and w real numbers µm with µm > 0 for m = 1, ...,w0,

with the property that the necessary optimality conditions (2)-(3) are fulfilled at this point. Hence, from the
feasibility of x, it follows that the relation

w∑
m=w0+1

µmHkm (x, sm) =

w∑
m=w0+1

µmHkm (x, sm) (19)

holds for all µ =
(
µw0+1, ..., µw

)
∈ Rw−w0

+ . Since w0 points tm belong to T̂ jm (x), therefore, using the feasibility
of x in problem (SMFP) together with µm > 0 for m = 1, ...,w0, we obtain that the inequality

w0∑
m=1

µmG jm (x, tm) 5
w0∑

m=1

µmG jm (x, tm) (20)

holds for all µ =
(
µ1, ..., µw0

)
∈ Rw0

+ . Adding both sides of (19) and (20), it follows that the following
inequality

w0∑
m=1

µmG jm (x, tm) +

w∑
m=w0+1

µmHkm (x, sm) 5
w0∑

m=1

µmG jm (x, tm) +

w∑
m=w0+1

µmHkm (x, sm). (21)

holds for all µ =
(
µ1, ..., µw

)
∈ Rw

+ . Thus, for each i = 1, ...p, we have

λi
[

fi (x) − v1i (x)
]
+

1
p

 w0∑
m=1

µmG jm (x, tm) +

w∑
m=w0+1

µmHkm (x, sm)


5 λi

[
fi (x) − v1i (x)

]
+

1
p

 w0∑
m=1

µmG jm (x, tm) +

w∑
m=w0+1

µmHkm (x, sm)

 .

Hence, by the definition of the vector-valued Lagrange function, the following inequalities

Li

(
x, λ, µ, v,w,w0, t, s

)
5 Li

(
x, λ, µ, v,w,w0, t, s

)
, i ∈ I (22)

hold for any µ =
(
µ1, ..., µw

)
∈ Rw

+ . This means that inequality i) in the definition of a saddle point of the
vector-valued Lagrange function is satisfied.
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Now, we prove the second inequality in Definition 3.6.
We proceed by contradiction. Suppose, contrary to the result, that there exists x̃ ∈ D such that

L
(
x̃, λ, µ, v,w,w0, t, s

)
≤ L

(
x, λ, µ, v,w,w0, t, s

)
. Then, by the definition of the vector-valued Lagrange func-

tion, it follows that
Li

(
x̃, λ, µ, v,w,w0, t, s

)
5 Li

(
x, λ, µ, v,w,w0, t, s

)
, i ∈ I, (23)

Li∗
(
x̃, λ, µ, v,w,w0, t, s

)
< Li∗

(
x, λ, µ, v,w,w0, t, s

)
for some i∗ ∈ I. (24)

Taking into account (4) in (23) and (24), we have

λi
[

fi
(
x̃
)
− v1i

(
x̃
)]

+ 1
p

[∑w0
m=1 µmG jm (x̃, tm) +

∑w
m=w0+1 µmHkm (x̃, sm)

]
5 λi

[
fi (x) − v1i (x)

]
+ 1

p

[∑w0
m=1 µmG jm (x, tm) +

∑w
m=w0+1 µmHkm (x, sm)

]
, i ∈ I,

(25)

λi∗
[

fi∗
(
x̃
)
− v1i∗

(
x̃
)]

+ 1
p

[∑w0
m=1 µmG jm (x̃, tm) +

∑w
m=w0+1 µmHkm (x̃, sm)

]
< λi∗

[
fi∗ (x) − v1i∗ (x)

]
+ 1

p

[∑w0
m=1 µmG jm (x, tm) +

∑w
m=w0+1 µmHkm (x, sm)

]
for some i∗ ∈ I.

(26)

We prove the second inequality in Definition 3.6 under hypothesis A).

By assumption, fi, i = 1, ..., p, is a
(
Φ, ρ fi

)
-invex function at x on D and −v1i, i = 1, ..., p, is a

(
Φ, ρ1i

)
-invex

function at x on D, G jm (·, tm), tm
∈ T̂ jm (x), m = 1, ...,w0, is a

(
Φ, ρG jm

)
-invex function at x on D, Hkm (·, sm),

sm
∈ S+

km
(x) ≡

{
sm
∈ Skm : µm > 0

}
, m ∈

{
w0 + 1, ...,w

}
, is a

(
Φ, ρ+

Hkm

)
-invex function at x on D, −Hkm (·, sm),

sm
∈ S−km

(x) ≡
{
sm
∈ Skm : µm < 0

}
, m ∈

{
w0 + 1, ...,w

}
, is a

(
Φ, ρ−Hkm

)
-invex function at x on D. Hence, by

Definition 2.2, the following inequalities

fi(x) − fi(x) = Φ
(
x, x,

(
∇ fi (x) , ρ fi

))
, i = 1, ..., p, (27)

