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Abstract. It was shown in [15, 16] that there does not exist any warped product submanifold of a Kaehler
manifold such that the spherical manifold of the warped product is proper slant. In this paper, we introduce
the notion of warped product submanifolds with a slant function. We show that there exists a class of non-
trivial warped product submanifolds of a Kaehler manifold such that the spherical manifold is pointwise
slant by giving an example and a characterization theorem. We also prove that if the warped product is
mixed totally geodesic then the warping function is constant.

1. Introduction

In [8], B.-Y. Chen and O.J. Garay introduced the notion of pointwise slant submanifolds of an almost
Hermitian manifold and they have obtained many interesting result and gave a method how to construct
such submanifolds in Euclidean space. They defined these submanifolds as follows: For any non-zero vector
X ∈ TpM, p ∈ M, the angle θ(X) between JX and the tangent space TpM is called the Wirtinger angle of X.
The Wirtinger angle gives rise a real-valued function θ : TM− {0} → R, called a wirtinger function, defined
on the set T∗M = TM− {0} consisting of all nonzero vectors on M. A submanifold M of an almost Hermitian
manifold M̃ is called pointwise slant if, at each point p ∈ M, the Wirtinger angle θ(X) is independent of the
choice of the nonzero tangent vector X ∈ T∗pM. In this case, θ can be regarded as a function on M, which is
called the slant function of the pointwise slant submanifold. We note that the poitwise slant submanifolds
have been studied in [11] by F. Etayo under the name of quasi-slant submanifolds. We also note that every
slant submanifold is pointwise slant but converse may not be true. These submanifolds are also studied in
[14].

On the other hand, the geometry of warped product submanifolds became an active field of research
after Chen’ papers on the geometry of warped product CR-submanifolds [4, 5]. He proved that there do not
exist warped product submanifolds of the form M⊥ × f MT in a Kaehler manifold M̃. Then he introduced
the notion of CR-warped products of Kaehler manifolds as follows: A submanifold of a Kaehler manifold
is called the CR-warped product if it is the warped product of the form MT × f M⊥, where MT and M⊥ are
holomorphic and totally real submanifolds of M̃, respectively. He obtained several fundamental results
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including, a characterization and a sharp inequality for the squared norm of the second fundamental form
‖h‖2. Later on, Sahin [15] proved that there do not exist warped product submanifolds of the form MT× f Mθ

and Mθ × f MT such that MT and Mθ are holomorphic and proper slant submanifolds of M̃, respectively.
Using the notion of pointwise slant submanifolds, Sahin introduced pointwise semi-slant submanifolds of
Kaehler manifolds and investigated their warped products [17].

Moreover, in [16], Sahin also proved the non-existence of warped product submanifolds M⊥ × f Mθ of a
Kaehler manifold M̃, where M⊥ is a totally real submanifold and Mθ is a proper slant submanifold of M̃.
Then he introduced the notion of hemi-slant warped products Mθ × f M⊥. He provided many examples of
such submanifolds and obtained interesting results, including a characterization and an inequality. In this
paper, first we define pointwise hemi-slant submanifolds of Kaehler manifolds and then we show that there
exists a class of non-trivial warped product submanifolds of the form M⊥ × f Mθ in a Kaehler manifold M̃
such that M⊥ and Mθ are totally real and proper pointwise slant submanifolds of M̃, respectively. We note
that one of the characterization result of such warped products is given in [18] by using different technique.
It is also notice that the warped product hemi-slant submanifolds of almost Hermitian manifolds were
studied under the name of warped product pseudo-slant submanifolds in [18–20].

As we know that there exist nontrivial warped product submanifolds of the from Mθ× f M⊥ in a Kaehler
manifold M̃ such that Mθ is proper slant (see [16]) and if we assume that Mθ is poitwise then the warped
product poitwise hemi-slant submanifolds of the form Mθ × f M⊥ is a special case of warped product hemi-
slant submanifolds Mθ × f M⊥. Thus, we shall leave this case for the repetition purpose i.e., there is no
meaning to study warped product pointwise hemi-slant submanifolds of the form Mθ × f M⊥; while Mθ is
pointwise slant. For the survey on this topic we refer to Chen’s books [6, 9] and his survey article [7]. We
also note that, in [21], we studied warped product bi-slant submanifolds of Kaehler manifolds which is a
more general case of warped product submanifolds.

