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R-P-Spaces and Subrings of C(X)
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Abstract. A Tychonoff space X is called a P-space if Mp = Op for each p ∈ βX. For a subring R of C(X),
we call X an R-P-space, if Mp

∩ R = Op
∩ R for each p ∈ βX. Various characterizations of R-P-spaces are

investigated some of which follows from constructing the smallest invertible subring of C(X) in which R is
embedded,S−1

R R. Moreover, we study R-P-spaces when R is an intermediate ring or an intermediate C-ring.
We follow a new approach to some results of [W. Murray, J. Sack and S. Watson, P-spaces and intermediate
rings of continuous functions, Rocky Mount. J. Math., to appear]. Also, some algebraic characterizations
of P-spaces via intermediate rings are given. Finally, we establish some characterizations of C(X) among
intermediate C-rings which are of the form I + C∗(X), where I is an ideal in C(X).

1. Introduction

Throughout this paper all topological spaces are assumed to be Tychonoff. Moreover, all ideals are
assumed to be proper and, unless otherwise mentioned, all subrings are assumed to be unital. We denote
by C(X) the algebra of all real-valued continuous functions on a given topological space X and by C∗(X) the
subalgebra of C(X) consisting of all bounded elements. For each f ∈ C(X), Z( f ) = {x : f (x) = 0} denotes the
zero-set of f . The collection of all zero-sets of elements of R is denoted by Z(R) for each subring R of C(X).
We use Z(X) instead of Z(C(X)). For a topological space X, βX denotes the Stone-Čech compactification of X
and υX denotes the Hewitt-realcompactification of X. It is well-known that every f ∈ C(X) has a continuous
extension f ∗ from βX to R∗ (the one-point compactification of R) and a continuous extension f υ from υX
to R. For each f ∈ C(X), we denote by υ f X the set {p ∈ βX : f ∗(p) < ∞}. For a subset A of C(X), we set
υAX = {p ∈ βX : f ∗(p) < ∞,∀ f ∈ A} =

⋂
f∈A υ f X. Evidently, υCX = υX and υC∗X = βX. Also, υX ⊆ υAX

for each subset A of C(X). By a realcompactification of X, we mean a realcompact space containing X as a
dense subspace. It follows from [11, 8B, 3] that υAX is a realcompactification of X for each A ⊆ C(X). The
reader is referred to [11] for terms and notations not defined here.

A subring A(X) of C(X) is called an intermediate ring, if C∗(X) ⊆ A(X). An intermediate ring A(X) is
called a C-ring, if A(X) is isomorphic to C(Y) for some topological space Y. Following [17], for each element
f of an intermediate ring A(X) of C(X), we set SA( f ) = {p ∈ βX : ( f1)∗(p) = 0,∀1 ∈ A(X)}. A routine reasoning
shows that SA( f1) = SA( f )∪SA(1), SA( f 2+12) = SA( f )∩SA(1) and SA( f n) = SA( f ) for each f , 1 ∈ A(X) and each
n ∈ N. Furthermore, clβXZ( f ) ⊆ SA( f ) ⊆ Z( f ∗) and thus SA( f ) ∩ X = Z( f ). Moreover, SC( f ) = clβXZ( f ) for
each f ∈ C(X) and SC∗ ( f ) = Z( f β) for each f ∈ C∗(X). Also, we use Mp

A to denote the set { f ∈ A(X) : p ∈ SA( f )}
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for each p ∈ βX. Clearly, Mp
C = Mp = { f ∈ C(X) : p ∈ clβXZ( f )} and Mp

C∗ = M∗p = { f ∈ C∗(X) : p ∈ Z( f β)}.
From [17, Theorem 2.9] it follows that the collection of all the maximal ideals of an intermediate ring A(X)
is {Mp

A : p ∈ βX}. This implies that f ∈ A(X) is invertible in A(X) if and only if SA( f ) = ∅.
An ideal I of a subring R of C(X) is called growing, if it contains no unit element of C(X). A growing

ideal I of R is called fixed, if
⋂

f∈I Z( f ) = ∅, otherwise, is called free. A growing ideal I in R is called maximal
growing, if it is maximal in the set of all growing ideals of R. If every ideal of a subring R is growing, then
R is called invertible. It is easy to observe that R is an invertible subring of C(X) if and only if f is invertible
in R whenever f ∈ R with Z( f ) = ∅. An ideal I of R is called a zR-ideal, if whenever Z( f ) ⊆ Z(1), f ∈ I
and 1 ∈ R, then 1 ∈ I. It is easy to see that every zR-ideal is a growing ideal. However, the converse of
this statement does not hold, in general. For example, the principal ideal in C(R) generated by the identity
function on R is a growing ideal in C(R) which is not a zC-ideal. For a subring R of C(X) and each p ∈ βX,
we denote by Mp(R) (resp., Op(R)) the set { f ∈ A(X) : p ∈ clβXZ( f )} (resp., { f ∈ A(X) : p ∈ intβXclβXZ( f )}). We
use Mp (resp., Op) instead of Mp(C(X)) (resp., Op(C(X))). Clearly, whenever x ∈ X, then Mx(R) (resp., Ox(R))
coincides with Mx(R) = { f ∈ R : x ∈ Z( f )} (resp., Ox(R) = { f ∈ R : x ∈ intXZ( f )}).

