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Abstract. For a two–dimensional time nonlinear hyperbolic equation with a power nonlinearity, a thresh-
old exponent depending on the space dimension is presented. Furthermore, the analysis is extended not
only to a system of two equations but also to a two–time fractional nonlinear equation with different time
order derivatives.

1. Introduction

In this paper we are concerned with the nonexistence of global weak solutions for multi–time hyperbolic
equations of the type

Lu := utt + uss − ∆u = |u|p, (t; x) ∈ D,
u(t, 0; x) = u10(t; x), ut(t, 0; x) = u20(t; x), (t; x) ∈ Ω,
u(0, s; x) = u01(s; x), us(0, s; x) = u02(s; x), (s; x) ∈ Ω,

(1)

where u := u(t, s; x), u : D → R,D = R+
×R+

×RN,Ω = R+
×RN, N ∈ N, N ≥ 1; p ∈ R, p > 1; uz,uzz stand

for the first and second partial derivatives in the variable z; and ∆ stands for the N–dimensional Laplacian
with respect to x. The nonlinearity |u|p is a prototype of nonlinearities that has been considered by John [9].

We will prove that no nontrivial global week solution of (1) exists under certain conditions depending
on p and N.

The result will be extended to a 2 × 2 system of two–time hyperbolic nonlinear equations of the form{
Lu = |v|p, in D,
Lv = |u|q, in D,

(2)

with initial conditions
u(0, s; x) = u01(s; x), ut(0, s; x) = u02(s; x), (s; x) ∈ Ω,
u(t, 0; x) = u10(t; x), us(t, 0; x) = u20(t; x), (t; x) ∈ Ω,
v(0, s; x) = v01(s; x), vt(0, s; x) = v02(s; x), (s; x) ∈ Ω,
v(t, 0; x) = v10(t; x), vs(t, 0; x) = v20(t; x), (t; x) ∈ Ω,

(3)
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where u := u(t, s; x), v := v(t, s; x), u, v : D → R; and p, q > 1. The blowing–up conditions will depend on
p, q, andN.

We will also consider equations involving fractional time derivatives in both time variables, with the
nonlinear term |u|p as in (1),

D1+α1
0|t (u − u01(s; x) − tu02(s; x)) + D1+α2

0|s (u − u10(t; x) − su20(t; x)) − ∆u = |u|p, (4)

for (t, s; x) ∈ D, subject to the initial conditions{
u(t, 0; x) = u10(t; x), us(t, 0; x) = u20(t; x), (t; x) ∈ Ω,
u(0, s; x) = u01(s; x), ut(0, s; x) = u02(s; x), (s; x) ∈ Ω,

(5)

where u := u(t, s; x), u : D→ R; p ∈ R, p > 1, and D1+δ
0|t , 0 < 1+δ < 2, stands for the fractional time derivative

of order 1 + δ in the variable t in the sense of Riemann–Liouville.
Finally we consider the system of fractional equations{

Fα1,α2 u = |v|p, in D,
Fβ1,β2 v = |u|q, in D,

(6)

where for 0 < µ, % < 1,

Fµ,%u := D1+µ
0|t (u − u01(s; x) − tu02(s; x)) + D1+%

0|s (u − u10(t; x) − su20(t; x)),

subject to the initial conditions
u(0, s; x) = u01(s; x), ut(0, s; x) = u02(s; x), (s; x) ∈ Ω,
u(t, 0; x) = u10(t; x), us(t, 0; x) = u20(t; x), (t; x) ∈ Ω,
v(0, s; x) = v01(s; x), vt(0, s; x) = v02(s; x), (s; x) ∈ Ω,
v(t, 0; x) = v10(t; x), vs(t, 0; x) = v20(t; x), (t; x) ∈ Ω,

