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A Genuine Family of Bernstein-Durrmeyer Type Operators
Based on Polya Basis Functions

Trapti Neer?, P. N. Agrawal®

*Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee-247667, India

Abstract. In this paper, we construct a genuine family of Bernstein-Durrmeyer type operators based on
Polya basis functions. We establish some moment estimates and the direct results which include global
approximation theorem in terms of classical modulus of continuity, local approximation theorem in terms
of the second order Ditizian-Totik modulus of smoothness, Voronovskaya-type asymptotic theorem and a

quantitative estimate of the same type. Lastly, we study the approximation of functions having a derivative
of bounded variation.

1. Introduction

The approximation of functions by positive linear operators is an important research area in the classical
approximation theory. It provides us key tools for exploring the computer-aided geometric design, numer-
ical analysis and the solutions of ordinary and partial differential equations that arise in the mathematical
modeling of real world phenomena. After the well known theorem of Weierstrass and the important the-
orem of Korovkin, many new sequences and classes of operators were constructed and studied for their
approximation behavior by researchers. Some of the recently introduced sequences and classes of opera-
tors which have been extensively studied by researchers, are Srivastava-Gupta operators [36], Bernstein-
Durrmeyer type operators ([12],[13] [17] etc.), Bernstein-Kantorovich type operators ([14], [32], [24] [30]
etc.), Hybrid type operators ([3],[18], [22] etc.) Gamma type operators ([23], [26], [27] etc.), Chlodowsky
and Stancu variant of operators ([4],[28],[33],[39] etc.), linear positive operators constructed by means of
the Chan-Chayan-Srivastava multivariable polynomials [10] etc. Many researchers have studied the ap-
proximation properties of Srivastava-Gupta operators and its various generalizations over the past decade
([2], [7], [25], [40] [41] etc.). Erkus et al.[10] showed that the approximation method constructed by them by
means of the Chan-Chayan-Srivastava polynomials is stronger than the corresponding classical aspects in
approximation theory.

The study of the rate of convergence for functions of bounded variation by linear positive operators is
another interesting area of research. Cheng [6] investigated the rate of convergence of Berntein polyno-
mials for functions of bounded variation. Using probablistic approach, Srivastava and Gupta [37] studied
the rate of convergence for the Bezier variant of the Bleimann-Butzer-Hahn operators for the functions of
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bounded variation. Bojanic and Cheng [5] studied the rate of convergence of Bernstein polynomials for
functions with derivative of bounded variation. Srivastava et al. [35] discussed local and global results for
a certain family of summation-integral type operators and estimate the rate of convergence for functions
having derivative of bounded variation. Researchers studied these problems for several other sequences
of linear positive operators we refer the readers to Book [16].

In 1968, Stancu [38] introduced a sequence of positive linear operators Pff‘) : C[0,1] — CJ0,1],

depending on a non negative parameter « as

P =Y A(Epien, (1)
k=0

where pl', (x) is the Polya distribution with density function given by

@(x) = (n) (it oIl 22 Y el

kT \k 1725 + Aa)

In case a = 0, the operators (1) reduce to the classical Bernstein polynomials. For these operators , Lupas
and Lupas [29] considered a special case for & = 1 which reduces to

_2(n) v
(@) &

P (fi) Gyéwmm”””' ?

where the rising factorial (x), is given by (x),, = x(x + 1)(x + 2).....(x + n — 1) with (x)o = 1.

Gupta and Rassias [19] introduced the Durrmeyer-type integral modification for the operators (2) and
obtained local and global direct estimates and a Voronvskaya-type asymptotic formula. Later the same
authors [20] considered a Durrmeyer type modification of the Jain operators and studied the asymptotic
formula, error estimation in terms of the modulus of continuity and weighted approximation. Gupta
et. al. [21] proposed certain Lupas-beta operators which preserve constant as well as linear functions
and established some direct results and the approximation of functions having a derivative of bounded
variation. Gonska and Péltdnea [12] established a very interesting link between the Bernstein polynomials
and their Bernstein Durrmeyer variants with several particular cases which preserve linear functions and
gave recursion formula for moments and estimates for simultaneous approximation of derivatives. After
that the same authors [13] established quantitative Voronovskaya-type assertions in terms of the first-order
and second-order moduli of smoothness. Very recently, Gupta [15] defined a genuine Durrmeyer type
modification of the operators given by (2) and obtained a Voronovskaya-type asymptotic theorem and
a local approximation theorem. Motivated by these studies, for f € L[0, 1], the space of bounded and
Lebesgue integrable functions on [0, 1] and a parameter p > 0, we now propose a genuine Durrmeyer type
modification of the operators given by (2), which preserve linear functions, as