The paper is organised as follows: In Section 2 we give basic information needed for this paper. In
Section 3, we define and studied pointwise hemi-slant submanifolds of Kaehler manifolds. In Section 4,
we study warped product pointwise hemi-slant submanifolds of the form M⊥ × f Mθ in Kaehler manifolds
such M⊥ is a totally real submanifold and Mθ is a pointwise submanifold. In this section, we provide an
example and present a characterization theorem for such warped products.

2. Preliminaries

Let (M̃, J, 1) be an almost Hermitian manifold with almost complex structure J and a Riemannian metric
1 such that

J2 = −I, (1)
1(JX, JY) = 1(X,Y) (2)

for all X,Y ∈ X(M̃), where I is the identity map.
Let ∇̃ denote the Levi-Civita connection on M̃. If the almost complex structure J satisfies

(∇̃X J)Y = 0 (3)

for X,Y ∈ X(M̃), then M̃ is called a Kaehler manifold.
Let M be a Riemannian manifold isometrically immersed in M̃. Then M is called a complex submanifold

if J(TxM) ⊆ TxM for any x ∈ M, where TxM is the tangent space of M at x. The submanifold M is called
totally real if J(TxM) ⊆ T⊥x M for any x ∈M, where T⊥x M denotes the normal space of M at x.

Let M be a Riemannian manifold isometrically immersed in M̃ and denote by the same symbol 1 the
Riemannian metric induced on M. Let Γ(TM) be the Lie algebra of vector fields in M and Γ(T⊥M), the set
of all vector fields normal to M. Let ∇ be the Levi-Civita connection on M, then the Gauss and Weingarten
formulas are respectively given by

∇̃XY = ∇XY + h(X,Y) (4)
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and

∇̃XN = −ANX + ∇⊥XN (5)

for any X,Y ∈ Γ(TM) and N ∈ Γ(T⊥M), where ∇⊥ is the normal connection in the normal bundle T⊥M and
AN is the shape operator of M with respect to N. Moreover, h : TM×TM→ T⊥M is the second fundamental
form of M in M̃. Furthermore, AN and h are related by [22]

1(h(X,Y),N) = 1(ANX,Y) (6)

for any X,Y ∈ Γ(TM) and N ∈ Γ(T⊥M).
For any X tanget to M, we write

JX = PX + FX, (7)

where PX and FX are the tangential and normal components of JX, respectively. Then P is an endomorphism
of tangent bundle TM and ω is a normal bundle valued 1-form on TM. Similarly, for any vector field N
normal to M, we put

JN = tN + f N, (8)

where tN and f N are the tangential and normal components of JN, respectively. Moreover, from (2) and
(7), we have 1(PX,Y) = −1(X,PY), for any X,Y ∈ Γ(TM).

A submanifold M of a locally product Riemnnian manifold M̃ is said to be totally umbilical submanifold
if h(X,Y) = 1(X,Y)H, for any X,Y ∈ Γ(TM), where H = 1

n
∑n

i=1 h(ei, ei) , the mean curvature vector of M. A
submanifold M is said to be totally geodesic if h(X,Y) = 0. A totally umbilical submanifold of dimension
greater than or equal to 2 with non-vanishing parallel mean curvature vector is called an extrinsic sphere.

A (differentiable) distributionD defined on a submanifold M of (M̃, J, 1) is called pointwise θ-slant if, for
each point p ∈ M, the Wirtinger angle θ(X) between JX andD is independent of the choice of the nonzero
vector X ∈ D (cf. [2, 3, 8]). A pointwise θ-slant distribution is called slant if θ is globally constant. Also,
it is holomorphic or complex if θ = 0; and it is called totally real if θ = π

2 , globally. A poitwise θ-slant
distribution is called proper pointwise slant whenever θ , 0, π2 and θ is not a constant.