Remember that an ideal I of a commutative ring Q is called a z-ideal if whenever f ∈ I, then M f (Q) ⊆ I
in which M f (Q) denotes the intersection of all the maximal ideals of Q containing f . We use M f instead of
M f (C(X)) for each f ∈ C(X). It is well-known that M f = {1 ∈ C(X) : Z( f ) ⊆ Z(1)} for each f ∈ C(X). Thus,
z-ideals of C(X) coincide with zC-ideals. Moreover, from [15, Proposition 2.7] it follows that M f (A(X)) = {1 ∈
A(X) : SA( f ) ⊆ SA(1)} for each element f of an intermediate ring A(X). Hence, an ideal I of an intermediate
ring A(X) is a z-ideal if and only if whenever SA( f ) ⊆ SA(1) where f ∈ I and 1 ∈ A(X), then 1 ∈ I. This
implies that z-ideals of an intermediate ring A(X) do not coincide with zA-ideals. For example, M∗p, for each
p ∈ βR \ R, is a z-ideal in C∗(R) which is not a zC∗ -ideal. A commutative ring Q is called a regular ring (in
the sense of Von-Neuman), if for every a ∈ Q, there exists some b ∈ Q such that a2b = a, equivalently, every
prime ideal in Q is maximal; see [12] for more details. It is shown in [13, Theorem 1] that a commutative
ring Q is a regular ring if and only if every ideal in Q is a z-ideal.

A topological space X is called a P-space, if Op = Mp for every p ∈ βX, equivalently, C(X) is a regular
ring; see [11, 14.29] for more details. The close relation between P-spaces and ring properties of C(X),
inspired us to check this notion when C(X) is replaced by one of its subrings. The aim of this paper is
to introduce and study the notion of R-P-spaces as a generalization of the notion of P-spaces via subrings
of C(X). Associated to a subring R of C(X), we call X an R-P-space, if Mp(R) = Op(R) for every p ∈ βX.
It is evident that every P-space is an R-P-space. However, the converse of this statement does not hold,
in general. This paper consists 4 sections. In Section 1, some necessary notations and terminologies are
introduced. In Section 2, we introduce the notion of R-P-spaces. By constructing the smallest invertible
subring of C(X) in which a given subring R is embedded, S−1

R R, and characterizing growing maximal ideals
of R, various characterizations of R-P-spaces are investigated. In Section 3, we study R-P-spaces for the case
that R is an intermediate ring of C(X). We will observe that whenever R is an intermediate ring of C(X), then
R-P-spaces coincide with P-spaces. Some algebraic characterizations of P-spaces via intermediate rings
follows from this fact. Moreover, by establishing a characterization of C(X) among its intermediate rings,
some results of [14] are proved by a different way. In Section 4, we study R-P-spaces with the restriction
that R is an intermediate C-ring of C(X). As an special case, we consider intermediate C-rings of the form
I + C∗(X) where I is an ideal of C(X). This is done by identifying the realcompactifications that ideals of
C(X) generate.

2. R-P-Spaces

Recall that a topological space X is called an R-P-space, where R is a subring of C(X), if Mp(R) = Op(R)
for every p ∈ βX. Clearly, every P-space is an R-P-space. However, the converse of this statement does not
hold, in general. For example, every topological space X is trivially anR-P-space; see also Example 2.6 and
Example 2.10 in below. For a subring R of C(X), we use SR to denote the set of all elements of R which are
invertible in C(X). It is evident thatSR is a multiplicative subset of R. The ring of fractions of R with respect
to SR is denoted by S−1

R R. For an ideal I of R and idealJ in S−1
R R, we denote by Ie andJ c, the extension of I
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and contraction of J with respect to the identity mapping of R into S−1
R R, respectively; see [24]. Hereafter,

we denote S−1
R R by Re.

Proposition 2.1. For a subring R of C(X), Re is the smallest invertible subring of C(X) in which R is embedded.

Proof. It is easy to see that Z( f
1
) = Z( f ) for each f ∈ R and 1 ∈ SR. Therefore, Re is an invertible subring.

Also, clearly, Re contains a copy of R. Now, let Q be an invertible subring of C(X) in which R is embedded
and f

s ∈ Re. Hence, f ∈ R and s ∈ SR such that Z(s) = ∅. As Q is an invertible subring in which R is
embedded and s ∈ Q, we have f , s, 1

s ∈ Q and hence f
s ∈ Q. Thus, Re

⊆ Q which completes the proof.