1 1
ui(fix) = Y F plnl ),

k=0
where
1
. I; feuh dt, 1<k<n-1
Fox = f(0), k=0
f@), k=mn,
and
tho=1(1 — p)(n=k)p-1
yz,k(t) = ( )

B(kp, (n —k)p)
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B(m, n) being the beta-function defined as

[m[n

B(m, 7’1) W

, m,n>0.

For p = 1, the operators U/ reduce to the operators defined by Gupta [15] and when p — oo, these operators
reduce to the operators considered by Lupas and Lupas [29], in view of the fact that FZ i (%), as shown

by Gonska and Paltanea [3,Thm 2.3, p.786].

The purpose of this paper is to establish a Voronovskaya type asymptotic theorem, global approximation
theorems in terms of the classical second order modulus of continuity and local-approximation theorem in
terms of the second order Ditzian-Totik modulus of smoothness, Voronovskaya-type asymptotic theoreom
and also quantitative estimate. In the last section of the paper, the approximation of functions having a
derivative of bounded variation is also discussed.

2. Auxiliary Results
Lemma 2.1. [31] For the operators defined by (2) , one has

D PP (L) =
@) P (Lx) =1,
1
(i) Py (%) = x,
1
(i) P(#x) = 22 + 2020

n+l 7/

. 338 _ 3 61x2(1-x) 6x(1-x)
(iv) P (%) = %" + topyomsy + oy

D) a. N a4, 12024Dx%(1-x) |, 12Bn—D)a%(1-x) 2(13n-1)x(1-x)
(V) Pn (t ,x) =X+ (n+1)(n+2)(n+3) + (n+1)(n+2)(n+3) + n(n+1)(n+2)(n+3) *

Consequently, by simple computations we have the following:
Lemma 2.2. For US(t";x), m = 0,1,2,3,4, we obtain,
D) Up(Lx) =1,

(i) Uh(x) =x

21—

() UL (0 = (2 + 259 ) + 25,
; Pri3. 0y — 1 223, 6nx*(1-) 6x(1-x) Zx(l X)

(iv) Up(t; %) = Goryomra {” p (x T e T (n+1)(n+2)) + 3np(x + )"' 2"}

(V) U(thx) =

12(n2+1)x°(1-x)
(np+1)(np+2)(np+3) n’p? T D0+ 49)

2 2(.3 6nx2(1-x) 6x(1-x) 2x(1 x)
+ 6n°p (x + ey + (n+1)(n+2)) + 11np(x + )+ 6x}

12(3n—1)x2(1-x)

T Do+ (+9)

+

2(13n—1)x(1-x)
n(n+1)(n+2)(n+3)

In our next Lemma, we find the central moment estimates required for the main results of the paper.

Lemma 2.3. For UL((t —x)";x), m € N J{0}, we have,

(D) Up((t=x);x) =0,

.. 2np+n+1)x(1-x)
(i) Un((t—x%x) = S,

p 3, 6nx2(1—x) 6x(1-x) (1 x) 3x2(1-x)(2np+n+1) 3
(iii) U, ((t—x)*x) = W{” Y ( D) T (n+1)(n+2)) + Snp(x T )+ 2x } T ermprn X
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. p 4.0 _ 1 12(n +D)x*(1-x) | 12(3n-1)x%(1-x) 2(13n—1)x(1-x)
(iv) U,((t=x)%x) = (ip+D)(p+2)(1p+3) { np ( D+ 2)(43) T (D) m+2)(n+3) n(n+1)(n+2)(n+3))

