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Hamiltonian Properties on a Class of Circulant
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aFaculty of Sciences and Mathematics, University of Niš, Serbia

Abstract. Classes of circulant graphs play an important role in modeling interconnection networks in
parallel and distributed computing. They also find applications in modeling quantum spin networks sup-
porting the perfect state transfer. It has been noticed that unitary Cayley graphs as a class of circulant graphs
possess many good properties such as small diameter, mirror symmetry, recursive structure, regularity, etc.
and therefore can serve as a model for efficient interconnection networks. In this paper we go a step further
and analyze some other characteristics of unitary Cayley graphs important for the modeling of a good
interconnection network. We show that all unitary Cayley graphs are hamiltonian. More precisely, every
unitary Cayley graph is hamiltonian-laceable (up to one exception for X6) if it is bipartite, and hamiltonian-
connected if it is not. We prove this by presenting an explicit construction of hamiltonian paths on Xnm

using the hamiltonian paths on Xn and Xm for gcd(n,m) = 1. Moreover, we also prove that every unitary
Cayley graph is bipancyclic and every nonbipartite unitary Cayley graph is pancyclic.

1. Introduction

A good interconnection network topology permits many other network topologies (linear arrays, rings,
meshes, tori, trees, stars) to be efficiently embedded in it. Embedding of linear arrays and rings in inter-
connection networks is one of the most desired properties, since both of these architectures are extensively
applied in parallel and interconnection systems. An interconnection network is most often modeled by a
graph in which vertices and edges correspond to nodes and communication links, respectively. Formally,
the embedding is defined as an injective mapping 1, which maps the vertices of a guest graph G to the
vertices of a host graph H, such that for any two vertices u and v from G it holds that u and v are adjacent
in G if and only if 1(u) and 1(v) are connected by a path in H. Thus, embedding of linear arrays and rings
into interconnection networks can be modeled as finding paths and cycles in a graph. In the most impor-
tant variant of the problem the longest paths or cycles are required; this is closely related to hamiltonian
problems in graph theory.

Finding hamiltonian paths and cycles is widely studied in literature, most often on hypercube structures
in a faulty setting (with certain number of faulty edges and vertices). In such case, the aim is to determine the
maximal possible (tight) bound for the number of faulty vertices and/or faulty edges such that hamiltonian
properties still hold through the fault-free elements of the network [9, 12, 25]. These papers also improve the
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Milan Bašić / Filomat 32:1 (2018), 71–85 72

numerous previously known results. Furthermore, hamiltonian properties together with the disjoint path
cover problem of hypercube-like (HL) graphs attracted much attention in the literature [19–22]. The class
of HL-graphs includes some well-known classes with good topological properties already proposed as a
model of interconnection networks, such as twisted cubes [10], crossed cubes [8], multiply twisted cubes [7],
Möbius cubes [6], and generalized twisted cubes [5]. These classes share several interesting properties with
hypercubes of similar size such as logarithmic degree, regularity, hamiltonian connectedness, pancyclicity
and connectivity; but lower diameter.

Circulant graphs are Cayley graphs over a cyclic group. The interest for circulant graphs in graph
theory and applications has grown during the last two decades. They appeared in coding theory, VLSI
design, Ramsey theory and other areas. Since they posses many interesting properties (such as vertex
transitivity called mirror symmetry), circulants are applied in quantum information transmission and
proposed as models for quantum spin networks that permit the quantum phenomenon called perfect state
transfer [2, 24]. In the quantum communication scenario, the important feature of these graphs (especially
those with integral spectrum) is the ability of faithfully transferring quantum states without modifying the
network topology. Circulants and unitary Cayley graphs (as a subclass of circulants) have found important
applications in molecular chemistry for modeling energy-like quantities such as the heat of formation of a
hydrocarbon [3, 23].

Recently there has been a vast research on the interconnection schemes based on circulant topology
– circulant graphs represent an important class of interconnection networks in parallel and distributed
computing (see [11]). Recursive circulant, denoted by G(n; d), is proposed as an interconnection structure
for multicomputer networks [18]. G(n; d) is a circulant graph with n vertices and set of symbols (jumps)
which are powers of d, i.e. d0, d1, . . . , ddlogd ne−1. In literature, attention is mainly restricted to the class of
recursive circulants G(2m; 4) (or G(cdm; d) for some positive integers c, d and m), of the degree m, because
it turns out that they have some nicer properties than the m−dimensional hypercube. While retaining the
attractive properties of hypercubes such as node-symmetry, recursive structure, connectivity etc., these
graphs achieve noticeable improvements in diameter [18] and possess a complete binary tree with 2m

− 1
vertices as a subgraph [16]. G(n; d) with degree three or higher is hamiltonian-connected [4] and G(2m; 4)
was shown to be almost pancyclic in [1] and also m − 2-fault almost pancyclic later in [17].

In this paper, we propose unitary Cayley graphs (a class of circulants) as a model of interconnection
structures for multicomputer networks. Unitary Cayley graphs are highly symmetric i.e, they are vertex
and edge transitive, have integer eigenvalues which are indexed in symmetric palindromic order (λi = λn−i).
Various properties of unitary Cayley graphs were investigated in some recent papers [13, 14]. It can be
observed that unitary Cayley graphs represent very reliable networks, meaning that the vertex connectivity
of the unitary Cayley graph Xn equals the degree of regularity which is ϕ(n) (totient function of the order
of Xn). For even orders they are bipartite – note that many of the proposed networks mainly derived
from the hypercube structure by twisting some pairs of edges (twisted cube, crossed cub, multiply twisted
cube, Möbius cube, generalized twisted cube) are nonbipartite. Furthermore, the fault diameter (the largest
diameter obtained by deleting a set of certain number of vertices) related to the maximum path length
among all vertex disjoint paths is constant in the case of this class of graphs. More precisely, the diameter
of Xn is at most 3, which is important to estimate the degradation of performance of the network. Other
important network metrics of Xn are analyzed as well, such as the chromatic number and the clique number
which are both equal to p, and the cardinality of a maximal independent set which is equal to n/p, where p
is the smallest prime number dividing n.