From Chen’s result (Lemma 2.1) of [8], it is known that M is a pointwise slant submanifold of an almost
Hermitian manifold M̃ if and only if

P2 = −(cos2 θ)I, (9)

for some real-valued function θ defined on M, where I denotes the identity transformation of the tangent
bundle TM of M. The following relations are the consequences of (9) as

1(PX,PY) = cos2 θ 1(X,Y), (10)

1(FX,FY) = sin2 θ 1(X,Y) (11)

for any X,Y ∈ Γ(TM). Another important relation for a poitwise slant submanifold of an almost Hermitian
manifold is obtained by using (1), (7), (8) and (9) as

tFX = −(sin2 θ) X, f FX = −FPX (12)

for any X ∈ Γ(TM).
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3. Pointwise Hemi-slant Submanifolds

In this section, we study pointwise hemi-slant submanifolds of Kaehler manifolds. First, we define
these submanifolds as follows.

Definition 3.1. Let M̃ be a Kaehler manifold and M a real submanifold of M̃. Then, we say that M is a pointwise
hemi-slant submanifold if there exists a pair of orthogonal distributionsD⊥ andDθ on M such that

(i) The tangent space TM admits the orthogonal direct decomposition TM = D⊥ ⊕Dθ.
(ii) The distributionD⊥ is totally real, i.e. J(D⊥) ⊂ T⊥M.

(iii) The distributionDθ is pointwise slant with slant function θ.

In the above definition, the angle θ is called the slant function of the pointwise slant distribution Dθ.
The totally real distribution D⊥ of a pointwise hemi-slant submanifold is a pointwise slant distribution
with slant function θ = π

2 . If we denote the dimensions ofD⊥ andDθ by m1 and m2, respectively, then we
have the following possible cases:

(i) If m1 = 0, then M is a pointwise slant submanifold.
(ii) If m2 = 0, then M is a totally real submanifold.

(iii) If m1 = 0 and θ = 0, then M is a holomorphic submanifold.
(iv) If θ is constant on M, then M is a hemi-slant submanifold with slant angle θ.
(v) If θ = 0, then M is a CR-submanifold.

We note that a pointwise hemi-slant submanifold is proper if m1 , 0 and θ is not a constant. The normal
bundle T⊥M of a poitwise hemi-slant submanifold M is decomposed by

T⊥M = ϕD⊥ ⊕ FDθ, ϕD⊥ ⊥ FDθ.

Now, we give the following useful lemma.

Lemma 3.2. Let M be a pointwise hemi-slant submanifold of a Kaehler manifold M̃. Then the totally real distribution
D
⊥ is always integrable.

The proof of Lemma 3.2 is similar to Theorem 3.5 of [16].

Lemma 3.3. Let M be a pointwise hemi-slant submanifold of a Kaehler manifold M̃. Then

(i) For any X,Y ∈ Γ(Dθ) and Z ∈ Γ(D⊥), we have

cos2 θ 1(∇XY,Z) = 1(AJZPY,X) − 1(AFPYZ,X). (13)

(ii) For any Z,V ∈ Γ(D⊥) and X ∈ Γ(Dθ), we have

cos2 θ 1(∇ZV,X) = 1(AFPXV,Z) − 1(AJVPX,Z). (14)

Proof. We prove (i) and (ii) in a similar way. For any X,Y ∈ Γ(Dθ) and Z ∈ Γ(D⊥), we have

1(∇XY,Z) = 1(∇̃XY,Z) = 1(J∇̃XY, JZ).

Using (3) and (7), we obtain

1(∇XY,Z) = 1(∇̃XPY, JZ) + 1(∇̃XFY, JZ)

= 1(h(X,PY), JZ) − 1(∇̃X JFY,Z).

Then from (8), we get

1(∇XY,Z) = 1(h(AJZPY,X) − 1(∇̃XtFY,Z) − 1(∇̃X f FY,Z).
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Thus from (12), we derive

1(∇XY,Z) = 1(h(AJZPY,X) + 1(∇̃X sin2 θY,Z) + 1(∇̃XFPY,Z).

