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Abstract. The purpose of this article, we give a necessary and sufficient condition for the modified Mann
iterative process in order to obtain a strong convergence theorem for finding a common element of the set
of fixed point of a finite family of nonexpansive mappings and variational inequality problem in Hilbert
space without the conditions

⋂N
i=1 Fix(Ti)∩VI(C,A) , ∅. Moreover, we utilize our main result to fixed point

problems of strictly pseudocontractive mappings and the set of solutions of variational inequality problem.

1. Introduction

Throughout this article, let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. Let C be
a nonempty closed convex subset of H. Let T : C → C be a nonlinear mapping. A point x ∈ C is called a
fixed point of T if Tx = x. The set of fixed points of T is the set Fix(T) := {x ∈ C : Tx = x}.
A mapping T of C into itself is called nonexpansive if∥∥∥Tx − Ty

∥∥∥ ≤ ∥∥∥x − y
∥∥∥ ,∀x, y ∈ C.

Mann’s iteration process [8] is often used to approximate a fixed point of a nonexpansive mapping. But
Mann’s iteration process has only weak convergence. To obtain strong convergence theorems, the Mann’s
iteration is modified by many researchers; see for instance [7], [12], and the references therein.

Let A : C→ H. The variational inequality problem is to find a point x ∈ C such that

〈Ax, y − x〉 ≥ 0 (1)

for all y ∈ C. The set of solution of (1) is denoted by VI(C,A). In 1964, Stampacchia [13] introduced
and investigated the variational inequality problem. It is well known that the application of the variational
inequality problem has been expanded to problems from economics, finance, optimization and game theory;
see [15]. Several authors have studied the variational inequality problem; see [16], [3], [4], and references
cited therein.
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In 2003, Takahashi and Toyoda [5] introduce an iterative scheme of finding a common element of the set
of fixed points of a nonexpansive mapping and the set of solutions of a variational inequality problem for
an inverse strongly-monotone mapping as follows:

xn+1 = αnxn + (1 − αn)TPC(xn − λnAxn),∀n ≥ 1,

where T : C→ C is a nonexpansive mapping and A is an a inverse strongly-monotone mapping of C into H.
Then, they proved a weak convergence theorem of the sequence {xn} under suitable conditions of parameter
{αn} and {λn}.

In 2013, Kangtunyakarn [6] proved a strong convergence theorem for finding a common element of the
set of fixed point problem of a nonexpansive mapping and the set of solution of (1) without assumption
Fix(T) ∩ VI(C,A) , ∅. He defined the sequence {xn} as follows:

xn+1 = αTxn + (1 − α)PC(I − ρA)xn,∀n ≥ 1, (2)

where T : C → C is a nonexpansive mapping, A : C → H is a strongly positive linear bounded operator
with coefficient γ̄ > 0 and positive real numbers α, ρ. In the last few decades many authors have studied
strong convergence theorems for finding a common element of the set of fixed point of a finite family of
nonexpansive mappings and the set of variational inequality problem by using condition

⋂N
i=1 Fix(Ti) ∩

VI(C,A) , ∅; see for instance [11] and references therein.
In this paper, motivated and inspired by [5] and [6], we give a necessary and sufficient condition for the

modified Mann iterative process in order to obtain a strong convergence theorem for finding a common
element of the set of fixed point of a finite family of nonexpansive mappings and the set of solutions of
variational inequality problem in Hilbert space without the conditions

⋂N
i=1 Fix(Ti)∩VI(C,A) , ∅. Moreover,

we utilize our main result to fixed point problems of strictly pseudocontractive mappings and the set of
solutions of variational inequality problem.

2. Preliminaries

Let H be a real Hilbert space and C be a nonempty closed convex subset of H. Recall that the (nearest
point) projection PC from H onto C assigns to each x ∈ H the unique point PCx ∈ C satisfying the property

‖x − PCx‖ = min
y∈C
‖x − y‖.

Lemma 2.1 ([9]). Let A be a strongly positive linear bounded operator on a Hilbert space H with coefficient γ̄ and
0 < ρ < ‖A‖−1. Then ‖I − ρA‖ ≤ 1 − ργ̄.