−v1i(x) + v1i(x) = Φ
(
x, x,

(
−v∇1i (x) , ρ1i

))
, i = 1, ..., p, (28)

G jm (x, tm) − G jm (x, tm) = Φ
(
x, x,

(
∇G jm (x, tm), ρG jm

))
, tm
∈ T̂ jm (x) , m = 1, ...,w0, (29)

Hkm (x, sm) −Hkm (x, sm) = Φ
(
x, x,

(
∇Hkm (x, sm), ρ+

Hkm

))
, sm
∈ S+

km
(x) , m ∈

{
w0 + 1, ...,w

}
, (30)

−Hkm (x, sm) + Hkm (x, sm) = Φ
(
x, x,

(
−∇Hkm (x, sm), ρ−Hkm

))
, sm
∈ S−km

(x) , m ∈
{
w0 + 1, ...,w

}
. (31)

hold for all x ∈ D. Therefore, they are also satisfied for x̃ ∈ D. Multiplying each inequality (27)-(31) by the
associated Lagrange multiplier, we obtain, respectively

λi fi(x̃) − λi fi(x) = λiΦ
(
x̃, x,

(
∇ fi (x) , ρ fi

))
, i = 1, ..., p, (32)

−λiv1i(x̃) + λiv1i(x) = λiΦ
(
x̃, x,

(
−v∇1i (x) , ρ1i

))
, i = 1, ..., p, (33)

µmG jm (x̃, tm) − µmG jm (x, tm) = µmΦ
(
x̃, x,

(
∇G jm (x, tm), ρG jm

))
, tm
∈ T̂ jm (x) , m = 1, ...,w0, (34)

µmHkm (x̃, sm) − µmHkm (x, sm) = µmΦ
(
x̃, x,

(
∇Hkm (x, sm), ρ+

Hkm

))
, sm
∈ S+

km
(x) , m ∈

{
w0 + 1, ...,w

}
, (35)

µmHkm (x̃, sm) − µmHkm (x, sm) = −µmΦ
(
x̃, x,

(
−∇Hkm (x, sm), ρ−Hkm

))
, sm
∈ S−km

(x) , m ∈
{
w0 + 1, ...,w

}
. (36)
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Adding both sides of the inequalities (34)-(36) and the adding both sides of the obtained inequalities and
both sides of (32)-(33), we get

λi
[

fi
(
x̃
)
− v1i

(
x̃
)]

+
1
p

 w0∑
m=1

µmG jm (x̃, tm) +

w∑
m=w0+1

µmHkm (x̃, sm)


−

λi
[

fi (x) − v1i (x)
]
+

1
p

 w0∑
m=1

µmG jm (x, tm) +

w∑
m=w0+1

µmHkm (x, sm)




= λiΦ
(
x̃, x,

(
∇ fi (x) , ρ fi

))
+ λiΦ

(
x̃, x,

(
−v∇1i (x) , ρ1i

))
+

1
p

w0∑
m=1

µmΦ
(
x̃, x,

(
∇G jm (x, tm), ρG jm

))
+

w∑
m=w0+1

µmΦ
(
x̃, x,

(
∇Hkm (x, sm), ρ+

Hkm

))
+

w∑
m=w0+1

(
−µm

)
Φ

(
x̃, x,

(
−∇Hkm (x, sm), ρ−Hkm

))
, i ∈ I. (37)

Combining (25), (26) and (37), and then adding both sides of the obtained inequalities, we get, respectively,

λiΦ
(
x̃, x,

(
∇ fi (x) , ρ fi

))
+ λiΦ

(
x̃, x,

(
−v∇1i (x) , ρ1i

))
+

1
p

 w0∑
m=1

µmΦ
(
x̃, x,

(
∇G jm (x, tm), ρG jm

))
+

w∑
m=w0+1

µmΦ
(
x̃, x,

(
∇Hkm (x, sm), ρ+

Hkm

))
+

w∑
m=w0+1

(
−µm

)
Φ

(
x̃, x,

(
−∇Hkm (x, sm), ρ−Hkm

)) 5 0, i ∈ I, (38)

