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Abstract. In this paper we show many spectral properties that are inherited by m-complex symmetric and
m-skew complex symmetric operators and give new results or recapture some known ones for complex
symmetric operators.

1. Introduction

Let L(H) be the algebra of all bounded linear operators on a separable complex Hilbert space H . A
conjugation on H is an antilinear operator C : H → H which satisfies 〈Cx,Cy〉 = 〈y, x〉 for all x, y ∈ H
and C2 = I. An operator T ∈ L(H) is said to be complex symmetric if there exists a conjugation C on H
such that T = CT∗C and skew complex symmetric if there exists a conjugation C on H such that CTC = −T∗.
Many standard operators such as normal operators, algebraic operators of order 2, Hankel matrices, finite
Toeplitz matrices, all truncated Toeplitz operators, and Volterra integration operators are included in the
class of complex symmetric operators. Several authors have studied the structure of complex symmetric
operators (see [12]-[14], [18], and [19] for more details). On the other hand, less attention has been paid
to skew complex symmetric operators. There are several motivations for such operators. In particular,
skew symmetric matrices have many applications in pure mathematics, applied mathematics, and even
in engineering disciplines. Real skew symmetric matrices are very important in applications, including
function theory, the solution of linear quadratic optimal control problems, robust control problems, model
reduction, crack following in anisotropic materials, and others. In view of these applications, it is natural
to study skew symmetric operators on the Hilbert spaceH (see [22], [26], and [27] for more details). Here
we consider larger classes including those operators; namely m-complex and m-skew complex symmetric
operators and we show many spectral properties that follow from the so called Jacobson’s lemma. This is
in particular, applicable to the studied classes.
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2. Preliminaries

Let H be a Hilbert space and D(λ, r) be the open disc centered at λ ∈ C and with radius r > 0. For an
open set U in C, we denote by O(U,H) and E(U,H) the Fréchet space of allH-valued analytic functions on
U and the Fréchet space of allH-valued C∞-functions on U, respectively.

An operator T ∈ L(H) is said to have the single-valued extension property (SVEP for short) at λ ∈ C if
there exists r > 0 such that for every open subset U ⊂ D(λ, r), the only analytic solution of the equation
(T − z) f (z) = 0 is the null function. We use σsvep(T) to denote the set of all points where T fails to have the
SVEP, and we say that T has the SVEP if T has the SVEP at each λ ∈ C which means that σsvep(T) is the
empty set (see [11]).

An operator T ∈ L(H) is said to satisfy Bishop’s property (β) at λ ∈ C (resp. (β)ε) if there exists r > 0 such
that for every open subset U ⊂ D(λ, r) and for any sequence ( fn) in O(U,H) (resp. in E(U,H)) such that
whenever, (T − z) fn(z) −→ 0 in O(U,H) (resp. in E(U,H)), then fn −→ 0 in O(U,H) (resp. in E(U,H)). Let
σβ(T) (resp. σβε (T)) be the set of all points where T does not have property (β) (resp. (β)ε). Then T is said to
satisfy Bishop’s property (β) (resp. (β)ε) precisely when σβ(T) = ∅ (resp. σβε (T) = ∅).

An operator T ∈ L(H) is said to have the spectral decomposition property (δ) at λ if there exists an open
neighborhood U of λ such that for every finite open cover {U1, . . . ,Un} of C, with σ(T) \U ⊆ U1, we have

XT(Ū1) + · · · +XT(Ūn) = H , (1)

whereXT(F) is the set of elements x ∈ H such that the equation (T−λ) f (λ) = x has a global analytic solution
on C \ F. Following [25, page 32], XT(F) is called the glocal analytic spectral subspace associated with F, since
the analytic functions in their definition are globally defined on C \ F, but will depend on x.

If moreover in equation (1) the glocal subspaces are closed, then T is said to be decomposable at λ.
The δ-spectrum σδ(T) and the decomposability spectrum σdec(T) are defined in a similar way.
It is well-known that

Decomposable⇒ Bishop’s property (β)⇒ SVEP.

