Filomat 31:9 (2017), 2877-2889
https://doi.org/10.2298/FIL1709877S

Q

Published by Faculty of Sciences and Mathematics,
University of Nis, Serbia

Available at: http://www.pmf.ni.ac.rs/filomat

D
"'ﬁmm s

<
\ Tpppop®

Essential Norms of Weighted Differentiation Composition Operators
between Zygmund Type Spaces and Bloch Type Spaces

Amir H. Sanatpour?, Mostafa Hassanlou®

*Department of Mathematics, Kharazmi University, Tehran, Iran
YShahid Bakeri High Education Center of Miandoab, Urmia University, Urmia, Iran

Abstract. We study boundedness of weighted differentiation composition operators DF
mund type spaces Z* and Bloch type spaces BF. We also give essential norm estimates of such operators

pu DEtWeen Zyg-
in different cases of k € IN and 0 < a, f < c0. Applying our essential norm estimates, we get necessary and
sufficient conditions for the compactness of these operators.

1. Introduction and Preliminaries

Let ID denote the open unit ball of the complex plane C. By a weight function v we mean a continuous,
strictly positive and bounded function v : ID — R*. The weight v is called radial if v(z) = v(|z|]) for all z € D.

Let H(ID) denote the space of all analytic functions on ID. Then, for a weight v, the weighted Banach space of
analytic functions H® is the space of all analytic functions f € H(ID) for which

Ifll, = sup v(z)|f(2)| < 0.
zeD

In general, for a weight v, the associated weight v is defined by

Wz) = (supllf@): f € HY IIfl, <1)~!, zeD.
It is known that for standard weights v,(z) = (1 — |z*)* (0 < a < ), associated weights and weights are the
same, i.e. vy = V,.

For each 0 < a < oo, the Bloch type space B is the space of all analytic functions f € H(ID) for which

sup(l - [2P)°If ()] < co.

zeD
The Bloch type space 8% is a Banach space with the norm

Ifllg: = IfO)] +sup(l ~ 2P)*If (@), feB"

zeD
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When a = 1, we get the classic Bloch space 8 = B'. The little Bloch type space B3 consists of those functions
f € 8" for which

lim (1~ [z @) = 0.
For each 0 < a < oo, the Zygmund type space Z* consists of those functions f € H(ID) satisfying

sup(1 = [21*)*|f" (2)] < co.
zeD

The Zygmund type space Z¢ is a Banach space equipped with the norm

1]

Zo = FOI+1f0)] + Suﬂg(l ~ 1P, feZ

The little Zygmund type space Z consists of those functions f € Z% for which
lgl_n)l(l = 12P)*|f" ()] = 0.

Recall that, for Banach spaces X and Y, a linear operator T : X — Y is bounded if it takes bounded sets
to bounded sets. The space of all bounded operators T : X — Y is denoted by B(X,Y). The norm of the
space B(X, Y), called operator norm, is denoted by ||T||x—y for a bounded operator T : X — Y. An operator
T € B(X,Y) is compact if it takes bounded sets to sets with compact closure. The space of all compact
operators T : X — Y is denoted by K(X,Y). The essential norm of an operator T € B(X,Y), denoted by
ITle,x—y, is defined as the distance from T to K(X,Y). Clearly, an operator T € B(X,Y) is compact if and
only if ||Tl,x—y = 0. Therefore, essential norm estimates of operators in B(X, Y) lead to necessary and/or
sufficient conditions for the compactness of such operators. In this paper we investigate boundedness,
and then, essential norm estimates of certain type of operators, defined as follows, between Zygmund type
spaces and Bloch type spaces. As a consequence of our essential norm estimates, we obtain necessary and
sufficient conditions for the compactness of such operators.

Let u, ¢ € H(ID) where ¢ is a selfmap of ID. The weighted composition operator uC, on H(ID) is defined by

uCp)(f)(2) = u2)f(p(z)), zeD.