(7)

where u := u(t, s; x), v := v(t, s; x), u, v : D→ R, and p, q > 1.
Recent investigations on multi–time differential equations shed light on their applications to different

fields of sciences such as mechanics, physics, biomathematics, and cosmology, see for example the works
of Barashenkov [3, 4], Báez, Segal, and Zhou [1], Hillion [10, 11], Newton [18], Rendall [19], Uglum [22],
Matei and Udrişte [16], Craig and Weinstein [6], Tucker [21], and the recent paper of Foster and Müller
[8]; evolution equations with fractional time derivative or fractional space derivative have been discussed
in [5, 13–15]. Let us mention that in [6], the authors pointed out the role played by the nonlinearities
imposed in [8] for the existence of a unique solution of the homogeneous ultra–hyperbolic wave equation.
Concerning blowing–up solutions for one time nonlinear hyperbolic equations with power nonlinearities,
a lot has been said. For a review of the literature on the equation

∂2
t u − ∆u = |u|p, p > 1,

and a final result concerning a conjecture that lasted for twenty years, see the important paper [23].
The paper is organized as follows. Section 2 is devoted to study blowing–up solutions of a scalar

nonlinear hyperbolic equation with two time variables, while the extension of this result to a 2 × 2 system
of such equations is discussed in Section 3. In Section 4 we consider a nonlinear equation and a system of
nonlinear equations involving fractional time derivatives with two time variables.

Throughout the paper we use the following notations: for any p > 1 we denote by p′ the conjugate
exponent of p, that is, p + p′ = pp′. The symbol C denotes a positive constant which may vary from line to
line.

We will use the notation:
P = (t, s; x), dP := dt ds dx, dP0 = dt dx or dP0 = ds dx;
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P̃ = (τ, σ; y), dP̃ := dτdσdy, dP̃0 = dτdy or dP̃0 = dτdy.
Σ : the space of non–negative regular functions ϕ : Ω→ R with compact support in the space variable

x such that{
ϕ(t, s; x) = ϕt(0, s; x) = 0, t ≥ T, (s; x) ∈ Ω,
ϕ(t, s; x) = ϕs(t, 0; x) = 0, s ≥ T, (t; x) ∈ Ω.

(8)

We conclude this introduction with a short remark: In the course of the proofs, we frequently use the fact
that if ϕ is as above and γ > 1, then it is always possible to select ϕ so that∫

D

ϕ1−γ
|Dϕ|γ dP < +∞,

where D = d2/dt2 or D = ∆. A justification of this fact is contained for instance in [17].

2. Results

2.1. Blowing–up for two–time hyperbolic equations

In this section we will show that under certain conditions on the initial data, p, and N, the solution of
(1) does not exist globally in time.

We set

U0,ϕ :=
∫

Ω

u02(s; x)ϕ(0, s; x) dP0 +

∫
Ω

u20(s; x)ϕ(t, 0; x) dP0,

and

U0 :=
∫

Ω

u02(s; x) dP0 +

∫
Ω

u20(s; x) dP0,

Definition 2.1. Let p > 1 be a real number. A function u := u(P) such that u ∈ Lp
loc(D) is a weak solution of (1) if,∫

D

|u(P)|pϕ(P) dP +U0,ϕ =

∫
D

u(P)
{
ϕtt(P) + ϕss(P) − ∆ϕ(P)

}
dP,

for every test function ϕ ∈ C2
0(D).

Let us assume that

u10(·; x), u20(·; x), u01(·; x), u02(·; x) ∈ L1(Ω0). (9)

We have the following theorem.

Theorem 2.2. If p ≤ 1 + 2/N, and 0 <U0, then no global non-trivial weak solution of (1) exists.

Proof. The proof is by contradiction. Let us assume that the solution is global. Let χ : [0,+∞) → R, with,
0 ≤ χ ≤ 1, be a regular function defined by

χ(ξ) =


1, for 0 ≤ ξ ≤ 1,
↘, for 1 ≤ ξ ≤ 2,

0, for ξ ≥ 2.