= 1(h(AFZPY,X) + sin2 θ 1(∇̃XY,Z) + sin 2θX(θ) 1(Y,Z)
− 1(AFPYX,Z).

Then by the orthogonality of two distributions and the symmetry of the shape operator, we get (i). In a
similar way we can prove (ii).

4. Warped Products M⊥ × f Mθ in Kaehler Manifolds

In [1], Bishop and O’Neill introduced the notion of warped product manifolds as follows: Let M1 and M2
be two Riemannian manifolds with Riemannian metrics 11 and 12, respectively, and a positive differentiable
function f on M1. Consider the product manifold M1 ×M2 with its projections π1 : M1 ×M2 → M1 and
π2 : M1 ×M2 → M2. Then their warped product manifold M = M1 × f M2 is the Riemannian manifold
M1 ×M2 = (M1 ×M2, 1) equipped with the Riemannian structure such that

1(X,Y) = 11(π1?X, π1?Y) + ( f ◦ π1)212(π2?X, π2?Y)

for any vector field X,Y tangent to M, where ? is the symbol for the tangent maps. A warped product
manifold M = M1 × f M2 is said to be trivial or simply a Riemannian product manifold if the warping function
f is constant. Let X be an unit vector field tangent to M1 and Z be an another unit vector field on M2, then
from Lemma 7.3 of [1], we have

∇XZ = ∇ZX = X(ln f )Z (15)

where ∇ is the Levi-Civita connection on M. If M = M1 × f M2 be a warped product manifold then the base
manifold M1 is totally geodesic in M and the fiberM2 is totally umbilical in M [1, 4].

Analogous to CR-warped products introduced in [4], we define the notion of warped product pointwise
hemi-slant submanifolds as follows.

Definition 4.1. A warped product M⊥ × f Mθ of totally real and pointwise slant submanifolds M⊥ and Mθ

of an almost Hermitian manifold (M̃, J, 1) is called a warped product pointwise hemi-slant submanifold.
A warped product pointwise hemi-slant submanifold M⊥× f Mθ is called proper if Mθ is proper pointwise

slant and M⊥ is totally real in M̃. Otherwise, M⊥ × f Mθ is called non-proper.

In [16], Sahin proved that there are no warped product hemi-slant submanifolds of the form M⊥ × f Mθ

in a Kaehler manifold M̃ such that Mθ is proper slant. But if we assume that Mθ is a pointwise slant
submanifold of M̃, then there exists a class of nontrivial warped products.

Next, we provide an example of warped product pointwise hemi-slant submanifold of the form M⊥× f Mθ

such Mθ is a pointwise slant submanifold.
Let E2n be the Euclidean 2n-space with the standard metric and let Cn denote the complex Euclidean

n-space (E2n, J) equipped with the canonical complex structure J defined by

J(x1, y1, . . . , xn, yn) = (−y1, x1, . . . ,−yn, xn).

Thus we have

J
(
∂
∂xi

)
= −

∂
∂yi

, J
(
∂
∂yi

)
=

∂
∂xi

, i = 1, . . . ,n. (16)
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Example 4.2. Consider a submanifold M of R10 defined by

φ(u, v,w) = (u cos v,u sin v,u cos w,u sin w,−v + w, v + w,−u cos v,u sin v,
− u cos w,u sin w).

such that u , 0 is a real valued function on M. It is easy to see that the tangent bundle TM of M is spanned
by the following vectors

Z1 = cos v
∂
∂x1

+ sin v
∂
∂y1

+ cos w
∂
∂x2

+ sin w
∂
∂y2
− cos v

∂
∂x4

+ sin v
∂
∂y4
− cos w

∂
∂x5

+ sin w
∂
∂y5

,

Z2 = −u sin v
∂
∂x1

+ u cos v
∂
∂y1
−

∂
∂x3

+
∂
∂y3

+ u sin v
∂
∂x4

+ u cos v
∂
∂y4

,

Z3 = −u sin w
∂
∂x2

+ u cos w
∂
∂y2

+
∂
∂x3

+
∂
∂y3

+ u sin w
∂
∂x5

+ u cos w
∂
∂y5

.