Weighted composition operators, which are generalizations of multiplication operators and composition oper-
ators, appear in the study of dynamical systems. Moreover, it is known that isometries on many analytic
function spaces are of the canonical forms of weighted composition operators. Boundedness, compact-
ness and essential norm estimates of weighted composition operators have been studied by many authors
between different spaces of analytic functions. Weighted composition operator uC, from Zygmund type
spaces to Bloch type spaces has been studied in [2]. See also [6, 15, 16], for more results on weighted
composition operators between certain spaces of analytic functions.

Let @ be an analytic selfmap of D, u € H(ID) and k € IN. The weighted differentiation composition operator

Df,, on H(D) is defined by

(D,.f) @ = u@fP(pR), zeD.

Weighted differentiation composition operators [19] are also known as generalized weighted composition
operators [24]. Boundedness and compactness of these operators between different spaces of analytic

functions have been studied by many authors. The operator D'(;,u from Bloch type spaces to weighted-type

k
Q,u

spaces, see [10]. Also, the operator D’;,u between Bloch type spaces has been investigated in [26], and the
k

Pu

spaces has been studied in [7]. For the results on the operator D, , from Hardy spaces to Zygmund type

operator D, , from logarithmic Bloch spaces to Zygmund type spaces has been studied in [14]. For more

results on the operator D'qfw see also [8, 18, 21, 25] and references therein.
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Note that by considering special cases of ¢, u and k in D’;,/u, we can get certain well-known operators.
For example, for an analytic selfmap ¢ of D, by letting u = ¢" and k = 1, D}p, o is the well-known operator
composition followed by differentiation DC,, given by

(DCyf) @) = ¢'@) (F(9@)) = (DL, f) 2.

Also, if ¢ is an analytic selfmap of D, then by letting u = 1 and k = 1, D}P , is the well-known operator
composition proceeded by differentiation C,D, given by

(CoDf) @) = f(p(2)) = (D} 1 f) @

Recently, there has been growing interest in the study of these particular cases. See, for example, [5, 9, 20]
and references therein. We also note that weighted forms of operators DC,, and C,D [11] are also of the
form D, . More precisely,

(¥DCof) @) = ¥(2)¢' ) (F (9(2)) = (D}, 5, f) (2),

and
(¥CoDf) @) = ¥@f (92) = (D}, . f) ).

Therefore, it is worth mentioning that all results in this paper about weighted differentiation composition
operators D’;/u are also valid for the above mentioned operators as particular cases.

In Section 2, we investigate boundedness of weighted differentiation composition operators D’;},u 1t -
BF in different cases of k € N and 0 < @, 8 < oo. In Section 3, using results of Section 2, we give essential
norm estimates of weighted differentiation composition operators D’fp,u : Z% — BF in different cases of
keNand 0 < a,p < 0. As a consequence of essential norm estimates given in Section 3, we get necessary
and sufficient conditions for the compactness of such operators.

We mention that in this paper, for real scalars A and B, the notation A < B means A < cB for some

positive constant c. Also, the notation A < Bmeans A < Band B < A.

2. Boundedness

In this section we characterize boundedness of weighted differentiation composition operators D’q‘[),u :

Z¢ — BPin different cases of k € N and 0 < a, B < oo. First, we study boundedness of D}P,u s 74— BE,
We recall the following estimates of |f(z)| and |f’(z)| for functions f in Z“ (see, [1, Lemma 1.1]).

Lemma 2.1. For every f € Z* we have
Q) 1f' @) < 25 fllze and |f @) < I fllz for 0 <a <1,
(i) |f"(z)] < 2||f||;zlog1_i|Z| and |f(z)| < |Ifllz fora =1,

(iii) 1f'(2)] < 22 o, for 1 < a < o,

(iv) |f(z)| < muﬂlza,for l<a<?2,

(©) 1f(2)| < 2lIfllz2 log 125, for a = 2,

. lIfllza
(vi) |f(z) < m(pfpﬁa—wfor 2 << oo,

Before stating next theorems we note that if Dj,, : Z% — 8P is a bounded operator, then u = D, (1) € 8/

and also, since up = D(lp,u(é) € B, one can see that ug’ € HJ. This fact will be severally used in the proof

of theorems in this section.
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Theorem 2.2. Let 0 < a < 1and 0 < f < oo. Then, DY, : Z% — BP is bounded if and only if u € BP and