λi∗Φ
(
x̃, x,

(
∇ fi∗ (x) , ρ fi∗

))
+ λi∗Φ

(
x̃, x,

(
−v∇1i∗ (x) , ρ1i∗

))
+

1
p

 w0∑
m=1

µmΦ
(
x̃, x,

(
∇G jm (x, tm), ρG jm

))
+

w∑
m=w0+1

µmΦ
(
x̃, x,

(
∇Hkm (x, sm), ρ+

Hkm

))
+

w∑
m=w0+1

(
−µm

)
Φ

(
x̃, x,

(
−∇Hkm (x, sm), ρ−Hkm

)) < 0 for at least one i∗ ∈ I. (39)

Adding both sides of the above inequalities, we obtain

p∑
i=1

λi

(
Φ

(
x̃, x,

(
∇ fi (x) , ρ fi

))
+ Φ

(
x̃, x,

(
−v∇1i (x) , ρ1i

)))
+

w0∑
m=1

µmΦ
(
x̃, x,

(
∇G jm (x, tm), ρG jm

))
+

w∑
m=w0+1

µmΦ
(
x̃, x,

(
∇Hkm (x, sm), ρ+

Hkm

))
+

w∑
m=w0+1

(
−µm

)
Φ

(
x̃, x,

(
−∇Hkm (x, sm), ρ−Hkm

))
< 0. (40)

Let us introduce the following notations:

λ̃i =
λi

A
, i = 1, ..., p, (41)

µ̃m =
µm

A
, m = 1, ...,w0, (42)

µ̃+
m =

µm

A
, m ∈

{
w0 + 1, ...,w

}
if µm > 0, (43)
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µ̃−m =
−µm

A
, m ∈

{
w0 + 1, ...,w

}
if µm < 0, (44)

where

A =

p∑
i=1

λi +

w0∑
m=1

µm +
∑

m∈{w0+1,...,w : µm>0}

µm +
∑

m∈{w0+1,...,w : µm<0}

(
−µm

)
. (45)

By (41)-(44), it follows that 0 5 λ̃i 5 1, i = 1, ..., p, λ̃i > 0 for at least one i ∈ I, 0 5 µ̃m 5 1, m = 1, ...,w0,
0 < µ̃+

m 5 1, m ∈
{
w0 + 1, ...,w

}
, 0 < µ̃−m 5 1, m ∈

{
w0 + 1, ...,w

}
, and also

p∑
i=1

λ̃i +

w0∑
m=1

µ̃m +
∑

m∈{w0+1,...,w}

µ̃+
m +

∑
m∈{w0+1,...,w}

µ̃−m = 1. (46)

Taking into account (41)-(44) in (40), we get

p∑
i=1

λ̃i

(
Φ

(
x̃, x,

(
∇ fi (x) , ρ fi

))
+ Φ

(
x̃, x,

(
−v∇1i (x) , ρ1i

)))
+

w0∑
m=1

µ̃mΦ
(
x̃, x,

(
∇G jm (x, tm), ρG jm

))
+

w∑
m=w0+1

µ̃+
mΦ

(
x̃, x,

(
∇Hkm (x, sm), ρ+

Hkm

))
+

w∑
m=w0+1

µ̃−mΦ
(
x̃, x,

(
−∇Hkm (x, sm), ρ−Hkm

))
< 0. (47)

By Definition 2.2, it follows that Φ
(
x̃, x, (·, ·)

)
is a convex function on Rn+1. Hence, by (46), the definition of

a convex function yields

p∑
i=1

λ̃iΦ
(
x̃, x,

(
∇ fi (x) , ρ fi

))
+

p∑
i=1

λ̃iΦ
(
x̃, x,

(
−v∇1i (x) , ρ1i

))
+

w0∑
m=1

µ̃mΦ
(
x̃, x,

(
∇G jm (x, tm), ρG jm

))
+

w∑
m=w0+1

µ̃+
mΦ

(
x̃, x,

(
∇Hkm (x, sm), ρ+

Hkm

))
+

w∑
m=w0+1

µ̃−mΦ
(
x̃, x,

(
−∇Hkm (x, sm), ρ−Hkm

))
= Φ

x̃, x,

 p∑
i=1

λ̃i

(
∇ fi (x) , ρ fi

)
+

p∑
i=1

λ̃iv
(
−∇1i (x) , ρ1i

)
+

w0∑
m=1

µ̃m

(
∇G jm (x, tm), ρG jm

)
+

∑
m∈{w0+1,...,w}

µ̃+
m

(
∇Hkm (x, sm), ρ+

Hkm

)
+

∑
m∈{w0+1,...,w}

µ̃−m
(
−∇Hkm (x, sm), ρ−Hkm

)
 . (48)