We define ϕ to be the function

ϕ(P) := χ

(
t2 + s2 + |x|2

R2

)
, P ∈ D. (10)
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Then

ϕt(P) =
2t
R2χ

′

(
t2 + s2 + |x|2

R2

)
,

so ϕt(0, s; x) = 0; we also have ϕs(t, 0; x) = 0.
We are going to distinguish two cases:
Case 1: p < 1 + 2/N. Using ε–Young’s inequality, for t j = t or s, we have

|uϕt jt j | = |uϕ1/pϕt jt jϕ
−1/p
| ≤ ε|u|pϕ + C(ε)|ϕt jt j |

p′ϕ−p′/p, (11)

|u∆ϕ| = |uϕ1/p∆ϕϕ−1/p
| ≤ ε|u|pϕ + C(ε)|∆ϕ|p

′

ϕ−p′/p, (12)

where p + p′ = pp′. Using (11) and (12), we may, for ε small enough, write∫
D

|u|pϕdP +U0,ϕ ≤ C
∫
D

ϕ−p′/p
{
|ϕtt|

p′ + |ϕss|
p′ + |∆ϕ|p

′
}

dP. (13)

Now, scaling the variables
t = Rτ, s = Rσ, x = Ry.

we obtain∫
D

|u|pϕdP +U0,ϕ ≤ CR−2p′+2+N
∫

Ω1

ϕ̃−p′/p
{
|ϕ̃ττ|

p′ + |ϕ̃σσ|
p′ + |∆ϕ̃|p

′
}

dP̃, (14)

where
ϕ̃(τ, σ; y) := χ(τ2 + σ2 + |y|2).

In the case p < 1 + 2/N, that is, −2p′ + 2 + N < 0, if R→ +∞, then from (14) we have

0 <
∫
D

|u|p dP +U0 ≤ 0;

this contradicts our assumption. Therefore problem (1) admits no global nontrivial weak solution.
Case 2: p = 1 + 2/N. In this case, we have

0 <
∫
D

|u|pϕdP ≤ C. (15)

Using Hölder’s inequality, we obtain∫
D

|u|pϕdP +U0,ϕ ≤

(∫
CR

|u|pϕdP
) 1

p

H(ϕ) (16)

where CR =
{
(P) ∈ D : R2

≤ t2 + s2 + |x|2 ≤ 2R2
}
, and

H(ϕ) :=
(∫
CR

|ϕtt|
p′ϕ−p′/p dP

)1/p′

+

(∫
CR

|ϕss|
p′ϕ−p′/p dP

)1/p′

+

(∫
CR

|∆ϕ|p
′

ϕ−p′/p dP
)1/p′

≤ C < +∞.

Observe that (15) implies that

lim
R→+∞

∫
CR

|u|pϕdP = 0.

Passing onto the limit when R→ +∞ in (16), we obtain

0 <
∫
D

|u|p dP +U0 ≤ 0; (17)

a contradiction. Hence non–trivial global weak solutions of problem (1) do not exist.
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2.2. Blowing–up for a system of two–time hyperbolic equations

Let us consider the system of equations (2)–(3).
We set

U0,ϕ :=
∫

Ω
w02(s; x)ϕ(0, s; x) dP0 +

∫
Ω

w10(t; x)ϕ(t, 0; x) dP0,

V0,ϕ :=
∫

Ω
r02(s; x)ϕ(0, s; x) dP0 +

∫
Ω

r10(t; x)ϕ(t, 0; x) dP0.

Definition 2.3. Let p, q > 1 be two real numbers, and let u := u(P), v := v(P), be two functions such that u ∈ Lq
loc(D),

v ∈ Lp
loc(D). We say that (u, v) is a weak solution of (2)–(3) if, for every ϕ ∈ Σ,∫

D

|v(P)|pϕ(P) dP +U0,ϕ =

∫
D

u(P)
{
ϕtt(P) + ϕss(P) − ∆ϕ(P)

}
dP, (18)

and ∫
D

|u(P)|qϕ(P) dP +V0,ϕ =

∫
D

v(P)
{
ϕtt(P) + ϕss(P) − ∆ϕ(P)

}
dP, (19)

for every test function ϕ ∈ C2
0(D).