2 2.3 6nx?(1-x) 6x(1—x) 2x(1 x) 6(2np+n+1)x3(1-x)
+6n°p (x T e T (n+1)(n+2)) + 11np(x + )+ 6x} D np+0)

4 4 2 2[.3 6nx2(1-x) 6x(1-x) 2x(1 x)
+3x* — (np+1)z(np+2){n p (x T e T (n+1)(n+2)) + 3np(x + )“‘ Zx}
Consequently, for every x € [0, 1],
uh((t - x)% x)

np+1¢(

where ¢?(x) = x(1 — x) and
. 0 4 3 12x2 3x2 9 ) .
lim U, ((t — x)*;x) = 12x°(1 + x) — 2x(7x + 5) + T(l x+x%) + ?(1 —x)°, uniformly in x € [0, 1].

Remark 2.4. From Lemma 2.3, we have

Prre 2. 2p+1) , 1(2P 1)
Un((t=x)%x) < (np+1)‘7b S impr1y relodl
= 8, (say).

In what follows, ||.|| will denote the uniform norm on [0, 1].

Lemma 2.5. For every f € C[0, 1], we have
L (f N < NI

Proof. Using Lemma 2.1, the proof of this Lemma easily follows. Hence the details are omitted. [J

In order to discuss the approximation of functions with derivatives of bounded variation, we express the
operators U}, in an integral form as follows:

1
UL (fix) = f KOG, Df (B)t, )
0

where,
n—1

Koo, )=y pUon’ (1) + p(”)é(t) +pls(1 - 1),
k=1
0(u) being the Dirac-delta function.

Lemma 2.6. For a fixed x € (0, 1) and sufficiently large n, we have

2p+1
() &, y) = fo prt)dt<(n§:1)(f 7 0y <y,

(i) 1-&P(x,2) = f Kf(x, tydt < @p+1) ¢)

peD) = xz,x<z<1.

Proof. (i) Using Lemma 2.3, we get

( P Yx=t\
fKn(x,t)dtsfo (x_y)Kn(x,t)dt

0

Ui ((t = %)% 0)(x = y)

(2p+1) ¢*(x)

(np+1) (x—y?*

The proof of (ii) is similar hence the details are omitted. [

&hxy)

IA

IN
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Now we present a theorem which will be needed to obtain a quantitative Voronovskaya theorem using
the least concave majorant of the first order modulus of continuity

Theorem 2.7. [11] Let g € IN {0} and f € C7[0,1] and let L : C[0, 1] — CIO, 1] be a positive linear operator. Then
(%)
0 - Y -0 50)

q
|
r=0 q:

Ller = X% —( oy 1 L(lt—x7%;)
= s U GED L —xn )

where w is the least concave majorant of the first-order modulus of continuity.

3. Main Results

First we will establish a global approximation theorem for the operators U’ (f;x) , using the classical
modulus of continuity.
Let

W2 = {g €Cl[0,1]: 9" € C[O,l]}/

endowed with the norm
IfThwz = 1AL+ ILF I+ 17

For any 0 > 0, the appropriate Peetre’s K-functional [34] is defined by

Ka(fi0) = inf {Ilf - gll + dllg"Il. @
geW?
From [8], there exists an absolute constant C > 0, such that
Ky (f;6) < Canl(f; Vo), (5)

where w(f; \/5) is the second order modulus of continuity of f € C[0, 1], defined as

w(f; Vo) = sup sup [f(x +2h) = 2f(x + h) + f(x)|.

O<lhl< V5 Xx+hx+2he[0,1]

The usual modulus of continuity of f € C[0, 1] is given by

o(f; Vo)= sup  sup |f(x+h)— f()l

0<[hl< V5 x,x+he[0,1]

Theorem 3.1. Let f € C[0,1] and x € [0, 1]. Then there exists a constant C > 0, such that

WU (f;.) = FONl < Cawn(f; bnp),
where O, is as defined in Remark 2.4 and C > 0, is an absolute constant.