Pu
(=P
b (L= Ip@PY"

Proof. For f € Z* using Lemma 2.1(i) we have

(D f) @)1 <l @ f (P@)] + u@)¢’ @) f " (p(2))]

2|u /) | u(z)g’ (2)|
> Iz + gy Mz

u(z)¢’ (2)] < co. 1)

So, if u € Bf and (1) holds, then D1 .+ Z% — BFis bounded. Conversely, let D(lp : Z% — Bf be a bounded
operator. For each nonzeroa € D C0n51der the test function g,(z) = fi(z) — h,(z) for all z € D, where

1 ((1 - |af)? 1 — |af?
@ _—( - o)
(1-az) (1-az)
B 1 —af?
MOy ™
;tlis known that for ¢(a) # 0, gy € <%, g:p(ﬂ)(go(a)) = (p(u)((p(a)) W and SUP 1 o)<l 1gp@llze < o0.
ence,

1D gl =(1 ~ 0P hu@)p’ @3 @@)] ~ (1 aPFlu @) (9@
o1 = lay’
=0 - Ip@py @@l

and therefore

a(l - |u|2)ﬁ )
A lo@pr @2 @< sup Dy gp0lls < co.
1a<iplarat (1~ lp@P)* Ve St e

On the other hand, since u¢’ € H;?, we have
a(l —|a?)P
o u@¢’ (@) < o,
pai<1/2 (1= lp@P) v

which completes the proof. [

Theorem 2.3. If0 < B < oo, then DY, , : Z — BF is bounded if and only if

Qu "
(i) 1 - zP)flu’ (z)| log =2~
i) sup, (1 —Iz]°)Plu'(z)| log H@F < o

(if) SUP,cp 1T [u(2)' (2)] < oo.

Proof. If conditions (i) and (ii) hold, then Lemma 2.1(ii) implies that for every f € Z*

Dy, f) @] =l @) f (@(2)) + u2)p" @) f (@)
<|u' @) f ()| + ()¢’ (2) f" (¢(2))]
2 . |u(z)’ (2)]
-lp@)P?  1-lp@)P

<’ @lIflizlog 7 Ifllz-
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So, DL, : Z — BP is a bounded operator. Conversely, let D}p : Z — BP be abounded operator. A similar
argument as in the proof of Theorem 2.2 shows that (ii) holds. In order to prove (i), for each a € ID satisfying
@(a) # 0, consider the test function

_h(@z)( 2 )‘1
b == T e

where

- )2+1),

forallz € ID. Itisknown thatk,) € Z,k/ (g)((P(“)) log 1= |<p(a)|2’ W)((p(a)) =1 Ig(a)lz .a1ndsup1/2<|qg(a)|<1 llkp@llz <
co. We also have

hz) = (z - 1) ((1 +log -

1Dy ukgllzs (1 = 1Pl @)k, (@(@)] = (1~ Ialz)ﬁIu(a)fp'(a)k"(u)kp(a))
2 21— Py
—lp@P 1-lp@)?

Therefore, boundedness of the operator D<1p,u : Z — BF and (ii) imply that

=(1 — |l (a)l log 7 u(@)¢’ (@)!.

sup (1 - aP)Plu’ (@)l log ————— .

1/2<lp(@)l<1 | (@)
< sup Dol + sup 2 )
1/2<lp(@)|<1 12<p@i<1 1~ (@)

<00,

Also, since u € B, we have

sup (1 - [aP)’ I @) log T———
lp@)l<1/2

O<>/
| @P
which completes the proof. [

Theorem 2.4. Let 1 < a < coand 0 < B < oo. Then, D}M : Z% — BP is bounded if and only if

. 1—|z[2)B ,
(i) Sup,cp (1_(|q,(|zz)|‘2))a—1 [t/ (z)| < oo,

1
(ii) sup,.p (1( |(;J§z|)\)2)“ [u(z)¢’ (2)| < 0.

Proof. Let D(}j : Z* — BP be a bounded operator. Then, one can prove (ii) as in the proof of Theorem 2.2.