In general, the converse implications do not hold (see [25] for more details).
The properties (β) and (δ) are known to be dual to each other in the sense that σδ(T) = σβ(T∗). An operator

is decomposable at λ if it has both (β) and (δ) at λ. Thus σdec(T) = σδ(T) ∪ σβ(T). We refer to [1, 2, 6, 7, 25]
for further details on local spectral theory.

3. Some Useful Spectral Properties

In this section, we study an antilinear operator which is the only type of nonlinear operators that are
important in quantum mechanics. We state the basic definition and properties of such operators. An
operator T onH is antilinear if for all x, y ∈ H

T(αx + βy) = αTx + βTy

holds for all α, β ∈ C.

Lemma 3.1. Let B and C be antilinear operators onH . Then the following properties hold;

• BC and CB are linear operators.

• γB + δC is an antilinear operator for any γ, δ ∈ C.

• If D is a linear operator, then BD,DB,CD, and DC are antilinear operators.



C. Benhida, M. Chō, E. Ko, and J. Lee / Filomat 32:1 (2018), 293–303 295

• If B−1 exists, then B−1 is an antilinear operator.

The following definition comes from [3, Page 639], [31, Page 51], and [29, Page 259]; for an antilinear
operator T, a Hermitian adjoint operator of T onH is an antilinear operator T† : H →H with the property;

〈Tx, y〉 = 〈x,T†y〉 (2)

for all x, y ∈ H . If an antilinear operator T is bounded, then, by the Riesz representation theorem, the
Hermitian adjoint of T exists and is unique ([10, Page 90]). For antilinear operators T and R, we get
immediately from (2) that (T†)† = T, (T + R)† = T† + R† and (TR)† = R†T†.

Let’s start by the following result which is a slight variation of Jacobson’s lemma.

Proposition 3.2. Let B and C be two antilinear bounded operators on a Hilbert space H . Then BC and CB are in
L(H) and

I − CB is invertible ⇐⇒ I − BC is invertible. (3)

3.1. Global Spectral Properties

If T is a bounded linear operator on H , we write σ(T), σp(T), σap(T), σsu(T), σr(T), and σc(T) for the
spectrum, the point spectrum, the approximate point spectrum, the surjective spectrum, the residual
spectrum, and continuous spectrum of T, respectively. As more or less direct consequences of the last
proposition we have the following ones;

Proposition 3.3. Let B and C be two antilinear bounded operators on a Hilbert space H . Then the following
statements hold;

• σ(BC) \ {0} = σ(CB)∗ \ {0}

• σp(BC) \ {0} = σp(CB)∗ \ {0}

• σap(BC) \ {0} = σap(CB)∗ \ {0}

• σr(BC) \ {0} = σr(CB)∗ \ {0}

• σc(BC) \ {0} = σc(CB)∗ \ {0}

where E∗ := {λ̄ : λ ∈ E} for E ⊂ C.

The result above is valid for various distinguished part of the spectrum as it has been illustrated for
bounded linear operators in the previous works (see [4], [5] and the reference therein).

Notice also that if B and C are antilinear, then C is naturally a mapping of various objects related to BC
into those related to CB. For example,

C : ker(BC − λ)p
−→ ker(CB − λ̄)p.
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3.2. Spectral Picture and Weyl theorem
Let T be an operator in L(H). Recall that T is said to be a Fredholm operator if Im(T) is closed and

if dim(ker(T)) and codim(Im(T)) are finite. Left Fredholm operators (resp. Right Fredholm operators) are
given by operators T with closed range and such that dim(ker(T)) is finite (resp. codim(Im(T)) is finite). An
operator T is said to be semi-Fredholm if it is either left Fredholm or right Fredholm. Thus T is semi-Fredholm
if Im(T) is closed and if (dim(ker(T)) or codim(Im(T)) is finite. The index of a semi Fredholm operator T is
defined to be ind(T) = dim(ker(T)) − codim(Im(T)).