Proof. Let g € W? and t € [0, 1]. Then by Taylor’s expansion, we have

t
90 =90 = (¢ =09/ + [ (¢ gt
Now applying Uf(.; x) to both sides of the above equation, we get

£
Uﬁ(g,‘ x)—g(x) = g’(x)UZ(t —-x;x) + Uﬁ(f (t — wyg” (u)du; x).
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Using Remark 2.4, we get
U5(g;%) = 9@ < Uﬁ( fxt I(t = w)llg” (u)ldu ;X)
< o
< Wl ©

Now, for f € C[0,1] and g € W2, using Lemma 2.5 and (6), we obtain

UL(F) = FOOL < IURGF = g30) + U (g3 ) = 9] + L) = g0l
< Af-gi+ Ll

Taking infimum on the right side of the above inequality over all g € W?, we get
UL(f;0) = f)l < 2Ky(f;8,), Yxe[0,1].

Consequently,
G2~ FOI < 2Ka(f502,), Yx € [0,1],

Using the relation (5) between K-functional and the second order modulus of continuity, we get the required
result. This completes the proof. [

Next we shall prove a local approximation theorem by using the Ditzian-Totik modulus of smoothness. Let
us define the space

W2(¢) = {g € Cl0,1]: ¢’ € ACI0, 1] and " € C[0, 1]},

where g’ € AC[0, 1] means that g’ is absolutely continuous in [0, 1]. The weighted K-functional of the second
order for f € C[0,1], is defined as

Kao(f, &) = inf{llf — gl +*p*g" Il : g € W), 6 > 0}-
The Ditizian-Totik modulus of smoothness of the first order is given by

We(f;0)=sup  sup |f(x+ho(x)) - f().

0<Ih|<8 x-+h(x)e[0,1]

The Ditizian-Totik modulus of smoothness of the second order is given by

w{(f;0) = sup sup [f(x + hp(x) = 2f(x) + f(x = hp(x))],

0<Ih|<6 x=he(x),x+hp(x)€[0,1]
where ¢ is an admissible step-weight function on [0, 1].

We know that weighted K-functional and Ditzian-Totik modulus of smoothness of the second order are
equivalent [9] i.e. there exists a constant C > 0, such that

CTa3 s Vo) < Kaglf9) < Col( VO)

Now we will prove a local approximation theorem for the operators Uul(f; x).
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Theorem 3.2. Let f € C[0,1]. Then for every x € [0, 1], we have

2p+1
U0 - f01 < Ca(£: 05 )

where C > 0, is an absolute constant and Pp(x) = /x(1 — x).

Proof. Let g € W?(¢) and ¢ € [0, 1]. Then by Taylor’s expansion, we have

t
90~ 90 = (= 09/ + [ (¢~ g
Now applying U (f; x) to both sides of the above equation, we get

¢
Uﬁ(g; x)—gx) = g’(x)Uﬁ(t —-x;x) + Uﬁ(f (t—uw)g” (u)du; x)

u{;( f - u)g"(u)du;x)

( f 1t = ullg” (o) ) )

Since ¢*(x) is concave function on [0,1], so for u = Ax + (1 = A)t, A,t,x € (0,1), we get,

U (g %) = g0

IN

P
un

-l _lt=Ax=(A=-MH _ Alt = x| _lt=x
) P*(Ax+ (1= T AP0 + (1= NPt T ¢*(x)

Combining this inequality and equation (7) , we obtain

g

-
o P2
Ilgb2 VI (= %)% %)

A

U (;%) - g()] < uf’(

I|¢2 ’” Idu

IA

<P2( )

IA

2 1 . .
’ f R k2.4.
np 1 IILP |, in view of Remar

Now,

Uy (f;x) = f(0

IA

U5 (f ~ g;x)|+|u"(g;x) gl +1g9(x) = ()l
2llf - g||+ ||<¢>2 ”|| using Lemma 2.5

IA

IN

2p+1)

2Ka . o+ 1

2p+1)

O r.
< Col(fiy5o71)

This completes the proof. [J

Now we will establish a Voronovskaya-type asymptotic formula for the operators U/ (f; x).