Then, using the canonical complex structure (16) of R10, we have

JZ1 = − cos v
∂
∂y1

+ sin v
∂
∂x1
− cos w

∂
∂y2

+ sin w
∂
∂x2

+ cos v
∂
∂y4

+ sin v
∂
∂x4

+ cos w
∂
∂y5

+ sin w
∂
∂x5

,

JZ2 = u sin v
∂
∂y1

+ u cos v
∂
∂x1

+
∂
∂y3

+
∂
∂x3
− u sin v

∂
∂y4

+ u cos v
∂
∂x4

,

JZ3 = u sin w
∂
∂y2

+ u cos w
∂
∂x2
−

∂
∂y3

+
∂
∂x3
− u sin w

∂
∂y5

+ u cos w
∂
∂x5

.

It is clear that JZ1 is orthogonal to TM. Thus D⊥ = Span{Z1} is a totally real distribution. Moreover, it is
easy to see thatDθ = Span{Z2,Z3} is a pointwise slant distribution with slant function θ = cos−1

(
1

1+u2

)
. It is

easy to verify that both distributionsD⊥ andDθ are completely integrable. Let M⊥ and Mθ be the integral
manifolds ofD⊥ andDθ, respectively. Then the metric tensor of M is given by

1 = 4du2 +
(
2 + 2u2

) (
dv2 + dw2

)
= 1M⊥ +

(√
2(1 + u2)

)2
1Mθ ,

where 1Mθ and 1M⊥ are the metric tensors of Mθ and M⊥, respectively. Consequently, M = M⊥ × f Mθ is a
warped product pointwise hemi-slant submanifold of R10 with warping function f =

√
2(1 + u2) and the

slant function θ = cos−1
(

1
1+u2

)
.

Now, we investigate the geometry of the warped product pointwise hemi-slant submanifolds of form
M⊥ × f Mθ. First, we prove the following useful lemma for later use.

Lemma 4.3. Let M = M⊥ × f Mθ be a warped product pointwise hemi-slant submanifold of a Kaehler manifold M̃.
Then
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(i) 1(h(Z,V),FX) = 1(h(X,Z), JV);
(ii) 1(h(X,Y), JZ) = Z(ln f ) 1(X,PY) + 1(h(X,Z),FY)

for any Z,V ∈ Γ(TM⊥) and X,Y ∈ Γ(TMθ).

Proof. For any Z,V ∈ Γ(TM⊥) and X ∈ Γ(TMθ), we have

1(h(Z,V),FX) = 1(∇̃ZV,FX)

= 1(∇̃ZV, JX) − 1(∇̃ZV,PX)

= −1(∇̃Z JV,X) − 1(∇̃ZPX,V).

Then from (4), (5) and (15), we obtain

1(h(Z,V),FX) = 1(AJVZ,X) + Z(ln f ) 1(PX,V).

From the orthogonality of the vector fields and (5), we find

1(h(Z,V),FX) = −1(h(X,Z), JV)

which is (i). For the second part of the lemma, we have

1(h(X,Y), JZ) = 1(∇̃XY, JZ) = −1(∇̃X JY,Z)

for any X,Y ∈ Γ(TMθ) and Z ∈ Γ(TM⊥). Using (7) and (5), we obtain

1(h(X,Y), JZ) = −1(∇̃XPY,Z) − 1(∇̃XFY,Z)

= 1(∇̃XZ,PY) + 1(AFYX,Z).

Thus, (ii) follows from the above relation by using (6) and (15), which proves the lemma completely.

If we interchange X by PX and Y by PY in Lemma 4.3 (ii), for any X,Y ∈ Γ(TMθ), then by using (9) and
(10), we have the following relations

1(h(PX,Y), JZ) = cos2 θZ(ln f ) 1(X,Y) + 1(h(PX,Z),FY), (17)

1(h(X,PY), JZ) = − cos2 θZ(ln f ) 1(X,Y) + 1(h(X,Z),FPY) (18)

and

1(h(PX,PY), JZ) = cos2 θZ(ln f ) 1(X,PY) + 1(h(PX,Z),FPY). (19)

Lemma 4.4. Let M = M⊥× f Mθ be a proper warped product pointwise hemi-slant submanifold of a Kaehler manifold
M̃. Then

1(AFPXY − AFYPX,Z) = 2 cos2 θZ(ln f ) 1(X,Y)

for any Z ∈ Γ(TM⊥) and X,Y ∈ Γ(TMθ).