Combining (47) and (48), we have

Φ

x̃, x,

 p∑
i=1

λ̃i

(
∇ fi (x) , ρ fi

)
+

p∑
i=1

λ̃i

(
−v∇1i (x) , ρ1i

)
+

w0∑
m=1

µ̃m

(
∇G jm (x, tm), ρG jm

)
+

∑
m∈{w0+1,...,w}

µ̃+
m

(
∇Hkm (x, sm), ρ+

Hkm

)
+

∑
m∈{w0+1,...,w}

µ̃−m
(
−∇Hkm (x, sm), ρ−Hkm

)
 < 0. (49)

Taking into account (41)-(44) in (49), we get

Φ

x̃, x,
1
A

 p∑
i=1

λi
[
∇ fi (x) − v∇1i (x)

]
+

w0∑
m=1

µm∇G jm (x, tm)+
w∑

m=w0+1

µm∇Hkm (x, sm) ,

p∑
i=1

λi

[
ρ fi + vρ1i

]
+

w0∑
m=1

µmρG jm
+

∑
m∈{w0+1,...,w}

µmρ
+
Hkm
−

∑
m∈{w0+1,...,w}

µmρ
−

Hkm


 < 0. (50)
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Hence, the necessary optimality condition (2) implies

Φ

x̃, x,
1
A

0 ,
p∑

i=1

λiρ fi + v
p∑

i=1

λiρ1i +

w0∑
m=1

µmρG jm
+

∑
m∈{w0+1,...,w}

µmρ
+
Hkm
−

∑
m∈{w0+1,...,w}

µmρ
−

Hkm


 < 0. (51)

By Definition 2.2, it follows that Φ
(
x̃, x, (0, a)

)
= 0 for each a ∈ R+. Therefore, hypothesis f)) implies that the

inequality

Φ

x, x,
1
A

0,
p∑

i=1

λiρ fi +

p∑
i=1

λivρ1i +

w0∑
m=1

µmρG jm
+

∑
m∈{w0+1,...,w}

µmρ
+
Hkm
−

∑
m∈{w0+1,...,w}

µtρ
−

Hkm


 = 0 (52)

holds, contradicts (52). This completes the proof of the second inequality in Definition 3.6 under hypothesis
A).

Proofs of the second inequality in Definition 3.6 under hypotheses B)-D) are similar to the proof under
hypotheses A) or E) and, therefore, they have been omitted in the paper.

We now prove the second inequality in Definition 3.6 under hypothesis E). We proceed by contradiction.
Thus, there exists x̃ ∈ D such that (25) and (26) are satisfied. Therefore, adding both sides of (25) and (26),
we have

p∑
i=1

λi
[

fi
(
x̃
)
− v1i

(
x̃
)]

+

w0∑
m=1

µmG jm (x̃, tm) +

w∑
m=w0+1

µmHkm (x̃, sm)

<

p∑
i=1

λi
[

fi (x) − v1i (x)
]
+

w0∑
m=1

µmG jm (x, tm) +

w∑
m=w0+1

µmHkm (x, sm). (53)

By assumptions E) a) and E) b), Definition 2.2 gives, respectively,

fi
(
x̃
)
− v1i

(
x̃
)
−

(
fi (x) − v1i (x)

)
= Φ

(
x̃, x,

(
∇ fi (x) − v∇1i (x) , ρi

))
, (54)

w0∑
m=1

µmG jm (x̃, tm) +

w∑
m=w0+1

µmHkm (x̃, sm) −

 w0∑
m=1

µmG jm (x, tm) +

w∑
m=w0+1

µmHkm (x, sm)

 (55)

= Φ

x̃, x,

 w0∑
m=1

µm∇G jm (x, tm) +

w∑
m=w0+1

µm∇Hkm (x, sm), ρGH


 .

Multiplying (53) by λi, i = 1, ..., p, and the adding both sides of the obtained inequalities, we get

p∑
i=1

λi
(

fi
(
x̃
)
− v1i

(
x̃
))
−

p∑
i=1

λi
(

fi (x) − v1i (x)
)
=

p∑
i=1

λiΦ
(
x̃, x,

(
∇ fi (x) − v∇1i (x) , ρi

))
. (56)

Combining (55) and (56), we have

p∑
i=1

λi
(

fi
(
x̃
)
− v1i

(
x̃
))
−

p∑
i=1

λi
(

fi (x) − v1i (x)
)

+

w0∑
m=1

µmG jm (x̃, tm)

+

w∑
m=w0+1

µmHkm (x̃, sm) −

 w0∑
m=1

µmG jm (x, tm) +

w∑
m=w0+1

µmHkm (x, sm)