Also, (i) can be proved similar to Theorem 2.3(i) and usmg the test function f,(,) defined in Theorem 2.2.
Note that 7 (p(a)) = gUga)(l lp(a))t-* o @@) = W and also sup; i, <1 fpallze < oo.
Finally, a similar argument as in the proof of Theorem 2.3 shows that if (/) and (i) hold, then Dglo,u Y >

$F is a bounded operator. []

As mentioned in the proof of [23, Proposition 8], for eachk > 2,0 < @ < oo and f € 8% we have

llflls=
(k) - J =
f Z)l = (1 _ |Z|2)a+k—1 ’

zeD. (2)
Applying (2), foreachk > 2,0 <a < oo and f € Z" we get

& () < a_”g% zeD. 3)
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In the next theorem, we give necessary and sufficient conditions for the boundedness of D’;,/u :Z% > B

for each k > 2. Note that using the estimate of |f®)(z)|, given in (3), leads to the proof of next theorem in all
cases of 0 < o, § < oo0.

Theorem 2.5. Let 0 < a,B < oo and k > 2. Then, DY, , - Z* — BF is bounded if and only if

. 1—|z[2)p
(i) SUp,p ok ' (2)] < oo,

.. 2P ,
(i) sup,.p a_lg)(z‘%lu(z)(p (2)| < oo.
Proof. Suppose that the operator D}é;,u : Z* - BF is bounded. For every nonzero a € D define the test
function t, € Z* by
- 1)(1 - |af*)? k—1)(1 - |al?
L - L (@ DOP? @ k=10 ))

s (1-az)” (1 -az)*-!

Then, we have supy |tallze < o0, t,(zk) (@) = 0and

<lal<1 |

_(a=Da(@+1)---(a+k-1)
- (1 — |afp)a+k-1 :

@

Therefore,

D%, towlles 2(1 = PV lu@)’ @t (p@)] = (1 = aPYlu' @1 (@)
Ja—=Tla(@+1)---(a+k—-1)(1 - |a[?)P

(1= lp@)R)+1

lu(@)g’ (),
and hence

6P g @is sup Dbyl < oo
—_ a q .
12<ip(@i<1 (1 = lp(@)?)a -1 dp@i<t ?
On the other hand, since u¢g’ € Hjj;’ , we have
sup (1—laP)
@12 (1= lp@)?)r-1

which completes the proof of (i7). One can also prove (i) by a similar argument as in the proof of (i7) and
using the test function s, € Z“, for nonzero a € D, given by

B W A O LR A )

U FU (-ae (1 -az)*1

lu(@)g’ (@) < oo,

Note that sup; i, ; llsallz« < oo, 5;""(a) = 0 and

S,(Zk)(ll) _ —(CK— 1)6[(0(4‘ 1)(0{+k—2)
(1 — |a|2)a+k—2
Now suppose that (i) and (if) hold. Then, for every f € Z%, using (3), we have

(D5 Y @)1 <l ) f P () + () () f <D (o)
) (')
STowepra Vet T mpp

Ni{ultiplying both sides by (1 — |z[*)? and taking supremum over z € D, implies boundedness of D’;W 14—
8. O

Il fllze-
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3. Essential Norms

In this section we give estimates for the essential norm of weighted differentiation composition operators
D’;W : Z* — B in different cases of k € Nand 0 < a, f < 0.
Foreach 0 < a < oo, let D, : Z% — 8% and S, : 8* — H;® denote derivative operators. Then, D, and
Sq are linear isometries on Z% = {f € Z* : f(0) = f’(0) = 0} and B* = {f € B* : f(0) = 0}, respectively.
Moreover,
Sﬁ P ;15;1 =

-1 k -1
@u’ Jist + D uprSa s

which implies that

Db 2 S WDl 2o+ 1Dl - (4)

For any bounded operator T : 8% — H;7, the operator f — T(f(0)1) is a compact operator. Similarly, for
any bounded operator T : Z* — B or T : Z* — H, the operator f — T(f(0)1 + f'(0)z) is compact.
Applying these operators, one can see that ||D q),u”e,Ba—»Hﬁ;; = ||D’;,,u||€,@x_)H5;, ||D’;,lu||€,2[,_$5 = IIDI(;,”HE,Z&HB/;

and ||DX

<P,u”e,2aaH3;; = ||D’;j/u||3,za_)H57s (see [17] for a similar approach). Therefore, (4) implies that

k k k
1D lle 2 s < D%l zety + 1Dl s (5)

Before stating main results, we prove the following lemma which is an analogue of [22, Lemma 4.2].