Theorem 3.3. Let f € Lg[0,1]. If f” exists at a point x € [0, 1], then

. 0 2p + 1 2 1
Jim U (£5) = F9] = =7 =07 (). (8)

The convergence in (8) holds uniformly if f € C[0,1].
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Proof. By Taylor’s expansion for the function f, we may write

(t—

fO) = f() = (t=x)f"(x) + f " (@) +n(t,0(t = x)%,

where 7(t,x) = 0 as t — x and is a bounded function, V¢ € [0, 1]. Now, applying U/, on the above Taylor’s
expansion and using Lemma 2.3, we get

gt 07 + U 2 ) + g e -]

f(x) 2np+n+1)
2 (n+1)(np+1)

Un(f;2) = f(0)

x(1—x)+ UZ(n(t, x)(t— x)z;x).

Hence,
fim U0 = £0) = I+ fim (0, 0 - 3],

Let F = lim, e nU}, (r](t, x)(t - x)z;x). We shall show that F = 0. Since e(t,x) — 0 as f — x, so for a given

€ > 0, there exists a 6 > 0, such that |n(t, x)| < € whenever |t — x| < 6. For |t — x| > 0, the boundedness of

n(t, x) on [0, 1] implies that |n(t, x)| < MR =, for some M > 0. Let xs(f) be the characteristic function of the

interval (x — 0, x + 6). Then, from Lemma 2.3, for every x € [0,1], we have

e, = xP5x)| < UB(ince e - 0005 x) + U{ne, 01 - 270 - o))
< et - i)+ up(ie - v

) 2ol

Thus, for every x € [0, 1], we get
M (1
_ wm+§qﬂ.

Taking limit as # — oo, due to the arbitrariness of € > 0, we get F = 0. This completes the proof of the first
assertion of the theorem.

To prove the uniformity assertion, it is sufficient to remark that 6(¢) in the above proof can be chosen to be
independent of x € [0,1] and all the other estimates hold uniformly on [0, 1]. This completes the proof. [

U 23t — 2%

In the next result we establish a quantitative-Voronovskaya type estimate for the operators U},.

Theorem 3.4. For f € C?[0,1] and x € [0, 1], we have

£

Uh(fix) - f(x) - —=— 12p+1) , M )

_2'(np+1)¢() (f 3+n

where, M > 0 and for any f € C[0,1], w(f;.) is the least concave majorant of first order of the function w(f;.),
defined as (see[11], Thm 2.1)

(e—x)w(f;y)+(y—x)w(f; x)
a(f;e) = SUPp<x<esy<1 y—x =€=
a)(f/ 1)/ e>1.
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Proof. Using the Cauchy-Schwarz inequality, we note that

Up((t=x%x) Ut = 2)% ) ©)
Un((t=x)%2) — N UN((E=0%%)

For q = 2, using Theorem 2.7 and equation (9), we get

7 4 2. Pt _ ~3-
Uﬁ(f;x)—f(x)—fz—(!x)llﬁ((t—x)z;x)’ < TG g ;%&'ﬁ_i;g)
< uy ((t—x)2 x) ( (ol x))
B "3\ US((F-x)2% %)
1 (2p+1) M
< 2'(np+1)¢ () (f 3\/5)

This completes the proof. O

Let DBVI0, 1] denote the class of all absolutely continuous functions f defined on [0, 1], having a derivative
f ’ equivalent with a function of bounded variation on [0,1]. We observe that the functions f € DBV[0, 1]
possess a representation

() = fo g(0)dt + F(0)

where g € BV[0,1], i.e., g is a function of bounded variation on [0, 1].

Theorem 3.5. Let f € DBV/([0, 1]). Then, for every x € (0,1) and sufficiently large n, we have

20+1 () = F=)| 20+ 1 ] x
B L e A MAVI SRRV 7%

k=1 x—x/k x —x/ Vn
[ Vi) x+(1-x)/k x+(1-x)/ Vi

2p+1 () —x) ,
T+ D A-2) Z V (Ho+1 N7 Vo (),

X

where \/° f(x) denotes the total variation of f(x) on [a,b] and f is defined by

f)-f(x-), 0<t<x
fult) = 0, b=x (10)
f)-f(x+) x<t<l.