Now we assume the following conditions

U0,ϕ > 0, and V0,ϕ > 0, for every ϕ ∈ Σ, (20)

and also that all initial data belong to L1(Ω0) in a similar way as in (9).

Theorem 2.4. Let us consider system (2)–(3) under the assumption (20). If

N(pq − 1) ≤ 2(p + 1) or N(pq − 1) ≤ 2(q + 1),

then system (2)–(3) does not admit a global non–trivial weak solution.

Proof. We have from (18) ∫
D

|v|pϕdP +U0,ϕ =

∫
D

u
{
ϕtt + ϕss − ∆ϕ

}
dP.

Let p′, q′ ∈ R+ be the conjugates of p and q, respectively. Using Hölder’s inequality, we have∫
D

∣∣∣uϕt jt j

∣∣∣ dP ≤
(∫
D

|u|qϕdP
)1/q (∫

D

ϕ−q′/q
|ϕt jt j |

q′ dP
)1/q′

,

for j = 1, 2; t1 = t, t2 = s, and∫
D

|u∆ϕ|dP ≤
(∫
D

|u|qϕdP
)1/q (∫

D

ϕ−q′/q
|∆ϕ|q

′

dP
)1/q′

.

We proceed analogously for the second equation of (2).
Let us set

B j(ϑ) :=
(∫
D

ϕ−ϑ
′/ϑ
|ϕt jt j |

ϑ′ dP
)1/ϑ′

,

and

A :=
(∫
D

ϕ−ϑ
′/ϑ
|∆ϕ|ϑ

′

dP
)1/ϑ′

,
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where for j = 1, 2, t1 = t, t2 = s, ϑ = q if j = 1, ϑ = p if j = 2. Using the same change of variables as in
Subsection 2.1, t = Rτ, s = Rσ, and x = Ry, in the integrals of B j(ϑ), j = 1, 2, andA, we obtain

B j(ϑ) = R
N+2−2ϑ′

ϑ′

(∫
Ω

ϕ̃−ϑ
′/ϑ
|ϕ̃τ jτ j |

ϑ′ dP̃
)1/ϑ′

,

and

A = R
N+2−2ϑ′

s′

(∫
Ω

ϕ̃−ϑ
′/ϑ
|∆yϕ̃|

ϑ′ dP̃
)1/ϑ′

.

Whereupon,(∫
ΩR

|v|pϕdP
)1−1/pq

≤

(
B

1(p) +B2(p) +A(p)
)1/q
·

(
B

1(q) +B2(q) +A(q)
)

≤ CR
N+2−2p′

qp′ +
N+2−2q′

q′ .

Similarly, we have(∫
ΩR

|u|qϕdP
)1−1/pq

≤

(
B

1(q) +B2(q) +A(q)
)1/p
·

(
B

1(p) +B2(p) +A(p)
)

≤ CR
N+2−2q′

pq′ +
N+2−2p′

p′ .

If
N + 2 − 2p′

qp′
+

N + 2 − 2q′

q′
< 0, or

N + 2 − 2q′

pq′
+

N + 2 − 2p′

p′
< 0,

then taking the limit as R→ +∞, we obtain the contradiction

0 <
∫

Ω

|v|p dP ≤ 0, or 0 <
∫

Ω

|u|q dP ≤ 0,

respectively; this ends the proof.

In the case,
N + 2 − 2p′

qp′
+

N + 2 − 2q′

q′
= 0, or

N + 2 − 2q′

pq′
+

N + 2 − 2p′

p′
= 0,

we conclude like in the case of a single equation.

2.3. Fractional two–time hyperbolic equations

· Basic definitions and properties on fractional calculus.

For the convenience of the reader, we recall some basic definitions and properties which will be useful
in the sequel.