=

p∑
i=1

λiΦ
(
x̃, x,

(
∇ fi (x) − v∇1i (x) , ρi

))
+ Φ

x̃, x,

 w0∑
m=1

µm∇G jm (x, tm) +

w∑
m=w0+1

µm∇Hkm (x, sm), ρGH


 . (57)
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Hence, (53) and (57) yield

p∑
i=1

λiΦ
(
x̃, x,

(
∇ fi (x) − v∇1i (x) , ρi

))
+ Φ

x̃, x,

 w0∑
m=1

µm∇G jm (x, tm) +

w∑
m=w0+1

µm∇Hkm (x, sm), ρGH


 < 0. (58)

Let us introduce the following notations:

λ̃i =
λi

1 +
∑p

i=1 λi
, i = 1, ..., p, (59)

λ̃p+1 =
1

1 +
∑p

i=1 λi
. (60)

By (57) and (58), it follows that 0 5 λ̃i 5 1, i = 1, ..., p, λ̃i > 0 for at least one i ∈ I, 0 < λ̃p+1 < 1, and also

p+1∑
i=1

λ̃i = 1. (61)

Using (59) and (60) together with (58), we get

p∑
i=1

λ̃iΦ
(
x̃, x,

(
∇ fi (x) − v∇1i (x) , ρi

))
+ λ̃p+1Φ

x̃, x,

 w0∑
m=1

µm∇G jm (x, tm) +

w∑
m=w0+1

µm∇Hkm (x, sm), ρGH


 < 0. (62)

By Definition 2.2, it follows that Φ
(
x̃, x, (·, ·)

)
is a convex function on Rn+1. Hence, by (61), the definition of

a convex function implies

Φ

x̃, x,

 p∑
i=1

λ̃i
(
∇ fi (x) − v∇1i (x) , ρi

)
+ λ̃p+1

 w0∑
m=1

µm∇G jm (x, tm) +

w∑
m=w0+1

µm∇Hkm (x, sm), ρGH



 < 0. (63)

Thus,

Φ

x̃, x,

 p∑
i=1

λ̃i
(
∇ fi (x) − v∇1i (x) , ρi

)
+ λ̃p+1

 w0∑
m=1

µm∇G jm (x, tm)

+

w∑
m=w0+1

µm∇Hkm (x, sm)

 , p∑
i=1

λ̃iρi + λ̃p+1ρGH


 < 0. (64)

Using (59) and (60) together with (64), we get

Φ

x̃, x,
1

1 +
∑p

i=1 λi

 p∑
i=1

λi∇ fi (x) − v∇1i (x) +

w0∑
m=1

µm∇G jm (x, tm) +

w∑
m=w0+1

µm∇Hkm (x, sm),
p∑

i=1

λiρi + ρGH


 < 0. (65)

Hence, the necessary optimality condition (2) implies

Φ

x̃, x,
1

1 +
∑p

i=1 λi

0 ,
p∑

i=1

λiρi + ρGH


 < 0. (66)

By Definition 2.2, it follows that Φ
(
x̃, x, (0, a)

)
= 0 for each a ∈ R+. Therefore, hypothesis E) c) implies that

the following inequality

Φ

x̃, x,
1

1 +
∑p

i=1 λi

0 ,
p∑

i=1

λiρi + ρGH


 = 0
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holds, contradicting (66). This completes the proof of the second inequality in Definition 3.6 under hypoth-
esis E).

We now prove the second inequality in Definition 3.6 under hypothesis F). We proceed by con-
tradiction. Suppose, contrary to the result, that there exists x̃ ∈ D such that L

(
x̃, λ, µ, v,w,w0, t, s

)
≤

L
(
x, λ, µ, v,w,w0, t, s

)
. Then, by the definition of the vector-valued Lagrange function, it follows that the in-

equalities (25) and (26) are satisfied. By assumption, the vector-valued Lagrange function L
(
·, λ, µ, v,w,w0, t, s

)
is

(
Φ, ρ

)
-invex at x on D. Thus, by Definition 2.1, the following inequalities

Li

(
x, λ, µ, v,w,w0, t, s

)
− Li

(
x, λ, µ, v,w,w0, t, s

)
= Φ

(
x, x,

(
∇Li

(
x, λ, pµ, v,w,w0, t, s

)
, ρi

))
, i = 1, ..., p

hold. Therefore, they are also satisfied for x = x̃ ∈ D. Taking into account the definition of the Lagrange
function (see (4)), we obtain

λi
[

fi
(
x̃
)
− v1i

(
x̃
)]

+
1
p

 w0∑
m=1

µmG jm (x̃, tm) +

w∑
m=w0+1

µmHkm (x̃, sm)

−

λi
[

fi (x) − v1i (x)
]
+

1
p

 w0∑
m=1

pµmG jm (x, tm) +

w∑
m=w0+1

µmHkm (x, sm)




= Φ

x̃, x,

λi
[
∇ fi (x) − v∇1i (x)