Denote by F (resp. SF , LF , and RF ) the family all Fredholm (resp. semi-Fredholm, left Fredholm,
and right Fredholm) operators. The essential spectrum of T is σe(T) = {λ ∈ C : T−λ < F }. The left essential
spectrum σle(T) and the right essential spectrum σre(T) are defined similarly. For T ∈ L(H), the smallest
nonnegative integer p such that ker(Tp) = ker(Tp+1) is called the ascent of T and denoted by p(T). If no such
integer exists, we set p(T) = ∞. The smallest nonnegative integer q such that Im(Tq) = Im(Tq+1) is called
the descent of T and denoted by q(T). If no such integer exists, we set q(T) = ∞. We define Weyl spectrum,
σw(T) and Browder spectrum, σb(T), by

σw(T) =
⋂
{K is compact} σ(T + K)

= {λ ∈ C : T − λ is not Fredholm with index zero}

and
σb(T) := {λ ∈ C : T − λ is not Fredholm of finite ascent and descent}.

It is well-known that the mapping ind : SF −→ Z ∪ {−∞,+∞} defined by

T 7−→ ind(T) = dim(ker(T)) − codim(Im(T))

is continuous. We usually call a hole in σe(T) any bounded component of C \ σe(T) and a pseudo hole in σe(T)
a component of σe(T) \ σle(T) or σe(T) \ σre(T). The spectral picture SP(T) of an operator was introduced by C.
Pearcy in [28] as the collection of holes and pseudo holes and the associated Fredholm indices.

From the discussion made above; we know that for every B and C antilinear bounded operators onH and
every λ , 0, Im(BC−λ) is closed if and only if Im(CB− λ̄) is closed and dim(ker(BC−λ)) = dim(ker(CB− λ̄).
Thus one easily concludes that the spectral picture of BC is linked (beside 0 eventually) to the spectral
picture of CB in the following way;

(h, ind(h)) ∈ SP(BC)⇐⇒ (h∗, ind(h)) ∈ SP(CB) where h∗ := {λ̄| λ ∈ h}.

We notice that it has been shown in [5] that this holds in the linear case (B and C are in L(H)). See also
in [15] the discussion about 0 which could be in a pseudohole of BC and not in a pseudohole of CB.

An operator T in L(H) is said to satisfy Weyl’s theorem if

σw(T) = σ(T) \ π00(T)

where

π00(T) = {λ ∈ iso(σ(T)) : 0 < dim(ker(T − λ)) < ∞}

and iso(E) is the set of all isolated points of E. We say that Browder’s theorem holds for T ∈ L(H) if
σb(T) = σw(T).

Proposition 3.4. Let B and C be two antilinear bounded operators on a Hilbert spaceH . If 0 ∈ π00(BC) ∩ π00(CB)
or 0 < π00(CB) ∪ π00(BC) then;
(i) BC satisfies Weyl’s theorem if and only if CB satisfies Weyl’s theorem.
(ii) BC satisfies Browder’s theorem if and only if CB satisfies Browder’s theorem.

Proof. It’s easy to see that we have π00(BC) \ {0} = π00(CB) \ {0}, σb(BC) \ {0} = σb(CB) \ {0}, and σw(BC) \ {0} =
σw(CB) \ {0}. Then the result follows.
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3.3. Local Spectral Properties
Notice that for the local part of the spectrum we have

Proposition 3.5. Let B and C be antilinear bounded operators on a Hilbert spaceH . Then BC and CB are in L(H)
and

• σsvep(BC) = σsvep(CB)∗

• σβ(BC) = σβ(CB)∗

• σβε (BC) = σβε (CB)∗

• σδ(BC) = σδ(CB)∗

• σdec(BC) = σdec(CB)∗.

Proof. We only show the second statement for (β). Assume that λ̄0 < σβ(CB) and so CB has (β) at λ̄0. Let U
be an open subset of D(λ0, r), with r > 0 given by the definition of property (β) at λ̄0 and let fn : U →H be
a sequence of analytic functions such that (BC − λ) fn(λ) −→ 0 in the topology of O(U,H) which means

lim
n→∞
‖(BC − λ) fn(λ)‖K = 0

for every compact set K in U, where ‖ f (λ)‖K := supλ∈K ‖ f (λ)‖ for anH-valued function f . Since B and C are
antilinear, it follows that