For a subring R of C(X), we use clβXZ(R) to denote {clβXZ( f ) : f ∈ R}. Clearly, clβXZ(R) is an open
base for a topology on βX which we call clβXZ(R)-topology. Using this topology, we characterize maximal
growing ideals of R by the next proposition. Note that this proposition is first stated in [3] and we prove it
here for the sake of completeness.

Proposition 2.2. The following statements hold for a subring R of C(X):
(a) Every maximal growing ideal of R is of the form Mp(R) for some p ∈ βX.
(b) An ideal I of R is a growing ideal if and only if there exists p ∈ βX such that I ⊆Mp(R).
(c) Mp(R) is a maximal growing ideal for every p ∈ βX if and only if clβXZ is clopen in the clβXZ(R)-topology for

every Z ∈ Z(R).

Proof. (a) Suppose that M is a maximal growing ideal of R. Hence, clβXZ(M) has the finite intersection
property. Thus, there exists p ∈ ∩ f∈MclβXZ( f ) and hence M ⊆Mp(R). Also, clearly, Mp(R) is a growing ideal.
Consequently, M = Mp(R).

(b⇒) This is obvious by using part (a) and the fact that every growing ideal is contained in a maximal
growing ideal.

(b⇐) By part (a), Mp(R) is a maximal growing ideal in R for each p ∈ βX. Also, if I is an ideal in R such
that I ⊆ Mp(R), then for each f ∈ I, we will have Z( f ) , ∅, since, f ∈ Mp(R). This means that I is a growing
ideal.

(c⇒) Suppose that p ∈ βX \ clβXZ( f ) for some f ∈ R. Thus, f < Mp(R) and since Mp(R) is a maximal
growing ideal, there exists 1 ∈Mp(R) such that Z( f )∩Z(1) = ∅. Hence, p ∈ clβXZ(1) and clβXZ( f )∩clβXZ(1) = ∅
which implies that clβXZ( f ) is clopen in the clβXZ(R)-topology.

(c⇐) Assume that p ∈ βX and f < Mp(R). Thus, p < clβXZ( f ) and by our hypothesis, there exists 1 ∈Mp(R)
such that clβXZ( f ) ∩ clβXZ(1) = ∅; i.e., Z( f ) ∩ Z(1) = ∅. Therefore, Mp(R) is a maximal growing ideal.

Proposition 2.3. For a subring R of C(X), we have (Mp(R))e = Mp(Re) and (Op(R))e = Op(Re) for each p ∈ βX.

Proof. If f
s ∈ (Mp(R))e, then f ∈ Mp(R) and s ∈ SR. Hence, p ∈ clβXZ( f ) = clβXZ( f

s ). This means that
f
s ∈ Mp(Re); i.e., (Mp(R))e

⊆ Mp(Re). Conversely, if f
s ∈ Mp(Re), then p ∈ clβXZ( f

s ) = clβXZ( f ). This implies
that f ∈ Mp(R) and thus f

s ∈ (Mp(R))e; i.e., Mp(Re) ⊆ (Mp(R))e and hence the first equality follows. The
second equality could be proved by a similar reasoning.

A subring R of C(X) is called β-determining, if {Z( f ∗) : f ∈ R} constitutes a base for the closed sets of
βX. This class of subrings is first introduced in [17]. It is evident that every intermediate ring of C(X) is a
β-determining subring, however, the converse of this statement does not hold, in general. For example, it
follows from [17, Theorem 2.8] and [19, Remark 1.7] that Mp + R, for each p ∈ βR \ R, is a β-determining
subring of C(R) which, by [17, Theorem 2.9], [18, Theorem 5.7] and [19, Remark 2.13], is not an intermediate
ring; see also [15]. It should be noted that whenever R is a β-determining subring, then Z(R) is a base for the
closed sets of X. However, the converse of this fact does not hold, in general. For example, the mentioned
subring Mp + R of C(R), where p ∈ βR \ R, is not a β-determining ring. However, by [19, Remark 4.3],
Z(Mp +R) constitutes a base for the closed subsets of R.

The next statement generalizes [11, 7.12 (b) and 7.13] to the β-determining subrings of C(X).
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Lemma 2.4. Suppose that R is a β-determining subring of C(X). Then the following statements hold:
(a) If f ∈ Op(R), then there exists 1 < Mp(R) such that f1 = 0.
(b) If P is a prime ideal of R contained in Mp(R), then Op(R) ⊆ P.
(c) If P is a growing prime ideal in R, then there exists a unique p ∈ βX such that Op(R) ⊆ P ⊆Mp(R).

Proof. (a) Assume that f ∈ Op(R). Thus, p ∈ intβXclβXZ( f ) and, by our hypothesis, there exists 1 ∈ R such
that p ∈ (βX \ Z(1∗)) ⊆ intβXclβXZ( f ). Thus, p < Z(1∗) which means 1 < Mp(R) and X \ Z(1) ⊆ intXZ( f ) which
implies that f1 = 0.

(b) Assume that f ∈ Op(R), by part (a), there exists 1 < Mp(R) such that f1 = 0 ∈ P and consequently
f ∈ P.