]
+

1
p

 w0∑
m=1

µm∇G jm (x, tm) +

w∑
m=w0+1

µmHkm (x, sm)

 , ρi


 , i = 1, ..., p. (67)

Combining (25), (26) and (67), we obtain, respectively,

Φ

x̃, x,

λi
[
∇ fi (x) − v∇1i (x)

]
+

1
p

 w0∑
m=1

µm∇G jm (x, tm) +

w∑
m=w0+1

µmHkm (x, sm)

 , ρi


 5 0, i = 1, ..., p, (68)

Φ

x̃, x,

λi∗
[
∇ fi∗ (x) − v∇1i∗ (x)

]
+

1
p

 w0∑
m=1

µm∇G jm (x, tm) +

w∑
m=w0+1

µmHkm (x, sm)

 , ρi


 < 0 for some i∗ ∈ I. (69)

Multiplying each inequality above by 1
p and then adding both sides of the obtained inequality, we get

p∑
i=1

1
p

Φ

x̃, x,

λi
[
∇ fi (x) − v∇1i (x)

]
+

1
p

 w0∑
m=1

µm∇G jm (x, tm) +

w∑
m=w0+1

µmHkm (x, sm)

 , ρi


 < 0.

By Definition 2.1, it follows that Φ (x, x, (·, ·)) is a convex function on Rn+1. Then, by the definition of a convex
function, it follows that

p∑
i=1

1
p

Φ

x̃, x,

λi
[
∇ fi (x) − v∇1i (x)

]
+

1
p

 w0∑
m=1

µm∇G jm (x, tm) +

w∑
m=w0+1

µmHkm (x, sm)

 , ρi




= Φ

x̃, x,
p∑

i=1

1
p

λi
[
∇ fi (x) − v∇1i (x)

]
+

1
p

 w0∑
m=1

µm∇G jm (x, tm) +

w∑
m=w0+1

µmHkm (x, sm)

 , ρi


 . (70)

Combining (69) and (70), we have

Φ

x̃, x,
p∑

i=1

1
p

λi
[
∇ fi (x) − v∇1i (x)

]
+

1
p

 w0∑
m=1

µm∇G jm (x, tm) +

w∑
m=w0+1

µmHkm (x, sm)

 , ρi


 < 0.
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Thus, the inequality above yields

Φ

x̃, x,
1
p

 p∑
i=1

λi
[
∇ fi (x) − v∇1i (x)

]
+

w0∑
m=1

µm∇G jm (x, tm) +

w∑
m=w0+1

µmHkm (x, sm) , ρi


 < 0.

By the necessary optimality condition (2), it follows that

Φ

x̃, x,
1
p

0 ,
p∑

i=1

ρi


 < 0. (71)

By Definition 2.1, it follows that Φ
(
x̃, x, (0, a)

)
= 0 for each a ∈ R+. Since

∑p
i=1 ρi ≥ 0, the inequality

Φ

x̃, x,
1
p

0 ,
p∑

i=1

ρi


 = 0

holds, contradicting (71). Hence, the second inequality in Definition 3.6 is satisfied and, therefore, the proof
under hypothesis F) is completed.

Now, we prove the second inequality in Definition 3.6 under hypotheses G).
We proceed by contradiction. Suppose, contrary to the result, that there exists x̃ ∈ D such that

L
(
x̃, λ, µ, v,w,w0, t, s

)
≤ L

(
x, λ, µ, v,w,w0, t, s

)
. Then, by the definition of the vector-valued Lagrange func-

tion, it follows that (25) and (26) are satisfied. Adding both sides of the inequalities (25) and (26), we
get

p∑
i=1

λi
[

fi
(
x̃
)
− v1i

(
x̃
)]

+

w0∑
m=1

µmG jm (x̃, tm) +

w∑
m=w0+1

µmHkm (x̃, sm)

<

p∑
i=1

λi
[

fi (x) − v1i (x)
]
+

w0∑
m=1

µmG jm (x, tm) +

w∑
m=w0+1

µmHkm (x, sm). (72)

By assumption,ψ
(
·, µ, v,w,w0, t, s

)
is a

(
Φ, ρ

)
-invex function at x on D. Thus, by Definition 2.1, the following

inequalities

ψi

(
x̃, µ, v,w,w0, t, s

)
− ψi

(
x, µ, v,w,w0, t, s

)
= Φ

(
x̃, x,

(
∇ψi

(
x, µ, v,w,w0, t, s

)
, ρi

))
, i = 1, ..., p (73)

hold. Multiplying each above inequality by λi, i = 1, ..., p, and using the definition of ψ, we get