lim
n→∞
‖(CB − λ)C fn(λ)‖K = 0

for every compact subset K of U or equivalently, limn→∞ ‖(CB − λ)C fn(λ)‖K∗ = 0 for every compact K∗ of
U∗. Moreover, since CB has (β) at λ̄0, it implies that limn→∞ ‖C fn(λ)‖K∗ = 0 for every compact K∗ of U∗ and
so limn→∞ ‖C fn(λ)‖K = 0 for every compact K of U. Therefore, limn→∞ ‖BC fn(λ)‖K = 0 and consequently
limn→∞ ‖λ fn(λ)‖K = 0 for every compact K of U. Since 0 has (β), it follows that limn→∞ ‖ fn(λ)‖K = 0 on U. So
BC has (β) at λ0 meaning that λ0 < σβ(BC). The other inclusion is obtained by symmetry.

We may observe that we ”lost” 0 by passing from local to global spectra and a natural question arises
about when we get the coincidence of the spectrum. In the following proposition, we give some conditions
that ensure that. But of course, there are others that are not in our scope. An operator T ∈ L(H) is said to
be normal if T∗T = TT∗ where T∗ denotes the adjoint of T. Using the definition of the Hermitian adjoint of
an antilinear operator as (2), we can define a normal antilinear operator as follows; an antilinear bounded
operator A onH is called normal if A and A† commute where A† satisfies (2) (see [30, Section 4.1, Page 27 ]).

Proposition 3.6. Let B and C be antilinear bounded operators on a Hilbert space H . Then σ(BC) = σ(CB)∗ in the
following cases;

1. C and B are injective.
2. C and C† are injective.
3. C or B is injective with dense range.
4. C and B are not injective.
5. C and C† are not injective.
6. C or B is normal.

Proof. 1. Assume that C is injective. In this case, we prove that σ(BC) ⊂ σ(CB)∗. Indeed, what’s left is to
show that if 0 ∈ σ(BC), then 0 ∈ σ(CB)∗ from Proposition 3.3. Suppose that 0 ∈ σ(BC). We have two possible
cases:

(i) BC is not one to one or (ii) BC is not onto.
In the first case (i), there exists x ∈ H \ {0} such that BCx = 0. Applying C we obtain CBCx = 0. Then

either Cx = 0 or Cx , 0. Since C is injective and x , 0, it follows that Cx , 0. Thus, CB is not injective.
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For the second case (ii), suppose that CB is surjective which implies that C is surjective. Since C is
already injective, it becomes invertible. Now, BC = C−1(CB)C and then is surjective which contradicts our
assumption.

If B is injective, we obtain the other inclusion σ(CB)∗ ⊂ σ(BC).
2. Since B and C are antilinear, it follows that BC is linear. Then (2) gives that

〈x, (BC)∗y〉 = 〈(BC)x, y〉 = 〈Cx,B†y〉 = 〈x,C†B†y〉

for all x, y ∈ H . This means that (BC)∗ = C†B† and so (CB)∗ = B†C†. Hence the result is obtained by passing
to the adjoint and Hermitian adjoint by the proof of 1.

3. If T is an antilinear, then (2) implies that 〈Tx, y〉 = 0 if and only if 〈x,T†y〉 = 0. Therefore x ∈ ker(T) if
and only if x ∈ Im(T†)⊥. This means that ker(T) = {0} if and only if Im(T†) = H . Hence T is injective if and
only if T† has dense range. So 3. is equivalent to 2.

For 4., we have σ(CB)∗ \ {0} = σ(BC) \ {0}.
If C is not injective, then there exists x , 0 inH such that Cx = 0. This implies BCx = 0 and consequently

0 ∈ σ(BC). By using the adjoints and symmetry, we have 0 ∈ σ(CB)∗.
5. By the same reason, 5. is equivalent to 4.
6. If C is normal, then ‖Cx‖ = ‖C†x‖. Then, both C and C† are injective or not injective and the result

follows from the previous cases 2. and 5.

4. Applications

4.1. When C is a conjugation
Recall that C is a conjugation onH if C : H −→ H is an antilinear operator that satisfies 〈Cx,Cy〉 = 〈y, x〉

for all x, y ∈ H and C2 = I. In the following result, we provide the adjoint of conjugation operators.