(c) As P is a growing ideal, by Proposition 2.2, there exists p ∈ βX such that P ⊆ Mp(R). Thus, by part
(b), Op(R) ⊆ P. Now, let P ⊆ Mp(R) and P ⊆ Mq(R) for two distinct points p, q ∈ βX. As R is β-determining,
there exist f , 1 ∈ R such that p ∈ βX \ Z( f ∗), q ∈ βX \ Z(1∗) and (βX \ Z( f ∗)) ∩ (βX \ Z(1∗)) = ∅. It follows
that p ∈ βX \ Z( f ∗) ⊆ Z(1∗) which means p ∈ intβXZ(1∗). Thus, p ∈ intβXclβXZ(1), since, as p ∈ intβXZ(1∗),
there exists an open set U in βX such that p ∈ U ⊆ Z(1∗) which implies p ∈ U ⊆ clβXU = clβX(U ∩ X) ⊆
clβX(Z(1∗) ∩ X) = clβXZ(1). Hence, 1 ∈ Op(R) ⊆ P ⊆Mq(R) which is a contradiction.

Theorem 2.5. Let R be a subring of C(X). The following statements are equivalent:
(a) X is an R-P-space.
(b) X is an Re-P-space.
(c) clβXZ = intβXclβXZ for every Z ∈ Z(R).
(d) Z = intXZ for every Z ∈ Z(R).
(e) Mx(R) = Ox(R) for every x ∈ X.

In addition, if R is a β-determining subring, then the following statements are equivalent to the above:
(f) Every fixed maximal growing ideal of R is a minimal prime ideal.
(g) Every maximal growing ideal of R is a minimal prime ideal.
(h) Re is a regular ring.

Proof. The implications (a⇔c), (c⇒d) and (d⇔e) are easy to prove.
(a⇒b) This is evident by Proposition 2.3.
(b⇒a) Let f ∈Mp(R). Hence, p ∈ clβXZ( f ). As f

1 ∈Mp(Re) and Z( f ) = Z( f
1 ), by our hypothesis, we would

have p ∈ intβXclβXZ( f
1 ) = intβXclβXZ( f ); i.e., f ∈ Op(R).

(d⇒c) By our hypothesis, each Z ∈ Z(R) is clopen in X and thus, by [11, 6.9 (c)], clβXZ is clopen in βX for
each Z ∈ Z(R). This implies that clβXZ = intβXclβXZ for each Z ∈ Z(R).

(e⇒f) By Proposition 2.2, every maximal growing ideal in R is of the form Mp(R) for some p ∈ βX and
clearly, Mp(R) is fixed if and only if p ∈ X. Thus, every fixed maximal growing ideal in R is of the form
Mx(R) for some x ∈ X.

Now, if Mx(R) is not a minimal prime ideal in R, then there exists a prime ideal P properly contained in
Mx(R). By Lemma 2,4, we would have Ox(R) ⊆ P which contradicts our hypothesis.

(f⇒e) Assume on the contrary that Mx(R) , Ox(R) for some x ∈ X, then there exists some f ∈ Mx(R) \
Ox(R). This means that f ∈ C(X) and f ∈ Mx \ Ox. Thus, by [11, 4I, 6], there exists s prime ideal P in C(X)
such that Ox ⊆ P and f < P. It follows that P∩R is a prime ideal in R which is properly contained in Mp(R).
This contradicts our hypothesis.

(c⇒g) By Proposition 2.2, every maximal growing ideal in R is of the form Mp(R) for some p ∈ βX.
Assume on the contrary that Mp(R) is not a minimal prime ideal for some p ∈ βX. Thus, there exists a
prime ideal P in R which properly contained in Mp(R). By Lemma 2.4, Op(R) ⊆ P. Thus, there exists some
f ∈Mp(R) \Op(R). This means that clβXZ( f ) , intβXclβXZ( f ) which is a contradiction.

(g⇒c) Let clβXZ( f ) , intβXclβXZ( f ) for some f ∈ R. Hence, Mp(R) , Op(R) for some p ∈ clβXZ( f ) \
intβXclβXZ( f ). Thus, there exists some f ∈ Mp

\ Op and hence, by [11, 7H, 6], there exists a prime ideal P
in R such that Op

⊆ P and f < P. This implies that Mp(R) is not a minimal prime ideal in R, however, is a
maximal growing ideal.
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(b⇒h) As Re is an invertible subring, maximal ideals of Re coincide with its maximal growing ideals
and are of the form Mp(Re) for p ∈ βX. Now, we show that every prime ideal in Re is maximal. Let P be
a prime ideal in Re. Then Pc is evidently a growing prime ideal in R. Thus, by Lemma 2.4, there exists a
unique p ∈ βX such that Op(R) ⊆ Pc

⊆ Mp(R). It follows that Pce = P = (Mp(R))e = Mp(Re) which means P is
a maximal ideal in Re. Therefore, by [12, Theorem 1.16], Re is a regular ring.