λi

 fi
(
x̃
)
− v1i

(
x̃
)

+

w0∑
m=1

µmG jm (x̃, tm) +

w∑
m=w0+1

µmHkm (x̃, sm)


−λi

 fi (x) − v1i (x) +

w0∑
m=1

µmG jm (x, tm) +

w∑
m=w0+1

µmHkm (x, sm)


= λiΦ

x̃, x,

∇ fi (x) − v∇1i (x) +

w0∑
m=1

µm∇G jm (x, tm) +

w∑
m=w0+1

µmHkm (x, sm), ρi


 , i = 1, ..., p. (74)
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Adding both sides of the above inequalities and taking into account
∑p

i=1 λi = 1, we obtain

p∑
i=1

λi
[

fi
(
x̃
)
− v1i

(
x̃
)]

+

w0∑
m=1

µmG jm (x̃, tm) +

w∑
m=w0+1

µmHkm (x̃, sm)

−

p∑
i=1

λi
[

fi (x) − v1i (x)
]
+

w0∑
m=1

µmG jm (x, tm) +

w∑
m=w0+1

µmHkm (x, sm)

=

p∑
i=1

λiΦ

x̃, x,

∇ fi (x) − v∇1i (x) +

w0∑
m=1

µm∇G jm (x, tm) +

w∑
m=w0+1

µmHkm (x, sm), ρi


 . (75)

Thus, (72) and (75) yield

p∑
i=1

λiΦ

x̃, x,

∇ fi (x) − v∇1i (x) +

w0∑
m=1

µm∇G jm (x, tm) +

w∑
m=w0+1

µmHkm (x, sm), ρi


 < 0. (76)

By Definition 2.1, it follows that Φ
(
x̃, x, (·, ·)

)
is a convex function on Rn+1. Since λi ≥ 0, i = 1, ..., p,

∑p
i=1 λi = 1,

by the definition of a convex function, it follows that

p∑
i=1

λiΦ

x̃, x,

∇ fi (x) − v∇1i (x) +

w0∑
m=1

µm∇G jm (x, tm) +

w∑
m=w0+1

µmHkm (x, sm), ρi




= Φ

x̃, x,
p∑

i=1

λi

∇ fi (x) − v∇1i (x) +

w0∑
m=1

µm∇G jm (x, tm) +

w∑
m=w0+1

µmHkm (x, sm)

 , p∑
i=1

λiρi

 . (77)

Combining (76) and (77), we get

Φ

x̃, x,
p∑

i=1

λi

∇ fi (x) − v∇1i (x) +

w0∑
m=1

µm∇G jm (x, tm) +

w∑
m=w0+1

µmHkm (x, sm)

 , p∑
i=1

λiρi

 < 0.

Since λi ≥ 0, i = 1, ..., p,
∑p

i=1 λi = 1, the above inequality gives

Φ

x̃, x,
p∑

i=1

λi
[
∇ fi (x) − v∇1i (x)

]
+

w0∑
m=1

µm∇G jm (x, tm) +

w∑
m=w0+1

µmHkm (x, sm),
p∑

i=1

λiρi

 < 0.

The last part of this proof is the same as in the proof under hypothesis G).

We have established under each of the assumptions A)-G) that inequality ii) in Definition 3.6 is satis-
fied. This means that

(
x, λ, µ, v,w,w0, t, s

)
is a saddle point of the vector-valued Lagrange function in the

considered semi-infinite minimax fractional programming problem (SMFP).

Now, we give an example of a nonconvex semi-infinite minimax fractional programming problem
(SMFP) involving

(
Φ, ρ

)
-invex functions. It turns out that, in order to prove optimality of a feasible point x

at which the necessary optimality (2)-(3) are satisfied, the concept of (Φ, ρ)-invexity may be applied.

Example 3.9. Consider the following semi-infinite minimax fractional programming problem:

min
x∈R2

max
15i5p

(
x2

1+x2
2+i

2i+arctan(x1x2)

)
G1(x, t) = − t

1+t − x1x2 5 0, t ∈ T1 = [0, 1] ,
(P1)
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where p is a finite positive integer number. Note that the set of all feasible solutions
D =

{
(x1, x2) ∈ R2 : − t

1+t − x1x2 5 0, t ∈ T1 = [0, 1]
}
. Further, note that x = (0, 0) is a feasible point in the considered

semi-infinite minimax fractional programming problem, for which there exist λ ∈ Λ, λi = 1
p , i = 1, ..., p, and an

integer w0 = 1 such that there exist one index j1 = 1 together with a point t1
∈ T̂ j1 (x) = {0} and µ1 = 1

2 such that
the necessary optimality conditions (2)-(3) are satisfied. It is not difficult to see that v = max15i5p

fi(x)
1i(x) = 1

2 . Let a
functional Φ : X × X × Rn+1

→ R and scalars ρ fi , ρ1i , i = 1, ..., p, ρG1 be defined as follows:

Φ
(
x, x,

(
ς, ρ

))
=

1
2

(ς1 + ς2)
(
x2

1 − x2
1 + x2

2 − x2
2

)
+ 2 (2ρ − 1)

∣∣∣(x1 − x1) (x2 − x2)
∣∣∣ ,

and
ρ fi = 1, ρ1i = −1, ρG1 = −1.