Proof. Since Ul (1;x) = 1, using (3), for every x € (0,1) we get

1
fo KA e, D(F(E) — FO)dt

1 t
f KO(x, 1) f f (w)dudt. (11)
0 x

For any f € DBV[0, 1], from (10) we may write

U, (f5x) = f(x)

fiw) = f)x(u)+ (f () + f1(x=)) + (f (x+) = f'(x=))sgn(u — x)
+ox(u)[f"(u) = E(f'(H) +f ()], (12)
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where
so={ o 02%
Obviously,
1 t 1
[ ([ =507+ ek, nar =o. (13)

Using Lemma 2.3, we get

j: (j:‘ %(f/(X+) +f'(x—))du)[<5(x, Hdt

1
370+ 7 [ = Ki

1 4 4
= S+ f U - 05)
= 0. (14)
And applying Cauchy-Schwarz inequality, we have

IA

1 1 : L : 1
[ K0 [ 3000~ Fcsonta =it < 3170 = e [ 1=K

= 16 - ) | U - 30

IA

1 1/2
VCOR O UHGECE) R

Using Lemma 2.3 and equations (11 -15) , we obtain

UP(F- - 1., , 2p+1
I (f;x) = fOOl < SIf (b)) = f(e)] m(ﬁ)(?f)

+‘ fo ) fx t((f’)x(u)du)Kﬁ(x,t)dH fx 1 fx t ((f’)x(u)du)K;’(x,t)dt‘. (16)
Now, let

X t
AL(f ) = fo f () )t KE x, B,

and
1 t
BI(F,x) = f f () 0)du)KE Cx, ).

Thus our problem is reduced to calculate the estimates of the terms A/ (f, x) and Bf(f’, x). Since fa ! di&h(x, ) <
1 for all [4,b] C [0, 1], using integration by parts and applying Lemma 2.6 with y = x — x/ v/, we have

| fo ' f t (07wt e,

’ fo &, t)(f')x(t)dt‘

AL, )

IN

Y x
f (B 1€ e, Dt + f B 1€, Bt
0 y

2p+1 v X , ~ x X )
L6 [ V@t I Vi




IN

np+1

2p+1
np+1
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o [ v«f)x(x e \/ @

x=x/\n

2o [ ‘fv«ﬂxx—t e \V @

rx/\f

Substituting u = x/(x — t), we get

np+1

Thus,

JAL(f, 0| <

2p+1 Al o
T [ etV = e 1f \/ ()

x—x/u
zp +1 . [Vl k+1 x ,
LA Zf V@
= np + 1 ;x\x//k
2 1 [\/;7] X ,
Lt Y\ (0 + V (F ) a7)
k=1 x—x/k x —x/\n

Again, using integration by parts in BY( f',x) and applying Lemma 2.6 with z = x + (1 — x)/ /n, we have

By(f )|

IA

1 f
" f f () )i (1 - E0x,

fxl jj((f/)"(”)d”)Kﬁ(X,t)dt‘

fx Z f t((f,)x(u)du)dt(l - &, ) + f 1 f t(( Fx(wyduyds(1 - E5(x, t))‘
[Lt((f')x(u)du)(l - &, t))]i - f:(f’)x(t)(l — & (x, 1))t

74 Z t 1
f () )du)(1 — £z, 2) — f (P01 - e,y + f (w1 - £, )|

1
- f (f ) —éﬁ(x,t))dt’

V4 1
(P — 0, D)t + f (P - £, t»dt]

20 +1 W ) T
np+1¢2(x)f \/(f)x(t—x) 2dt+f \/(f )edt
x+(1-x)/ Vi

2p+1 (1-x) ,
M(Pz(x)fxm ey \,/(f -0t = Vi \x/ (e
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By substituting u = (1 — x)/(tf — x), we get

/ 2P+1 Vi Xx+(1=x)/u , ) 1 -2 x+(1-x)/ Vn ,
B < e [TV et 2\,
2p+1 ¢2(X) [Vil k1 x+(1-2)/k , (1-2x) x+(1-x)/ Vn ,
) fk V (f)xdu+V Voo
~ 2P+ 1 ¢2( ) Vil x+(1-x)/k ) x+(1-x)/ Vn /
T x)Z Vo« )+ 5 Vo (18)

Collecting the estimates (16- 18), we get the required result. This completes the proof. [J
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