Theorem 4.1. Let C be a conjugation on H . Then the Hermitian adjoint of C is the conjugation C, i.e., C† = C.
Conversely, assume that C is antilinear with C2 = I. If C† = C, then C is a conjugation onH .

Proof. Since C is antilinear, it follows from (2) that

〈Cx, y〉 = 〈x,C†y〉 (4)

for all x, y ∈ H . On the other hand, since C is conjugation, it follows that

〈Cx, y〉 = 〈Cy, x〉 (5)

for all x, y ∈ H . Equations (4) and (5) imply

〈x,Cy〉 = 〈Cy, x〉 = 〈Cx, y〉 = 〈x,C†y〉

for all x, y ∈ H . Hence we conclude that C = C†.
Conversely, suppose that C is antilinear with C2 = I. If C† = C, then (2) implies that

〈Cx, y〉 = 〈x,C†y〉 = 〈x,Cy〉 = 〈Cy, x〉

for all x, y ∈ H . Hence C is a conjugation onH .

Corollary 4.2. ([13]) Let B and C be conjugations onH . Then BC and CB are unitary.

Proof. If B and C are conjugations onH , then (2) implies that (BC)∗ = C†B† and (CB)∗ = B†C† as in the proof
of Proposition 3.6. By Theorem 4.1, we know that (BC)∗ = CB and (CB)∗ = BC.Hence BC and CB are unitary
(see also [13, Lemma 1]).

Using Proposition 3.5, we obtain the following theorem;
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Theorem 4.3. Let T be in L(H) and C be a conjugation onH . Then

• σsvep(CTC) = σsvep(T)∗

• σβ(CTC) = σβ(T)∗

• σβε (CTC) = σβε (T)∗

• σδ(CTC) = σδ(T)∗

• σdec(CTC) = σdec(T)∗.

Proof. A straight forward application of Proposition 3.5, with B = TC, implies the same local spectral
properties of CB = CTC and BC = TCC = T. Observe that up to now, we are using the only fact that C2 = I.

Now, applying Proposition 3.6, we have the following results (see also [20, Lemma 3.21]).

Theorem 4.4. Let T be in L(H) and C be a conjugation onH . Then

σ•(CTC) = σ•(T)∗

when σ• ∈ {σ, σp, σap, σc, σr, σsu, σe, σw, . . . }.

Proof. If T is a bounded linear operator and C is a conjugation onH , then TC is antilinear and C is clearly
normal from Theorem 4.1. Hence σ(CTC) = σ(T)∗ from 6. of Proposition 3.6. Using also that C2 = I, we
obtain similarly the remain cases.

Theorem 4.5. Let T be in L(H) and C be a conjugation on H . Then T satisfies Weyl’s (or Browder’s ) theorem if
and only if CTC satisfies Weyl’s (or Browder’s ) theorem.

5. Helton Classes

Let A and B be two given operators in L(H). Recall the definition of the usual derivation operator
δA,B(X) given by

δA,B(X) = AX − XB for X ∈ L(H).

For every positive integer k, we have

δk
A,B(X) = δA,B(δk−1

A,B(X)) for X ∈ L(H).

Definition 5.1. Let A and B be in L(H). An operator B is said to be in Heltonk(A) if δk
A,B(I) = 0.

The following result can be found in [23, Section 3.6].

Theorem 5.2. Let A and B be in L(H). If B is in Heltonk(A) then σp(B) ⊂ σp(A), σap(B) ⊂ σap(A), and σsu(A) ⊂
σsu(B). In particular, σ(A) ⊂ σ(B) when A has the SVEP. Moreover, if A and B∗ have the SVEP, then σ(A) = σ(B).

Proof. For the first inclusion, if λ ∈ σp(B), then there exists a nonzero x ∈ H such that (B − λ)x = 0. Since
B − µ ∈ Heltonk(A − µ) for any µ, it follows that (A − λ)kx = 0. If λ < σp(A), then A − λ is one-to-one. Hence
x = 0 which is a contradiction for a nonzero x. So λ ∈ σp(A).