Proof. Interchanging X by Y in Lemma 4.3 (ii), we have

1(h(X,Y), JZ) = Z(ln f ) 1(Y,PX) + 1(h(Y,Z),FX)
= −Z(ln f ) 1(X,PY) + 1(h(Y,Z),FX) (20)

Subtracting (20) from Lemma 4.3 (ii), thus we derive

1(h(Y,Z),FX) − 1(h(X,Z),FY) = 2Z(ln f ) 1(X,PY). (21)

Interchange X by PX in (21) and using (10), we obtain

2 cos2 θZ(ln f ) 1(X,Y) = 1(h(Y,Z),FPX) − 1(h(PX,Z),FY). (22)

Hence, the result follows from (22) by using (6).
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A warped product manifold M = M1 × f M2 is said to be mixed totally geodesic if h(X,Z) = 0, for any
X ∈ Γ(TM1) and Z ∈ Γ(TM2).

The following corollary is an immediate consequence of the above lemma.

Corollary 4.5. There does not exist any proper warped product mixed totally geodesic submanifold of the form
M = M⊥ × f Mθ of a Kaehler manifold M̃ such that M⊥ is a totally real submanifold and Mθ is a proper pointwise
slant submanifold of M̃.

Proof. The proof of the corollary follows from (22) by using the mixed totally geodesic condition.

We note that the above corollary is also given in [18] as a remark.

Lemma 4.6. Let M = M⊥× f Mθ be a proper warped product pointwise hemi-slant submanifold of a Kaehler manifold
M̃. Then

1(h(X,Z),FY) − 1(h(Y,Z),FX) = 2 tanθZ(θ) 1(PX,Y) (23)

for any Z ∈ Γ(TM⊥) and X,Y ∈ Γ(TMθ).

Proof. For any X,Y ∈ Γ(TMθ) and Z ∈ Γ(TM⊥), we have

1(∇̃ZX,Y) = 1∇ZX,Y) = Z(ln f ) 1(X,Y). (24)

On the other hand, for any X,Y ∈ Γ(TMθ) and Z ∈ Γ(TM⊥), we also have

1(∇̃ZX,Y) = 1(J∇̃ZX, JY) = 1(∇̃Z JX, JY).

Using (2),(4), (7) and (15), we get

1(∇̃ZX,Y) = 1(∇̃ZPX,PY) + 1(∇̃ZPX,FY) + 1(∇̃ZFX, JY)

= cos2 θZ(ln f ) 1(X,Y) + 1(h(Z,PX),FY) − 1(∇̃Z JFX,Y).

Then from (8), we derive

1(∇̃ZX,Y) = cos2 θZ(ln f ) 1(X,Y) + 1(h(Z,PX),FY) − 1(∇̃ZtFX,Y)

− 1(∇̃Z f FX,Y).

Using (12), we obtain

1(∇̃ZX,Y) = cos2 θZ(ln f ) 1(X,Y) + 1(h(Z,PX),FY) − 1(∇̃Z sin2 θX,Y)

+ 1(∇̃ZFPX,Y)

= cos2 θZ(ln f ) 1(X,Y) + 1(h(Z,PX),FY) + sin2 θ 1(∇̃ZX,Y)
+ sin 2θZ(θ) 1(X,Y) − 1(AFPXZ,Y),

which on using (6), the above equation takes the form

cos2 θ 1(∇̃ZX,Y) = cos2 θZ(ln f ) 1(X,Y) + 1(h(Z,PX),FY)
+ sin 2θZ(θ) 1(X,Y) − 1(h(Y,Z),FPX). (25)

From (24) and (25), we derive

1(h(Y,Z),FPX) − 1(h(Z,PX),FY) = sin 2θZ(θ) 1(X,Y). (26)

Interchanging X by PX in (26) and then using (9), we get the desired result. Hence, the proof is complete.
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Now, we have the following useful theorem.