Lemma 2.2 (See [14]). Let H be a Hilbert space, let C be a nonempty closed convex subset of H and let A be a
mapping of C into H. Let u ∈ C. Then, for λ > 0,

u = PC(I − λA)u⇔ u ∈ VI(C,A),

where PC is the metric projection of H onto C.

Lemma 2.3 ([1]). Let E be a uniformly convex Banach space, C be a nonempty closed convex subset of E and S: C→ C
be a nonexpansive mapping. Then I − S is demi-closed at zero.

3. Main Result

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let A : C → H be a strongly
positive linear bounded operator on H with coefficient γ̄ > 0 . Let {Ti}

N
i=1 be a finite family of nonexpansive mappings

of C into itself. Let the sequence {xn} be generated by x0 ∈ H and
yi

n = βTixn + (1 − β)xn,

xn+1 = αxn + (1 − α)PC(I − ρA)
N∑

i=1

aiyi
n,∀n ≥ 0,

(3)
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where 0 < α, β < 1, 0 < ρ < ‖A‖−1, and
∑N

i=1 ai = 1. Then the following are equivalent.

(i) The sequence {xn} defined by (3) converges strongly to x∗ ∈
⋂N

i=1 Fix(Ti) ∩ VI(C,A);

(ii) lim
n→∞
‖Tixn − xn‖ = 0, for all i = 1, 2, . . . ,N.

Proof. (i)⇒ (ii) . Let condition (i) hold. Since x∗ ∈
⋂N

i=1 Fix(Ti) ∩ VI(C,A), we have

‖Tixn − xn‖ ≤ ‖Tixn − Tix∗‖ + ‖x∗ − xn‖ ≤ 2‖x∗ − xn‖,

which implies that limn→∞ ‖Tixn − xn‖ = 0.
Next we claim that (ii) ⇒ (i), let condition (ii) hold. Let x, y ∈ C. Since A is a strongly positive linear bounded
operator and Lemma 2.1 , we have

‖(I − ρA)x − (I − ρA)y‖ = ‖(I − ρA)(x − y)‖
≤ (1 − ργ̄)‖x − y‖.

We have I − ρA is a contractive mapping with coefficient 1 − ργ̄.
For every n ∈N, i = 1, 2, ...,N, and the definition of {yi

n}, we have

‖yi
n+1 − yi

n‖ = ‖βTixn + (1 − β)xn − βTixn−1 − (1 − β)xn−1‖

= ‖β(Tixn − Tixn−1) + (1 − β) (xn − xn−1) ‖
≤ β‖Tixn − Tixn−1‖ + (1 − β)‖xn − xn−1‖

≤ β‖xn − xn−1‖ + (1 − β)‖xn − xn−1‖

= ‖xn − xn−1‖. (4)

From the definition of {xn} and (4), we have

‖xn+1 − xn‖ = ‖αxn + (1 − α)PC(I − ρA)
N∑

i=1

aiyi
n − αxn−1 − (1 − α)PC(I − ρA)

N∑
i=1

aiyi
n−1‖

= ‖α(xn − xn−1) + (1 − α)

PC(I − ρA)
N∑

i=1

aiyi
n − PC(I − ρA)

N∑
i=1

aiyi
n−1

 ‖
≤ α‖xn − xn−1‖ + (1 − α)‖PC(I − ρA)

N∑
i=1

aiyi
n − PC(I − ρA)

N∑
i=1

aiyi
n−1‖

≤ α‖xn − xn−1‖ + (1 − α)‖(I − ρA)
N∑

i=1

aiyi
n − (I − ρA)

N∑
i=1

aiyi
n−1‖

≤ α‖xn − xn−1‖ + (1 − α)(1 − ργ̄)
N∑

i=1

ai
‖yi

n − yi
n−1‖

≤ α‖xn − xn−1‖ + (1 − α)(1 − ργ̄)‖xn − xn−1‖

= (1 − ργ̄(1 − α))‖xn − xn−1‖

= a‖xn − xn−1‖

≤ a2
‖xn−1 − xn−2‖

...