For the second inclusion, if λ ∈ σap(B), then there exists a sequence {xn} with ‖xn‖ = 1 such that
limn→∞ ‖(B − λ)xn‖ = 0. Since B − λ ∈ Heltonk(A − λ), it follows that limn→∞ ‖(A − λ)kxn‖ = 0. If λ < σap(A),
then A−λ is bounded below. Hence limn→∞ ‖xn‖ = 0. This is a contradiction for ‖xn‖ = 1. Hence λ ∈ σap(A).
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For the third inclusion, if B−λ is surjective, then B−λ ∈ Heltonk(A−λ) implies A−λ is surjective. This
means that σsu(A) ⊂ σsu(B).

For the last statement, if A has the SVEP and B ∈ Heltonk(A) then B has the SVEP from [23, Theorem
3.2.1]. By the above relation and [25], we obtain that σ(A) = σsu(A) ⊂ σsu(B) = σ(B). Since B ∈ Heltonk(A),
it holds that A∗ ∈ Heltonk(B∗). If B∗ has the SVEP, then A∗ has the SVEP from [23]. Thus σap(A) = σ(A) and
σap(B) = σ(B) from [25]. Hence σ(B) ⊂ σ(A) and so σ(A) = σ(B).

We also have the following theorem from [23, Theorems 3.2.1 and 3.7.1] or [25].

Theorem 5.3. Let A and B be in L(H). If B is in Heltonk(A), then

• A has the SVEP at λ =⇒ B has the SVEP at λ.

• A has (β) at λ =⇒ B has (β) at λ.

• A has (β)ε at λ =⇒ B has (β)ε at λ.

Proof. Suppose that A has (β)ε at λ and fn : U → H is a sequence of analytic functions such that (B −
λ) fn(λ) −→ 0 in E(U,H). Then we get that

It’s obvious that δA,B(X) = δA−µ,B−µ(X) for every X ∈ L(H) and every µ ∈ C. Thus δk
A,B(X) = δk

A−µ,B−µ(X)
for every X ∈ L(H), every µ ∈ C and every integer k

Since

0 = δk
A−λ,B−λ(I) fn(λ)

=

k∑
j=0

(−1)k− j
(

k
j

)
(A − λ) j(B − λ)k− j fn(λ)

=

k−1∑
j=0

(−1)k− j
(

k
j

)
(A − λ) j(B − λ)k− j fn(λ) + (A − λ)k fn(λ)

= [
k−1∑
j=0

(−1)k− j
(

k
j

)
(A − λ) j(B − λ)k− j−1](B − λ) fn(λ) + (A − λ)k fn(λ)

it follows that (A − λ)k fn(λ) −→ 0 in E(U,H). Moreover, since A has (β)ε at λ, (A − λ)k−1 fn(λ) −→ 0 in
E(U,H). By induction, fn −→ 0 in E(U,H). Hence B has (β)ε at λ. The remaining statements hold by similar
arguments.

6. m-Complex and m-skew Complex Symmetric Operators

Let m be a positive integer. An operator T ∈ L(H) is said to be an m-complex symmetric operator if there
exists some conjugation C such that ∆m(T) = 0 where

∆m(T) :=
m∑

j=0

(−1)m− j
(
m
j

)
T∗ jCTm− jC. (6)

(See [8] and [9]).
An operator T ∈ L(H) is said to be an m-skew complex symmetric operator if there exists some conjugation

C such that Γm(T) = 0 where
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Γm(T) :=
m∑

j=0

(
m
j

)
T∗ jCTm− jC. (7)

For example, if N is a nilpotent of order 2, then N is complex symmetric from [14, Theorem 2]. But if
T = I + N, then is easy to see that T is a 3-complex symmetric operator which is not 2-complex symmetric.

Remark 6.1. It is easy to see that

• T ∈ L(H) is an m-complex symmetric operator which means that CTC ∈ Heltonm(T∗).

• T ∈ L(H) is an m-skew complex symmetric operator which means that −CTC ∈ Heltonm(T∗).

Therefore, we have the following.