It is not difficult to prove that all objective functions and the constraint function are (Φ, ρ)-invex at x on D with
respect to the functional Φ and scalars ρ fi , ρ1i , i = 1, ..., p, ρG1 given above. Since all hypotheses of Theorem 3.8 are
satisfied, therefore,

(
x, λ, µ, v,w0, t

)
=

(
(0, 0) , λ, µ, v,w0, 0

)
is a saddle point in the considered semi-infinite minimax

fractional programming problem (P1). Further, since
(
x, λ, µ, v,w0, t

)
=

(
(0, 0) , λ, µ, v,w0, 0

)
is a saddle point in

the considered semi-infinite minimax fractional programming problem (P1), optimality of x = (0, 0) in problem (P1)
follows directly from Theorem 3.7.

Remark 3.10. Note that we are not in a position to prove the equivalence between an optimal solution x and a saddle
point

(
x, λ, µ, v,w0, t

)
of the Lagrange function in the semi-infinite minimax fractional programming problem (P1)

considered in Example 3.9 under invexity and many generalized convexity notions defined earlier in the literature
(for instance, r-invexity [6], ρ-convexity [50], F-convexity [27],

(
F, ρ

)
-convexity [42],

(
b, η

)
-invexity [10], ρ-invexity

[18], univexity [12],
(
p, r

)
-invexity, [5], B-(p, r)-invexity [4], [7] G-invexity [8]). This is a consequence of the fact that

a stationary point of each objective function 1i, i = 1, ..., p, and a stationary point of the constraint function G1 (·, t)
are not their global minimizers (see Ben-Israel and Mond [14]). Then, each objective function 1i, i = 1, ..., p, and the
constraint function are neither invex [26] nor generalized convex (that is, r-invex [6],

(
b, η

)
-invex [10], univex [12],

B-(p, r)-invex [4], [7], G-invex [8]) with respect to any function η : D×D→ R2. As it follows even from this example
of a nonconvex semi-infinite minimax fractional programming problem, the saddle point criteria established under
(Φ, ρ)-invexity are useful for a larger class of such optimization problems than similar criteria established under other
generalized invexity notions, even those mentioned above.

4. Conclusions

In the paper, a new class of nonconvex semi-infinite minimax fractional programming problems with
both inequality and equality constraints has been considered. Parametric saddle point criteria have been
established for this class of nonconvex semi-infinite minimax fractional programming problems in which
the involved functions are

(
Φ, ρ

)
-invex. Subsequently, we have illustrated the results established in the

paper by an example of a nonconvex semi-infinite minimax fractional programming problem involving(
Φ, ρ

)
-invex functions with respect to the same functional Φ and with respect to, not necessarily the same

ρ. It turns out that, in order to prove the equivalence between an optimal solution and a saddle point of the
Lagrange function in the considered nonconvex semi-infinite minimax fractional programming problem,
a fairly large number of conditions established in the literature under other generalized convexity notions
existing in the literature is not applicable. This is consequence of the fact that the concept of

(
Φ, ρ

)
-invexity

generalizes many generalized convexity notions previously defined in the literature (see Remark 2.3). In this
way, the saddle point criteria presented here have been proved for a larger class of nonconvex semi-infinite
minimax fractional programming problems than those ones previously established in the literature.

Further, all parametric saddle point criteria established in the paper can easily be modified and used for
each one of the following nonlinear mathematical programming problems, which are special cases of the
considered optimization problem (SMFP):
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minimize
x∈D

f1 (x) ,

minimize
x∈D

f1 (x)
11 (x)

,

minimize
x∈D

max
15i5p

fi (x) ,

minimize
x∈D

max
15i5p

fi (x)
1i (x)

.

In this way, the concept of
(
Φ, ρ

)
-invexity can be used to prove several saddle point criteria for various

classes of nonconvex semi-infinite minimax fractional programming problems. Moreover, as it follows
from the above, this concept of generalized convexity is a useful tool in proving saddle point conditions
also for such a nonconvex optimization problem for which other generalized convexity notions may avoid
in such a case.
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