(h⇒b) Assume on the contrary that Mp(Re) , Op(Re). As, clearly, Op(Re) is a semiprime ideal (is an
intersection of prime ideals) in Re , there exists a prime ideal P in Re such that Op(Re) ⊆ P and P , Mp(Re).
Thus, Pc is a growing prime ideal in R and hence, by Lemma 2.4, there exists a unique q ∈ βX such that
Oq(R) ⊆ Pc

⊆ Mq(R). We claim that p = q. If p , q, similar to the proof of part (c) of Lemma 2.4, there
exist f , 1 ∈ R such that p ∈ βX \ Z( f ∗), q ∈ βX \ Z(1∗) and (βX \ Z( f ∗)) ∩ (βX \ Z(1∗)) = ∅. It follows that
p ∈ βX \ Z( f ∗) ⊆ Z(1∗). Hence, p ∈ intβXclβXZ(1) and q < Z(1∗). These imply 1

1 ∈ Op(Re) ⊆ P ⊆ Mq(Re) which
is a contradiction, since, q < Z(1∗) = Z(( 11 )∗). Therefore, P is a prime ideal in Re which is not maximal. This
contradicts regularity of Re.

It follows from Theorem 2.5 that in studying R-P-spaces, without lose of generality, we could consider
R as an invertible subring. By the following examples, we investigate non-trivial instances of R-P-spaces
which are not P-space.

Example 2.6. For a topological space X, we denote by Cc(X) the subring of C(X) consisting of all functions
with countable image; see [10] for details about this subring. Now, let Y be a connected space with more
than one point, Z be a P-space and X = Y

⊕
Z be the free union of the spaces Y and Z. It clearly follows

that Cc(X) � Cc(Y) × Cc(Z) � R × Cc(Z), since, as Y is a connected space, Cc(Y) = R. Also, as Z is a P-space,
it is a Cc-P-space which, by [10, Theorem 5.8], implies that Cc(Z) and thus Cc(X) is a regular ring. Hence, by
[10, Theorem 5.8], X is a Cc-P-space. However, X is not a P-space, since, Y is a subspace of X which is not a
P-space; see [11, 4K, 4]. Therefore, X is a Cc-P-space that is not a P-space.

Remark 2.7. In Theorem 2.5, the condition that R is a β-determining subring is not necessary for Re to be
a regular ring whenever X is an R-P-space. For instance, consider the space X constructed in Example 2.6.
From [10, Remark 2.3] it follows that Cc(X) is an invertible subring of C(X). Thus, S−1

Cc
Cc(X) = Cc(X). Also,

X is a Cc-P-space and Cc(X) is a regular ring. However, Cc(X) is not β-determining, since, otherwise, it
is inferred from [10, Proposition 4.4] that X is a zero-dimensional space and thus Y is a zero-dimensional
space which is impossible.

Remark 2.8. In Theorem 2.5, in general, the condition that R is a β-determining subring could not be
removed for X to be an R-P-space whenever Re is a regular ring. For example, let X = R and R be the
subring of C(X) consisting of one-variable polynomials. It is evident that R is not a β-determining subring
of C(X). Also, we could observe that f = x ∈ M0(R) \ O0(R) which implies that X is not an R-P-space.
However, Re is a field and hence is a regular ring.

Subrings of the form I + R where I is an ideal of C(X) are first introduced in [19] and more studied in
[4]. Using these subrings, we will construct another example of an R-P-space which is not a P-space. We
remind that an ideal I in C(X) is said to be a P-ideal if whenever I is considered as a non-unital subring, then
each prime ideal of I is maximal in I. This class of ideals is first introduced in [20] and more studied in [2].

Proposition 2.9. For an ideal I of C(X), let RI = I +R. Then the following statements are equivalent:
(a) X is an RI-P-space.
(b) I is a P-ideal.
(c) I +R is a regular ring.

Proof. (a⇒b) As X is an RI-P-space, by Theorem 2.5, Z( f ) is an open set in X for each f ∈ RI. Thus, by [4,
Proposition 2.10], I is a P-ideal.

(b⇒a) As I is a P-ideal, by [4, Proposition 2.10], Z( f ) is an open set in X for each f ∈ RI which, by
Theorem 2.5, implies that X is an RI-P-space.

(b⇔c) refer to [4, Proposition 2.10].
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Example 2.10. Let X = R
⊕
{σ} be the free union of the topological space R endowed with the usual

topology and the one-point discrete space {σ}. Also, let I = { f ∈ C(X) : R ⊆ Z( f )} and R = I + R. By [2,
Theorem 2.2], I is a P-ideal in C(X). Thus, by Proposition 2.9, X is an R-P-space. However, evidently, X is
not a P-space. It is worthwhile to note that I is the unique P-ideal of C(X).