Theorem 4.7. Let M = M⊥ × f Mθ be a warped product pointwise hemi-slant submanifold of a Kaehler manifold M̃
such that M⊥ is a totally real submanifold and Mθ is a pointwise slant submanifold with slant function θ of M̃. Then

Z(ln f ) = tanθZ(θ)

for any Z ∈ Γ(TM⊥).

Proof. From (21) and (23), we have(
tanθZ(θ) − Z(ln f )

)
1(PX,Y) = 0. (27)

Interchanging Y by PY in (27) and using (10), we obtain

cos2 θ
(
tanθZ(θ) − Z(ln f )

)
1(X,Y) = 0. (28)

Since M is proper, therefore cos2 θ , 0, thus the proof follows from (28) .

As an application, we have the following consequences of the above theorem.

1. If we assume θ = 0 in Theorem 4.7, then the warped product is of the form M = M⊥ × f MT, where MT

and M⊥ are holomorphic and totally real submanifolds of a Kaehler manifold M̃, respectively. Thus, the
Theorem 3.1 of [4] is a special case of Theorem 4.7 as follows.

Corollary 4.8. (Theorem 3.1 [4]). If M = M⊥ × f MT be a warped product CR-submanifold of a Kaehler manifold M̃
such that M⊥ is a totally real submanifold and MT is a holomorphic submanifold of M̃, then M is a CR-product.

2. Also, if we assume that the slant function θ is a constant, i.e., Mθ is a proper slant submanifold, then
the warped product M = M⊥ × f Mθ is a hemi-slant warped product submanifold of a Kaehler manifold M̃,
where M⊥ and Mθ are totally real and proper slant submanifolds of M̃, respectively. Then, Theorem 4.2 of
[16] is a special case of Theorem 4.7 as follows.

Corollary 4.9. (Theorem 4.2 [16]). Let M̃ be a Kaehler manifold. Then there exist no warped product submanifolds
M = M⊥ × f Mθ of M̃ such that M⊥ is a totally real submanifold and Mθ is a proper slant submanifold of M̃.

In order to give another characterization we need the following well known result of S. Hiepko [12].

Hiepko’s Theorem. Let D1 and D2 be two orthogonal distribution on a Riemannian manifold M. Suppose that
D1 andD2 both are involutive such thatD1 is a totally geodesic foliation andD2 is a spherical foliation. Then M is
locally isometric to a non-trivial warped product M1 × f M2, where M1 and M2 are integral manifolds ofD1 andD2 ,
respectively.

The following result gives a characterization of warped product pointwise hemi-slant submanifolds.

Theorem 4.10. [18] Let M be a pointwise hemi-slant submanifold of a Kaehler manifold M̃. Then M is locally a
warped product submanifold of the form M⊥ × f Mθ if and only if

AFPXV − AJVPX = V(µ)
(
cos2 θ

)
X, ∀ X ∈ Γ(Dθ), V ∈ Γ(D⊥) (29)

for some smooth function µ on M satisfying Y(µ) = 0, for any Y ∈ Γ(Dθ).

Remark 4.11. The inequality for second fundamental form of these kind of warped products may not be evaluated.
The reason is that: To evaluate the squared norm of the second fundamental form ‖h‖2 from Lemma 4.3 and the
relations (17)-(19), we have to assume that either M is mixed totally geodesic or to discuss the equality case M must
be a mixed totally geodesic warped product and in both cases M is mixed totally geodesic, but in case of mixed totally
geodesic, these warped products do not exist (Corollary 4.5).
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Remark 4.12. Theorem 4.10 is valid only for the pointwise slant fiber. For example, if θ is constant i.e., Mθ is proper
slant, then this is the case of non-existence of warped products (see Theorem 4.2 of [16]) and if θ = 0, i.e., the fiber is
a holomorphic submanifold, then again from Theorem 3.1 of [4], this is a case of non-existence of warped products.
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