Definition 2.5. The left– and right–sided Riemann–Liouville integrals of order α are defined as

(
Iα0|t f

)
(t) =

1
Γ(α)

∫ t

0
(t − s)α−1 f (s) ds, t > 0, (21)

(
Iαt|T f

)
(t) =

1
Γ(α)

∫ T

t
(s − t)α−1 f (s) ds, t < s, (22)

where Γ is the Euler gamma function.
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Definition 2.6. The left– and right–handed Riemann–Liouville fractional derivatives of order n − 1 < γ < n for a
function f ∈ ACn[0,T] :=

{
f : [0,T]→ R,Dn−1 f ∈ AC[0,T]

}
, n ∈N are defined by (see [20])

(Dγ
0|t f )(t) := Dn(In−γ

0|t f )(t), t > 0; (23)

(Dγ
t|T f )(t) := (−1)nDn

(
In−γ
t|T f

)
(t), (24)

where D = d
dt

. The analogous formulas for the left– and right–handed Caputo fractional derivative of order
n − 1 < γ < n, for a function f ∈ Cn[0,T] are:(

cDγ
0|t f

)
(t) := (−1)n(In−γ

t|T Dn f )(t), t > 0. (25)(
cDγ

t|T f
)

(t) := (−1)n(In−γ
0|t Dn f )(t). (26)

Furthermore, for every f , 1 ∈ C([0,T]), such that Dα
0|t f (t), Dα

t|T1(t) exist and are continuous, for all t ∈ [0,T],
0 < α < 1, we have the formula of integration by parts due to Love and Young [20]∫ T

0

(
Dα

0|t f
)

(t)1(t) dt =

∫ T

0
f (t)

(
Dα

t|T1
)

(t) dt. (27)

Note also that, for all f ∈ AC2[0,T], we have (see (2.30) and (2.31) in [20])

D1+α
0|t f = DDα

0|t f , −D.Dα
t|T f = D1+α

t|T f , (28)

where D is the usual time derivative.
We also have the formulas (see [20])

Dα
t|T f (t) =

1
Γ(1 − α)

[
f (T)

(T − t)α
−

∫ T

t
(T − t)−α f ′(t) dt

]
and cDα

0|t f (t) = Dα
0|t( f (t) − f (0) − t f ′(0)) (29)

linking the Riemann–Liouville derivative to the Caputo derivative.
Later on, we will use the following results, see [12].

If Φ1(t) =
(
1 − t2

T2

)l
, t ≥ 0, T > 0, l >> 1, then

Dγ
t|TΦ1(t) = −

T−2l

Γ(1 − γ)
Σl

k=02l−kCl
kMlktl−k−1(T − t)l+k−γ[(l − k)T − (2l + 1 − γ)t], (30)

where Mlk = Γ(l + 1)Σk
n=0Ck

n
Γ(n + 1 − β)

Γ(l + n + 2 − β)
and Ck

n =
l(l − 1)(l − 2) · · · (l − k + 1)

k!
.

Dα+1
t|T Φ1(t) =

T−2l

Γ(1 − α)
Σl

k=02l−kCl
kMlktl−k−2(T − t)l+k−α−1

× [(l − k)(l − k − 1)T2
− 2tT(l − k)(2l − α) + (2l − α)(2l − α + 1)t2], (31)∫ T

0
tDα+1

t|T

(
1 −

t2

T2

)l

dt =
T1−α

Γ(1 − α)
Σl

k=0LαkCl
k, (32)∫ T

0
Dβ

t|T

(
1 −

t2

T2

)l

dt =
T1−β

Γ(1 − β)
Σl

k=0LβkCl
k, (33)

and ∫ T

0
Dβ

t|T

(
1 −

t2

T2

)l

dt ≥ 0, (34)

where Lγk =
Γ(l + 1)Γ(k + 1 − γ)

Γ(l − γ + k + 2)
.
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2.4. Blowing–up solutions for a two–time fractional hyperbolic equation

In this section we consider problem (4).
We begin with the definition of a weak solution for (4).
We set the space Σ f of functions Φ : D→ (0,+∞), such that Φ compactly supported in the space variable

x and Φ(t, s; x) = 0, Dα1
t|Tϕ(t, s; x) = 0, t ≥ T, ϕ(t, s; x) = Dα2

s|Tϕ(t, s; x) = 0, s ≥ T.