Theorem 6.2. Let T be in L(H). If T is an m-complex symmetric operator, then

• T∗ has the SVEP at λ =⇒ T has the SVEP at λ̄.

• T∗ has (β) at λ =⇒ T has (β) at λ̄.

• T∗ has (β)ε at λ =⇒ T has (β)ε at λ̄.

Proof. We only prove the third statement.

T∗ has (β)ε at λ =⇒ CTC has (β)ε at λ
=⇒ T has (β)ε at λ̄.

By using Theorem 5.3 and Theorem 4.3, we obtain the last statement.

In particular, we recapture a part of some known results (see [8, Theorem 4.7]).

Corollary 6.3. Let T be in L(H). If T is an m-complex or m-skew complex symmetric operator, then

T∗ has (β)⇐⇒ T is decomposable.

For example, if T is a nilpotent operator of order k > 2, then T∗ is nilpotent of order k > 2 and so
T∗ is (2k − 1)-complex symmetric from [8, Example 3.1]. Moreover, in this case, T∗ has (β). Hence T is
decomposable from Corollary 6.3.

7. Complex Symmetric and Skew-Complex Symmetric Operators

Notice that, if m = 1, the definition given above matches the one of complex symmetric and skew-
complex symmetric operators. One could wonder why we are considering this special case separately.
There are at least two reasons.

-The first one is:
For an arbitrary conjugation C and an operator T onH , one can write T as a sum of a complex symmetric

operator and a skew-complex symmetric operator. Namely, T = A+B where A = − 1
2 Γ1(T∗) and B = − 1

2 ∆1(T∗)
where A = CA∗C, B = −CB∗C.

-The second one is:
Helton1(A) = {A}. Thus we have the coincidence of many spectra (instead of the inclusion).

Corollary 7.1. Let T be in L(H).

1. If T is a complex symmetric operator, then
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• T∗ has the SVEP at λ⇐⇒ T has the SVEP at λ̄.

• T∗ has (β) at λ⇐⇒ T has (β) at λ̄.

• T∗ has (β)ε at λ⇐⇒ T has (β)ε at λ̄.

2. If T is a skew complex symmetric operator, then

• T∗ has the SVEP at λ⇐⇒ T has the SVEP at −λ̄.

• T∗ has (β) at λ⇐⇒ T has (β) at −λ̄.

• T∗ has (β)ε at λ⇐⇒ T has (β)ε at −λ̄.

Furthermore, we have

Corollary 7.2. Let T be in L(H).

1. If T is a complex symmetric operator, then

σ•(T∗) = σ•(T)∗.

2. If T is a skew complex symmetric operator, then

σ•(T∗) = −σ•(T)∗

when σ• ∈ {σ, σp, σap, σc, σr, σsu, σe, σw, . . . }.

In the following corollary, we also recapture the result in [18, Theorem 4.4].

Corollary 7.3. Let T be inL(H). If T is a complex symmetric or a skew complex symmetric operator, then T satisfies
Weyl’s (or Browder’s) theorem if and only if T∗ satisfies Weyl’s (or Browder’s ) theorem.
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C. Benhida, M. Chō, E. Ko, and J. Lee / Filomat 32:1 (2018), 293–303 303

[25] K. Laursen and M. Neumann, An introduction to local spectral theory, Clarendon Press, Oxford, 2000.
[26] C. G. Li and S. Zhu, Skew symmetric normal operators, Proc. Amer. Math. Soc. 141(2013), no.8, 2755-2762.
[27] V. Mehrmann and H. Xu, Numerical methods in control, J. Comput. Appl. Math. 123 (2000), no. 1-2, 371-394. Numerical analysis

2000, Vol. III. Linear algebra.
[28] C. Pearcy, Some recent developments in operator theory. CBMS Regional Conference Serie in Mathematics 36, Amer. Math. Soc.,

Providence, 1978.
[29] L. Sobrino, Elements of non-relativistic quantum Mechanics, World Scientific, 1996.
[30] A. Uhlmann, Anti-(Conjugate) Linearity, preprint.
[31] S. Weinberg, The quantum theory of fields, Cambridge University Press, 1995.