≤ an
‖x1 − x0‖, (5)
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where a = (1 − ργ̄(1 − α)) ∈ (0, 1).
For any number n,m ∈N and (5), we have

‖xn+m − xn‖ ≤

n+m−1∑
j=n

‖x j+1 − x j‖

≤

n+m−1∑
j=n

a j
‖x1 − x0‖

≤

( an

1 − a

)
‖x1 − x0‖. (6)

Since an
→ 0 as n→∞, and (6), we have {xn} is a Cauchy sequence. Since H is a Hilbert space, we get {xn} converges

to x∗, i.e.,

lim
n→∞

xn = x∗. (7)

Next, we will show that x∗ ∈
⋂N

i=1 Fix(Ti)∩VI(C,A). Since C is closed, so we get x∗ ∈ C. By limn→∞ ‖Tixn − xn‖ = 0,
(7), and Lemma 2.3, we have x∗ ∈ Fix(Ti) for all i = 1, 2, . . . ,N. It implies that x∗ ∈

⋂N
i=1 Fix(Ti). From the definition

of yi
n, limn→∞ xn = x∗, and x∗ ∈

⋂N
i=1 Fix(Ti), we have

lim
n→∞

yi
n = x∗. (8)

From the definition of xn, (7), and (8), we have

x∗ = αx∗ + (1 − α)PC(I − ρA)x∗.

It implies that x∗ ∈ Fix(PC(I − ρA)). From Lemma 2.2, we have x∗ ∈ VI(C,A). Hence, the sequence {xn} defined by
(3) converges strongly to x∗ ∈

⋂N
i=1 Fix(Ti) ∩ VI(C,A).

As direct proof of Theorem 3.1, we obtain the following results.

Corollary 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H. Let A : C → H be a strongly
positive linear bounded operator on H with coefficient γ̄ > 0 . Let T be a nonexpansive mappings of C into itself. Let
the sequence {xn} be generated by x0 ∈ H and yn = βTxn + (1 − β)xn,

xn+1 = αxn + (1 − α)PC(I − ρA)yn,∀n ≥ 0,
(9)

where 0 < α, β < 1 and 0 < ρ < ‖A‖−1. Then the following are equivalent.

(i) The sequence {xn} defined by (9) converges strongly to x∗ ∈ Fix(T) ∩ VI(C,A);

(ii) lim
n→∞
‖Txn − xn‖ = 0.

Next, in order to prove a strong convergence theorem for κ-strictly pseudo-contractive mappings and
variational inequality problem, we need Lemma 3.3. A mapping T : C→ C is said to be κ-strictly pseudo-
contractive if there exists a constant κ ∈ [0, 1) such that∥∥∥Tx − Ty

∥∥∥2
≤

∥∥∥x − y
∥∥∥2

+ κ
∥∥∥(I − T)x − (I − T)y

∥∥∥2
,

for all x, y ∈ C. Note that the class of strictly pseudo-contractions strictly includes the class of nonexpansive
mapping.
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Lemma 3.3 (See [2]). Let T : C→ H be a κ-strict pseudo-contraction. Define S : C→ H by Sx = λx + (1 − λ)Tx
for each x ∈ C. Then, as λ ∈ [k, 1), S is a nonexpansive mapping such that Fix(S) = Fix(T).

Theorem 3.4. Let C be a nonempty closed convex subset of a real Hilbert space H. Let A : C → H be a strongly
positive linear bounded operator on H with coefficient γ̄ > 0 . Let {Ti}

N
i=1 be a finite family of κi-strictly pseudo-

contractive mappings of C into itself withκ = maxi=1,2,...,N κi. Define the mapping Si = C→ C by Six = σx+(1−σ)Tix
for every i = 1, 2, ...,N, x ∈ C and σ ∈ (k, 1). Let the sequence {xn} be generated by x0 ∈ H and

yi
n = βSixn + (1 − β)xn,

xn+1 = αxn + (1 − α)PC(I − ρA)
N∑

i=1

aiyi
n,∀n ≥ 0,

(10)

where 0 < α < 1, κ ≤ β < 1, 0 < ρ < ‖A‖−1, and
∑N

i=1 ai = 1. Then the following are equivalent.

(i) The sequence {xn} defined by (10) converges strongly to x∗ ∈
⋂N

i=1 Fix(Ti) ∩ VI(C,A);

(ii) lim
n→∞
‖Tixn − xn‖ = 0, for all i = 1, 2, . . . ,N.

Proof. From Lemma 3.3 and Theorem 3.1, we obtain the desired result.
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