Lemma 3.1. Let 0 < o < 1 and (f,) be a bounded sequence in Z* which converges to zero on compact subsets of D.
Then, limy,—, SUP,.py |, (2)] = 0

Proof. Suppose that ¢ > 0 and choose 0 < t < 1 such that (1 — #)!™* < ¢. Then, for eachz € D witht < |z] < 1
we have

1 1
e
@)~ fital =l [ apen < c f . —
Jr Il tll tpz (1= [tz?)e

1 1 c
< t< I
Cf|z| (1—f)“d ( ) S1-a”

where ¢ = sup, .\ | fullz=. Therefore,

sup |f,(2)l < ToEtsup £z (@)I.

t<|z]<1 |z|=t
Since (f,) also converges to zero uniformly on compact subsets of ID, we conclude

11m sup Ifr(2)] < 11m sup |f(z)| + hm sup Lfn (@)l
< <|z|]<1

<1 e + lim sup |f,(z)| + hm sup If @)l
n—oo | | +

¢
1-a

&
which completes the proof. [

Regarding (5), in order to give upper estimates for the essential norm of Dy, , : Z% — $F, in the next theorem

we give essential norm of D(P . Lt — HY.

Theorem 3.2. Let v be a radial and non-increasing weight tending to zero at the boundary of D, 0 < a < oo and

(,, . - L% — HY be a bounded operator.
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(i) If0 <a <1, then D}p,u is a compact operator.
(ii)

DG, lle,z—Hz = lim sup v(z)|u(z)| log

2
p@I-1 1-lp@)P

(iii) If 1 < a < oo, then

- v(2)|u(z)|
DLl Zzeospe < limsup ————————.
P |<p<z)|f (1 - lp@z)P)*1

Proof. Let 0 < @ < 1 and (f,) be a bounded sequence in Z*. Then, (f,) has a subsequence, say (f,), which
converges uniformly on compact subsets of ID. Note that, for each 1,k € IN, we have

DG (fu = filll = sup v(@)u@)(fu = fi) (@)l
<llull, sup I(f; — f)(@@)I.

zeD
Therefore, by applying Lemma 3.1, one can see that (D(}),M fx) is a Cauchy and hence convergent sequence in
H;?. This implies compactness of the operator D<1p,u : Z% —> HY.
Now assume that 1 < o < co. Fix 6 € (0,1) and let (7,,) be an increasing sequence in (0, 1) converging to

1. Then, D}m(p/u : Z% — H;’ is a compact operator for each m € IN. Indeed, if (f,) is a bounded sequence in

Z*, then it has a subsequence, say (f,), which converges uniformly on compact subsets of ID. On the other
hand, for each n, k € N, we have

D (fr = flly = suﬂgv(z)m(z)(fn — £ (rmp(@))|
<llull, sup I(fp = fi)' ).

lzI<rm

This shows that (D}mW fn) is a Cauchy and hence convergent sequence in H;® implying that the operator

D}m(ﬂ,u is compact. Therefore,

||]:)(1,7,u||e,za—>H5o S||D<1,,,u - D}mq;,u”Z“—)H‘;"
= sup supv(@)u@)lf’ () - f rup@)

Hf”zaﬁl zeD

< sup sup v@)u@f (@) - f rmp@) + sup sup v@)u@)f (@) - f (rmp))
Ifllzast lp(2)I<6 Ifllzast lp(2)I26

=I+].