3. P-Spaces and Intermediate Rings of C(X)

In this section, we study R-P-spaces with the restriction that R is an intermediate ring. Throughout this
section we use A(X) to denote an intermediate ring. It is obvious that S−1

A A(X) = C(X). Moreover, A(X)
is a β-determining subring and clβXZ( f ) is clopen in the clβXZ(A)-topology for each f ∈ A(X). Thus, by
Proposition 2.2, growing maximal ideals of A(X) are precisely the ideals Mp(A) for p ∈ βX. We need the
following lemma which shows that Op

A = { f ∈ A(X) : p ∈ intβXSA( f )} equals to Op(A) for each p ∈ βX.

Lemma 3.1. Let A(X) be an intermediate ring of C(X). Then for each f ∈ A(X) we have intβXSA( f ) = intβXclβXZ( f ).

Proof. As clβXZ( f ) ⊆ SA( f ), clearly, intβXclβXZ( f ) ⊆ intβXSA( f ). Conversely, if p ∈ intβXSA( f ), then there
exists an open subset U in βX such that p ∈ U ⊆ SA( f ). Hence, U ∩ X is a non-empty open subspace of X
such that U ∩ X ⊆ SA( f ) ∩ X = Z( f ). Thus, p ∈ U ⊆ clβXZ( f ) which means that p ∈ intβXclβXZ( f ).

By the following statement, we give some algebraic characterizations of P-spaces via intermediate rings
of C(X). This statement is also a generalization of [14, Theorem 2.5]. Recall that we use Mx(A) (resp., Ox(A))
instead of Mx(A) (resp., Ox(A)) for each x ∈ X. Also, Mx

A = Mx(A) and Ox
A = Ox(A) for each x ∈ X.

Proposition 3.2. Let A(X) be an intermediate ring of C(X). Then the following statements are equivalent:
a) X is a P-space.
b) Mp(A) = Op(A) for each p ∈ βX.
c) Mx(A) = Ox(A) for each x ∈ X.
d) Mx(A) is a minimal prime ideal in A(X) for each x ∈ X.
e) Mp(A) is a minimal prime ideal in A(X) for each p ∈ βX.

Proof. An easy consequence of Theorem 2.5.

In [14, Theorem 3.10] a characterization of C(X) among its intermediate rings is stated for the case that X
is a P-space. By the next statement, we investigate a characterization of C(X) among its intermediate rings
even when X is not a P-space which gives [14, Theorem 3.10] as a corollary. It should be noted that this
result is first stated in [5, Theorem 2.2] and we prove it here for the sake of completeness.

Theorem 3.3. The following statements are equivalent for an intermediate ring A(X).
(a) SA( f ) = clβXZ( f ) for each f ∈ A(X).
(b) Mp

A = Mp(A) for each p ∈ βX.
(c) M f (A(X)) = M f ∩ A(X) for each f ∈ A(X).
(d) Every z-ideal in A(X) is a zA-ideal.
(e) A(X) = C(X).

Proof. (a⇒b) This is evident.
(b⇒c) Let 1 ∈ M f ∩ A(X). Then Z( f ) ⊆ Z(1). Thus, if p ∈ SA( f ), then f ∈ Mp

A and hence, by our
hypothesis, f ∈ Mp(A(X)); i.e, p ∈ clβXZ( f ) which implies that p ∈ clβXZ(1). It follows that 1 ∈ Mp(A) = Mp

A
which menas p ∈ SA(1). Thus, SA( f ) ⊆ SA(1). Hence, by [15, Proposition 2.7], 1 ∈ M f (A(X)). Therefore,
M f ∩ A(X) ⊆ M f (A(X)). Conversely, let 1 ∈ M f (A(X)), then, by [15, Proposition 2.7], we have SA( f ) ⊆ SA(1)
and thus Z( f ) ⊆ Z(1). It follows that 1 ∈M f ∩ A(X) and thus the equality follows.

(c⇒d) Suppose that I is a z-ideal in A(X) and Z( f ) ⊆ Z(1) where f ∈ I and 1 ∈ A(X). We are to show that
1 ∈ I. As Z( f ) ⊆ Z(1), it follows that 1 ∈ M f ∩ A(X). Thus, by our hypothesis and the fact that I is a z-ideal,
we have 1 ∈M f ∩ A(X) = M f (A(X)) ⊆ I.



M. Parsinia / Filomat 32:1 (2018), 319–328 325

(d⇒e) Assume on the contrary that A(X) , C(X). Hence, there exists some f ∈ C(X) \A(X). Set 1 = 1
1+| f | .

It is clear that 1 ∈ C∗(X) ⊆ A(X), Z(1) = ∅ and 1−1 = 1 + | f | < A(X); i.e., 1 is a non-unit of A(X). Therefore,
SA(1) , ∅. Now, choose some p ∈ SA(1). It follows that Mp

A is a z-ideal in A(X) which is not a zA-ideal, since,
1 ∈Mp

A and Z(1) = ∅.
(e⇒a) This is evident, since, SC( f ) = clβXZ( f ) for each f ∈ C(X).

Proposition 3.4. ([14, Theorem 3.10]) Let X be a P-space and A(X) be an intermediate ring of C(X). Then
A(X) = C(X) if and only if Mp

A = Op
A for each p ∈ βX.