Definition 2.7. Let p > 1 be a real number, and 0 < α1, α2 < 1. A function u := u(P) such that u ∈ Lp
loc(D)), is said

to be a weak solution of (4)–(5) if∫
D

u(P)∆ϕ(P) dP +

∫
D

(u − u01(s; x) − tu02(s; x))D1+α1
t|T ϕ(s; x) dP0

+

∫
D

(u − u10(t; x) − su20(t; x))D1+α2
s|T ϕ(s; x) dP0 =

∫
D

|u(P)|pϕ(P) dP, (35)

for every ϕ ∈ Σ f .

Theorem 2.8. If p ≤ 1 + α/(N + 2 − α), where α = min{α1, α2}, and∫
Ω

(u01(s; x) + u02(s; x))Φ0(x)Φ1(s) dP0 > 0, (36)

and ∫
Ω

(u10(t; x) + u20(t; x))Φ0(x)Φ1(t) dP0 > 0, (37)

are satisfied for every Φ0,Φ1 ∈ Σ f , then there is no nontrivial global weak solution of problem (4)–(5).

Let us highlight that in the case α1 = α2 = 2, the result in Theorem 3 is coherent with that of Theorem 1.

Proof. Suppose, on the contrary, that some solution exists for all time t > 0. Let us suppose that ϕ is such
that ∫

D

ϕ−p′/p
{
|D1+α1

t|T ϕ|p
′

+ |D1+α2
s|T ϕ|p

′

+ |∆ϕ|p
′
}

dP < ∞,

where p + p′ = pp′.
Now, taking

ϕ(t, s; x) = Φ0(x)Φ1(t)Φ1(s),

and using the ε–Young inequality, we obtain the estimates∫
D

|u|pϕdP + CT1−α1

∫
Ω

(u01(s; x) + u02(s; x)) Φ0(x)Φ1(s) dP0 + CT1−α2

∫
Ω

(u10(t; x) + u20(t; x))Φ0(x)Φ1(t) dP0

≤ C
∫
D

ϕ−p′/p
{
|D1+α1

t|T ϕ|p
′

+ |D1+α2
s|T ϕ|p

′

+ |∆ϕ|p
′
}

dP, (38)

where p + p′ = pp′, and C is a positive constant. Taking Φ0(x) = χ
(
|x|/Tα/2

)
, changing the variables t = Tτ,

s = Tσ, x = Tα/2y, and taking account of the constraints (36) and (37), we obtain the estimate∫
D

|u|pϕdP ≤ CT−αp′+N+2. (39)

The remainder of proof is similar as in the previous situation and hence it is omitted.
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2.5. 2 × 2–Fractional Differential two–times Systems
In this section we only formulate the main result as its proof is similar to the previous ones.
Now we consider the system of equations (6)–(7).

Definition 2.9. Let p, q > 1 be two real numbers, and u ∈ Lq
loc(D), v ∈ Lp

loc(D). We say that (u, v) is a weak solution
of (6)–(7) if, for every ϕ ∈ Σ f ,∫

D

|v(P)|pϕ(P) dP +U0,φ =

∫
D

u(P)
{
D1+α1

t|T ϕ(P) + D1+α2
s|T ϕ(P) − ∆ϕ(P)

}
dP,

and ∫
D

|u(P)|qϕ(P) dP +V0,ϕ =

∫
D

v(P)
{
D1+β1

t|T ϕ(P) + D1+β2

s|T ϕ(P) − ∆ϕ(P)
}

dP,

where
U0,ϕ :=

∫
Ω

u02(s; x)Φ0(x)Φ1(s) dP0 +

∫
Ω

u10(t; x)Φ0(x)Φ1(t) dP0,

V0,ϕ :=
∫

Ω

v02(s; x)Φ0(x)Φ1(s) dP0 +

∫
Ω

v10(t; x)Φ0(x)Φ1(t) dP0.