About the term I we have

1
[f"(@@) = f'rmp@)] < f lp@IIf" (tp(2))ldt

L le@)
S“f”Z“ . (1 _ t2|§0(2)|2)a
lpG) _
ST pmp V0=

0
<=yl =)
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which tends to zero as m — 0. Also, about the term |, we have

1
[f'(@@) = f'rmp@)] < f lp@IIf” (tp(2))ldt

L @)

r (1= Elp)2)*
< lp(2)l
= J,, A =te@))*

<liflize

1

1 ( 1 B 1
Ca-1\(1-lp@)* Tt (1= rulp@))*?
1 1

< .
=11 lp@)*

Letting 6 — 1 we get

| 1 @)
1 p
S s T - o)

implying that

, 1 v(2)lu(2)|
IDL lle, ze—s g < lim su .
oulle, Z*—H; \(p(z)|—>}3 a—1 (1 _ |(p(z)|2)a_1

Now we prove the lower estimate. Let (z,) be a sequence in ID with 1/2 < |p(z,)| < 1 and |¢(z,)| — 1.
Consider the sequence of test functions (g,) defined by

(1 - lp@Ea)P)?

In(2) = —————
ap(za)(1 = p(zn)2)*

Then (g,) is a bounded sequence in Z§ which converges to zero uniformly on compact subsets of ID.
This implies weak convergence of (g,) to zero in Z®. Therefore, by letting ¢ = sup,  lgxllz« and using

7(p(zn)) = W, we have

1 : 1
C”D(p,u”C,Z“—)Hf,o Z llm Sup ||D(p,ugl/l||Hf,°

> lim sup v(z)[u(z,) 19, (9(z0))]
=limsup Vi)

n—o0 (1 - |§0(Zn)|2)a_1 ’

This completes the proof of (iii).

Finally, we prove (ii). The upper estimate in this case can be obtained as in the previous case. For the
lower estimate, let (z,) be a sequence in ID with 1/2 < |@p(z,)| < 1 and |p(z,)| — 1. Consider sequence of test
functions k,, = kg(,,) defined in Theorem 2.3. Then, (k;) is a bounded sequence in Zy which converges to zero
uniformly on compact subsets of ID and k},((z4)) = log 1% Hence, like (iii), by letting ¢ = sup, o Ilkullz,
we get
cliDg, e zmz =limsup (DG, ,Knller

n—oo

> lim sup v(z,)[u(z,)Ik, (@ (z,))|

n—o0

= limsup v(z)lu(zn)llog 3= 5

which completes the proof. [
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In the rest of this section, in order to simplify the notation in the statement of our results, we use the
following simplifications (see, for example, [12]):

. (1-|z2)P
A, @, a,B) = limsup —————|u(z2)|,
(g, PY =T sup G oy )
B(u, ¢, ) = limsup(1 — |z*)P|u(z)| log #.
pEI-1 1-lp@)P

Theorem 3.3. Let 0 < a, < coand Dy, , : Z* — B be a bounded operator.

(i) If0 <a <1, then
”Dqlg,u”e,Z”‘—%%’ =0.

(ii) If a =1, then
1Dyl 25 = max{A(ug’, @, 1, B), B, 0, B)}-

Proof. Since the operator D(}w : Z% - BPisbounded, u € B and therefore by Lemma 2.1(i) the operator

D}W, 74 - Hf,"; is bounded. Theorem 3.2(i) implies that ||D(1p/u,”elza_)H“:; = (0. On the other hand, using

a similar argument as in the proof of Theorem 3.2(i) one can see that the operator D(}W o B = Hpis
(1P,u({)/||e,3a~>H5:; = 0. Therefore, by applying (5) we get ||D(1p,u||e,z~—>8ﬁ =0.