Proof. (⇒) As X is a P-space, clearly, we have Mp
C = Mp = Op = Op

C for each p ∈ βX.
(⇐) Evidently, Mp(A) ⊆ Mp

A for each p ∈ βX. Thus, by our hypothesis, we have Mp(A) ⊆ Mp
A = Op

A =

Op(A) ⊆Mp(A). Therefore, Mp
A = Mp(A) for each p ∈ βX. Hence, by Theorem 3.3, we have A(X) = C(X).

In [14, Proposition 3.6], it is shown that whenever A(X) is an intermediate ring of C(X) such that
A(X) , C(X), then there exists a non-maximal prime ideal in A(X). Using Theorem 3.3, we give a different
proof to this statement. Moreover, we specify that non-maximal prime ideal.

Proposition 3.5. [14, Proposition 3.6] Let A(X) be an intermediate ring of C(X) such that A(X) , C(X). Then there
exists a non-maximal prime ideal in A(X).

Proof. As A(X) , C(X), by Theorem 3.3, there exists some p ∈ βX such that Mp
A , Mp(A). Thus, clearly,

Mp(A) is a prime ideal in A(X) which is not maximal.

Using Proposition 3.5, a different proof is stated for [14, Proposition 3.2] by the next statement.

Proposition 3.6. [14, Proposition 3.2] Let A(X) be an intermediate ring of C(X). If A(X) , C(X), then A(X) is not
a regular ring.

Proof. Since A(X) , C(X), by Proposition 3.5, there exists some non-maximal prime ideal in A(X). Thus, by
[12, Theorem 1.16], A(X) is not a regular ring.

4. P-spaces and Intermediate C-Rings

In this section, we study R-P-spaces where R is assumed to be an intermediate C-ring of C(X). The
following theorem is a a characterization of intermediate C-rings of C(X) which reveals the role of the
mapping SA in intermediate C-rings of C(X) and investigates another approach to [21, Theorem 8]. Note
that we use f υA to denote the extension of f to the space υAX for each element f of an intermediate ring
A(X). In fact, f υA = f ∗|υAX .

Theorem 4.1. Let A(X) be an intermediate ring of C(X). Then A(X) is a C-ring if and only if SA( f ) = clβXZ( f υA )
for each f ∈ A(X).

Proof. Refer to [16, Theorem 2.2].

By the following example we give an instance of an intermediate ring A(X) which is not a C-ring and
specify an element f ∈ A(X) for which SA( f ) , clβXZ( f υA ). In this example, we use the notion of singly
generated intermediate rings over a given intermediate ring which is first introduced in [7] and more
studied in [9]. For an intermediate ring A(X) and f ∈ C(X), we use A(X)[ f ] to denote the singly generated
intermediate ring of C(X) over A(X) generated by f , which is clearly the smallest intermediate ring of C(X)
containing both A(X) and f . It is easy to see that A(X)[ f ] = {

∑n
i=0 f i1i : 1i ∈ A(X),n ∈ N ∪ {0}}. Moreover,

if f ≥ c > 0 for some c ∈ R, then C∗(X)[ f ] = {1 ∈ C(X) : |1| ≤ f n, for some n ∈ N}. An intermediate
ring A(X) of C(X) is called a singly generated intermediate ring over C∗(X), if there exists f ∈ C(X) such
that A(X) = C∗(X)[ f ]. We could easily observe that υA[ f ]X = υAX ∩ υ f X. It is stated in [9] that whenever
f is a non-negative unbounded element of C(X), then e f < C∗(X)[ f ] which implies that C∗(X)[ f ] is not a
C-ring, since, it is not closed under composition with elements of C(R). Furthermore, by [7, Corollary 3.4],
C∗(X)[ f ] = C∗(X)[1 + | f |]. Hence, every singly generated intermediate ring over C∗(X) is not a C-ring.
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Example 4.2. Let i : R −→ R be the identity mapping and f = 1+ |i|. Evidently, f ∗(p) = ∞ for each p ∈ βR\R.
Now, let A(R) = C∗(R)[ f ]. As stated above, A(R) is an intermediate ring of C(R) which is not a C-ring and
A(R) = {h ∈ C(R) : |h| ≤ f n, for some n ∈ N}. Hence, e f < A(R). If we set 1 = 1

1+e f , then 1 ∈ C∗(R) ⊆ A(R).
We claim that SA(1) = βR \R. Let p ∈ βR \R be given. Then, for each h ∈ A(R), as |h| ≤ f n for some n ∈N,
we would have |h| ≤ e f and thus (1h)∗(p) = 0; i.e., p ∈ SA(1). This proves our claim. Also, υAR = R. Thus,
Z(1υA ) = Z(1) = ∅ and SA(1) = βR \R; i.e., SA(1) , clβXZ(1υA ).

From Theorem 4.1, a characterization of maximal ideals in intermediate C-rings follows which is similar
to the Gelfand-Kolmogoroff theorem about maximal ideals of C(X).