We assume that

U0,ϕ > 0, and V0,ϕ > 0, for every ϕ ∈ Σ f , (40)

and also that all initial data belong to L1(Ω).

Theorem 2.10. Consider system (6)–(7) subject to the conditions (40). If

N + 2 − αp′

qp′
+

N + 2 − αq′

q′
≤ 0 or

N + 2 − βq′

pq′
+

N + 2 − βp′

p′
≤ 0,

where p + p′ = pp′ and q + q′ = qq′, and α = min{α1, α2}, β = min{β1, β2}, then there is no nontrivial global weak
solution of (6)–(7).

Proof. We have ∫
D

|v(P)|pϕ(P) dP +U0,φ =

∫
D

u(P)
{
D1+α1

t|T ϕ(P) + D1+α2
s|T ϕ(P) − ∆ϕ(P)

}
dP,

and ∫
D

|u(P)|qϕ(P) dP +V0,ϕ =

∫
D

v(P)
{
D1+β1

t|T ϕ(P) + D1+β2

s|T ϕ(P) − ∆ϕ(P)
}

dP.

Using Hölder’s inequality, there exists C > 0 such that

∫
D
|v(P)|pϕ(P) dP +U0,φ ≤ C

(∫
D

u(P)qϕ(P) dP
)1/q (∫

D

ϕ(P)−q′/q
{
|D1+α1

t|T ϕ(P)|q
′

+ |D1+α2
s|T ϕ(P)|q

′

− |∆ϕ(P)|q
′
}

dP
)1/q′

,

and∫
D
|u(P)|pϕ(P) dP +V0,φ ≤ C

(∫
D

v(P)qϕ(P) dP
)1/q (∫

D

ϕ(P)−q′/q
{
|D1+α1

t|T ϕ(P)|q
′

+ |D1+α2
s|T ϕ(P)|q

′

− |∆ϕ(P)|q
′
}

dP
)1/q′

.

Let us denote

A(α1, α2, q) =

∫
D

ϕ(P)−q′/q
{
|D1+α1

t|T ϕ(P)|q
′

+ |D1+α2
s|T ϕ(P)|q

′

− |∆ϕ(P)|q
′
}

dP,
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and

B(β1, β2, p) =

∫
D

ϕ(P)−q′/q
{
|D1+α1

t|T ϕ(P)|q
′

+ |D1+α2
s|T ϕ(P)|q

′

− |∆ϕ(P)|q
′
}

dP.

If we set

I =

∫
D

v(P)qϕ(P) dP and J =

∫
D

u(P)qϕ(P) dP,

then we may write
Jq
≤ C IAq/q′ (α1, α2, q),

and
Ip
≤ C JBp/p′ (β1, β2, p),

asU0,φ ≥ 0, andV0,φ ≥ 0 by hypotheses.
Whereupon

Jpq−1
≤ CApq/q′ (α1, α2, q)Bp/p′ (β1, β2, p),

and
Ipq−1

≤ CAq/q′ (α1, α2, q)Bpq/p′ (β1, β2, p).

Without loss of generality, we may assume

β1 < β2, and α1 < α2 < β2.

Choosing Φ0 = χ(|x|2/T2σ) where 2σ = α2, Φ1(t) and Φ2(t) as before, we obtain the estimates

Jpq−1
≤ C T−2σ(pq+1)+(N+2)(pq−1),

and analogously Ipq−1. Here also, we require −2σ(pq + 1) + (N + 2)(pq − 1) ≤ 0, which is equivalent to

N + 2 ≤
α2(pq + 1)

pq − 1
,

to obtain a contradiction when we let T→ +∞.
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