In order to prove (ii), let (z,) be a sequence in ID with 1/2 < |p(z,)| < 1 and |p(z,)| — 1. Consider the
sequence g, = gy(,) defined in Theorem 2.2. Then, (g,) is abounded sequence in Zy which converges to zero

uniformly on compact subsets of D, ¢,,(¢(z,)) = 0 and g/, (¢(z,)) = Wl(zn)lz' So, by letting ¢1 = sup, . llgxllz

compact and hence ||D

we have

1 - 1
c1llDgylle, z—ss = limsup [IDg, ,gull ge

n—-0oo

> limsup(1 — |z,*)Plu(z.) @’ (za)1g7, (@(za))] = lim sup(1 = |z Y1’ (z)llg (9 (20))]

n—oo n—o0

Y8
=lim sup Iu(zn)(P'(Zn)lM

mst 1= lpGnP ©

Now, consider the sequence k, = ky(,,) defined in Theorem 2.3. Then, (k;) is a bounded sequence in Z

which converges to zero uniformly on compact subsets of D, k;,(¢(z,,)) = log Hq)ﬁ and k) (p(z,)) = 1_2@|2.
Let ¢, = sup,, lIkullz, then
c2lIDY Ml 7 = limsup DY ullas
> lim sup(1 — |z,[*)P [’ (z)llk, (@ (za))| = lim sup(1 — |z,[*)P[u(za) @’ (zn) 1K}, (@(z0))]
: 2 : 2|¢p(zn)l
=lim sup(1l — |z,[)?|t (z,)| log ————— — lim sup(1 — |z,,]>)P|u(z,)) @’ (z)| ———.
moup(l = Bl Gollog Ty g — i sup(l =Y @e @il o e

This along with (6) implies that

. p 2
hlzlsotlp(l ~ lza?Ylu’ (z2)l log W <o+ 261)||D(1p,u”e,z—>3/3/

and completes the proof of lower estimate.
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To prove the upper estimate, fix 6 € (0,1) and let (r,,) be an increasing sequence in (0, 1) converging to

1. Then, D}, pu - B — Hy is a compact operator, for each m € IN, and therefore

”DE{WH&BHH@ SllD}p,u - Dtl’m(p,u”BHHsz
= sup sup(l - PPu@If (@) - f @)

lIflls<1 zeD

< sup sup (1- |Z|2)ﬁ|u(z)||f'((p(z)) — (@)
[Ifllz<1 lp(z)|<d

+ sup sup (1-PPu@If (9@) - f rup@)
Iflls<1 lp(z)|=6
=I+].

Using (2) and applying a similar argument as in the proof of Theorem 3.2(iii) implies that

. (1-zP)
IDL Jlleg—ns < limsup |u(z)|-————.
P T o 1-lp@2)P

Consequently, Theorem 3.2(ii) along with (5) imply the desired upper estimate. [J

Theorem 3.4. Let1 <a < 00,0 < f < coand D;,/u 1 Z% — BP be a bounded operator. Then,

DL, lle zomge = max{A(ug’, @, a, ), AW, ,a - 1,p)}.

Proof. First we prove the lower estimate. Let (z,) be a sequence in ID with 1/2 < |¢(z,)| < 1 and |¢(z,)| — 1.
Then, by considering the sequence (g,) defined in Theorem 2.2, as in the proof of (6), we get

. a(l = |z4)F
D} | _— "(za)l, 7
D} o 2 limsup P ) e @)
where ¢; = sup, . l17xllz-
Next consider the sequence f, = fy(,,) defined in Theorem 2.2. Then (f,) is a bounded sequence in Zj

which converges to zero uniformly on compact subsets of D, f;(¢(z,)) = m and ' (p(z,)) =

(1_‘@7;%. So, by letting ¢, = sup,, . Il full z«, we have

1 . 1
CZ||D(P,14||6,Z“‘—>,‘Bﬁ = lim Sup ||Dq7,uf1’l||85

n—oo

> tim sup(l — [z, @l £(p(@)] — Tim sup(l — fzaP ) lu(za)p’ @I} (o)
| (1= PY | (1= PY
=1 w'(z,)| - 2al —— T u(z) @ (z0)l.
P o aI(1 = [payet )~ 28 Hmsup s )
Consequently, applying (7), we have
| A-kPP . (1= kPY
1 u'(zp)| ———————— <1 u'(zy,
P e e py P e A e

1
S(CZ + 2C1)||D(I),u||e,zﬂ~)3ﬁ-

In order to prove the upper estimate, fix 6 € (0,1) and let (r,,) be an increasing sequence in (0, 1) converging