Corollary 4.3. [21, Theorem 8] For the maximal ideals of an intermediate C-ring A(X), we have Mp
A = { f ∈ A(X) :

p ∈ clβXZ( f υA )} for p ∈ βX.

It is well-known that, for each f ∈ C∗(X), intβXZ( f β) = intβXclβXZ( f ). Using Lemma 3.1 and Theorem 4.1,
we generalize this fact to the intermediate C-rings.

Corollary 4.4. Let A(X) be an intermediate C-ring. Then for each f ∈ A(X) we have intβXclβXZ( f υA ) = intβXclβXZ( f ).

The following proposition gives some characterizations of C(X) among intermediate C-rings whenever
X is a P-space.

Proposition 4.5. Let X be a P-space and A(X) be an intermediate C-ring of C(X). The following statements are
equivalent:

(a) A(X) = C(X)
(b) Z( f υA ) is open in υAX for each f ∈ A(X).
(c) υAX is a P-space.

Proof. (a⇒b) This is evident, since, as X is a P-space, by [11, 14.29], υX = υCX is also a P-space.
(b⇒c) Using Theorem 4.1, it is easy to observe that Mp

A = Op(A) for each p ∈ βX and thus by Proposition
3.4 we are done.

(c⇒a) As υAX is a P-space, C(υAX) is a regular ring and thus, by using [6, Theorem 1.3], A(X) is a regular
ring. Hence, by Proposition 3.6, we have A(X) = C(X).

The next example presents an instance of an intermediate ring A(X) for which υAX is a P-space, however,
A(X) , C(X).

Example 4.6. Let i : N −→ R be the identity mapping. Evidently, i∗(p) = ∞ for each p ∈ βN \N. Set
A(N) = C∗(N)[i]. It follows that A(N) is an intermediate ring of C(N) which is not a C-ring and υAN = N.
Thus, υAN is a P-space. Also, Z( f υA ) is open in υAN for each f ∈ A(N). However, clearly, A(N) , C(N).

In the final part of this section, we consider the class of intermediate C-rings of C(X) of the form I +C∗(X)
where I is an ideal of C(X). This class of intermediate rings is first introduced in [7] and more studied in [3].
As stated in [7, 2.4], for each ideal I of C(X), I + C∗(X) is the smallest intermediate ring which contains the
ideal I. Moreover, I + C∗(X) = Z−1(Z[I]) + C∗(X) where Z−1(Z[I]) is the smallest z-ideal in C(X) containing I.
Furthermore, it follows from [7, 2.5] that each subring I + C∗(X) is an intermediate C-ring, in fact, I + C∗(X)
is isomorphic to C(X ∪ θ(I)) where θ(I) =

⋂
f∈I clβXZ( f ). The next statement determines the real compact

spaces induced by ideals of C(X) which is an special case of [3, Proposition 2.3].

Proposition 4.7. For each ideal I in C(X), υIX = υX ∪ θ(I).

Proof. Clearly, υX ∪ θ(I) ⊆ υIX. Now, whenever p < υX ∪ θ(I), there exist f ∈ C(X) and 1 ∈ I such that
f ∗(p) = ∞ and p < clβXZ(1). Thus, there exists h ∈ C∗(X) such that p < Z(hβ) and clβXZ(1) ⊆ intβXZ(hβ). It
follows from the later inclusion that there exists k ∈ C(X) such that h = 1k. It clearly follows that f h = f1k ∈ I
and ( f h)∗(p) = ∞which means that p < υIX and completes the proof.
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It follows from Proposition 4.7 that for an ideal I in C(X), we have

υIX = υI+C∗(X)X = υX ∪ θ(I).

It is well-known that M∗p = Mp
∩ C∗(X) if and only if p ∈ υX. Using Proposition 4.7, we generalize this

fact to the subrings of the form I + C∗(X) by the following statement.

Theorem 4.8. Let AI = I+C∗(X) where I is an ideal of C(X). Then Mp
AI

= Mp(AI) if and only if p ∈ (βX\υAI X)∪υX.

Proof. Refer to [3, Proposition 4.7].

The next statement easily follows from Theorem 4.8 and investigates a characterization of C(X) among
intermediate C-rings of the form I + C∗(X) where I is an ideal of C(X).

Corollary 4.9. Let AI(X) = I + C∗(X) where I is an ideal in C(X). The following statements are equivalent:
(a) I + C∗(X) = C(X).
(b) θ(I) ⊆ υX.
(c) υIX = υX.
Moreover, if X is a P-space, then the above conditions are equivalent to the following.
(d) υIX is a P-space

Proof. Using Proposition 4.7, we can easily observe that (a) to (c) are equivalent.
(c⇒d) This is clear by Proposition 4.7.
(d⇒b) By our hypothesis, υX is a P-space. Hence, as υX ∪ θ(I) is also a P-space, we have θ(I) ⊆ υX and

thus we are done.
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