A. H. Sanatpour, M. Hassanlou / Filomat 31:9 (2017), 2877-2889 2888

to 1. Then, D}m(p,u : 8% — Hy is a compact operator for each m € IN, and therefore

“D(lp,u“C,Bﬂ—)H",?; S”D(lp,u - Dfl’m(/),u”-(B”HHs;;
= sup sup(l — [zP)Pu@)f (@) = f (rue@))l

[Ifllga<1 z€D

< sup sup (1= ZPYu@If (@@) - f (rmp@)
Il <1 lp(2)<

+ sup sup (1- P u@)lf (¢R) - f rup@)
[Ifllga <1 lp(2)20
=I+]

By a similar argument as in the proof of Theorem 3.2(iii) and using (2), one can see that
. 1 (1 -z
IDL legesp < limsup —|u(z)| .
pullesriy < Bmsup 2 GG o
Consequently, applying Theorem 3.2(iii) and (5), we get the desired upper estimate. [J
Theorem 3.5. Let 0 < a,f < 00, k > 2 and D’fp,u 1 Z% — BP be a bounded operator. Then,

IDE Mle zomss < max{A(ug’, @, + k= 1,8), AW, @,a + k- 2,p)}.

Proof. Using Theorem 3.2(iii) and (3), the proof of upper estimate is similar to the proof of upper estimate
in Theorem 3.4.

To prove the lower estimate let (z,,) be a sequence in ID with 1/2 < |p(z,)| < 1 and |¢(z,)| = 1. Consider
the sequence t, = ty(,) given in Theorem 2.5. Indeed, (¢,) is a bounded sequence in Z; which converges to
zero uniformly on compact subsets of ID. If ¢; = sup, . lltallz«, then

k : k
c1llDg,ulle, zags 2 limsup [IDg, , tallps

n—oo

>limsup(1 — 2,2z’ @) IES™ (@(za))] = lim sup(1 — |z, 21’ @)l (@(za)]

n—oo n—oo

1- n 2)p ’
=Hmeup = |(P(Z|j)||2))a+k—1 l4(zn)p" (zn)- ®)

Now, consider the sequence s, = sy(,) given in Theorem 2.5. Then, (s,) is a bounded sequence in Z which
converges to zero uniformly on compact subsets of ID. Therefore, by letting c; = sup,, . IIsxllz« we have

k : k
C2||D(I),u”e,za—)Bﬁ > llm sup ||D(p,usn”8ﬁ

n—oo

>lim sup(1 — |z,2)P|’ (za) s (9 (z0)] = lim sup(1 — |2, [u(z.) @’ za)llsS ™ (@(za))]
_ PAY:
= lim sup (1~ zal) I’ (zn). ©)

n—oo (1 - |(P(Zn)|2)a+k_2
Applying (8) and (9) we get the desired result for the lower estimate. [

Remark 3.6. Montes-Rodriguez in [13, Theorem 2.1], and also Hyvirinen et al. in [3, Theorem 2.4], proved that if
v and w are radial and non-increasing weights tending to zero at the boundary of ID, then

w

(i) the weighted composition operator uC, maps H;® into H;, if and only if

(™| w(z)
———— =< sup =———u(z)| < oo,
o 2 e )

with norm comparable to the above supremum.
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.. 1 llug"llo _ 1. w(z)
(i) NuCoplle sy —my = limsup, ., g = imsupy, ), 7((P(z))lu(z)l.

By applying these facts and using [4, Lemma 2.1], our results in this paper containing terms of the type Vf‘(;((zz))) [u(z)l

can be restated in terms of u and @". See, for example, [1, 16] for these types of results.

Remark 3.7. Clearly, for Banach spaces X and Y, a bounded operator T : X — Y is compact if and only if

ITlle.x—y = 0. Therefore, essential norm estimates of D’;),u : 2% — BF given in Section 3, lead to necessary and

sufficient conditions for the compactness of such operators.

Acknowledgments. The authors are grateful to the anonymous referee whose valuable comments and
suggestions improved the manuscript.
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