In this paper we go a step further and analyze some other characteristics of unitary Cayley graphs
important for the modeling of a good interconnection network. In Section 4 we show that all unitary Cayley
graphs are hamiltonian using some auxiliary results from Section 3. More precisely, every unitary Cayley
graph is hamiltonian-laceable (up to one exception for X6) if it is bipartite, and hamiltonian-connected if it
is not. From the scope of network building, it is important to transfer such properties from a certain number
of networks of lower dimension to a network of higher dimension, see [19]. Therefore, we prove this by
presenting an explicit construction of hamiltonian paths for Xnm using the hamiltonian paths on Xn and
Xm, for gcd(n,m) = 1. Moreover, in Section 5 we also prove that every unitary Cayley graph is bipancyclic



Milan Bašić / Filomat 32:1 (2018), 71–85 73

and every nonbipartite unitary Cayley graph is pancyclic. Our techniques in considering the mentioned
problems relay heavily on some remarkable properties of these graphs built using the connection of the
number theory and combinatorics. We conclude the paper by Section 6 giving directions for future research.

2. Preliminaries

Let Γ be a multiplicative group with identity e. For S ⊂ Γ, e < S and S−1 = {s−1
| s ∈ S} = S, the Cayley

graph X = Cay(Γ,S) is the undirected graph having vertex set V(X) = Γ and edge set E(X) = {{a, b} | ab−1
∈ S}.

For a positive integer n > 1 the unitary Cayley graph Xn = Cay(Zn, Un) is defined by the additive group of
the ring Zn of integers modulo n and the multiplicative group Un = Z∗n of its invertible elements. That is,
{a, b} ∈ E(Xn) if a − b ∈ Z∗n and a − b is invertible element of Zn if gcd(a − b,n) = 1.

Let us recall that for a positive integer n and a subset S ⊆ {0, 1, 2, . . . ,n − 1}, the circulant graph G(n,S)
is the graph with n vertices, labeled by integers modulo n, such that each vertex i is adjacent to |S| other
vertices {i + s (mod n) | s ∈ S}. The set S is called the symbol of G(n,S). As we will consider only undirected
graphs without loops, we assume that 0 < S and, that s ∈ S if and only if n − s ∈ S, and therefore the vertex
i is adjacent to vertices i ± s (mod n) for each s ∈ S. Unitary Cayley graphs are circulant graphs of the
additive group of Zn with respect to the Cayley set S = {k | gcd(k,n) = 1, 1 ≤ k < n}.

We give the definition of the tensor product of two graphs since every unitary Cayley graph having non
prime power order can be defined as a tensor product of a certain number of unitary Cayley graphs of lower
dimensions. The tensor product G⊗H of graphs G and H is a graph the vertex set of which is the Cartesian
product V(G) × V(H) where any two vertices (u,u′) and (v, v′) are adjacent if and only if u′ is adjacent with
v′ and u is adjacent with v.

A hamiltonian path (cycle) is a path (cycle) in a graph that visits each vertex exactly once. If a graph
contains a hamiltonian cycle, it is called hamiltonian. A graph G is hamiltonian-connected if every two vertices
of G are connected by a hamiltonian path. All hamiltonian-connected graphs are hamiltonian and none of
the bipartite graphs are hamiltonian-connected. A bipartite graph is called hamiltonian-laceable if there is
a hamiltonian path for all pairs of vertices that belong to different sets of the bipartition.

A graph G of order n is called pancyclic if it contains a cycle of length l for every 3 ≤ l ≤ n. Finally a
graph is bipancyclic if it contains a cycle of even length l for every 4 ≤ l ≤ n.

3. Auxiliary Results

Let R be a table of size n × m. Each cell of R is labeled by an ordered pair of coordinates (i, j), where i
and j denote the numbers of the row and the column of the cell, respectively, for 1 ≤ i ≤ n and 1 ≤ j ≤ m.
In addition, the upper-left cell of R has the coordinates (1, 1) and the lower-right cell has the coordinates
(n,m).

For a given table of size n × m define the (k, l)−pass through the table from the cell (x1, y1) to the cell
(xmn, ymn), to be any sequence of cells

((x1, y1), (x2, y2), . . . , (xmn, ymn))

such that (xi, yi) , (x j, y j) for 1 ≤ i < j ≤ mn, 1 ≤ |xi+1 − xi| ≤ k and 1 ≤ |yi+1 − yi| ≤ l for 1 ≤ i ≤ mn − 1.
In that case, we say that the pass (x1, y1), (x2, y2), . . . , (xmn, ymn) covers the table R. For two consecutive
pairs of coordinates (xi, yi) and (xi+1, yi+1) we also say that (xi+1, yi+1) is obtained from the pair (xi, yi) by the
movement (|xi+1 − xi|, |yi+1 − yi|).

Let p1 = ((x1
1, y

1
1), (x1

2, y
1
2), . . . , (x1

nm, y1
nm)) and p2 = ((x2

1, y
2
1), (x2

2, y
2
2), . . . , (x2

nk, y
2
nk)) be two passes that cover

the tables sharing its vertical edge of sizes n ×m and n × k, respectively. The concatenation of the passes p1
and p2, denoted by

p = p1 ⊕ p2 = ((x1
1, y

1
1), (x1

2, y
1
2), . . . , (x1

nm, y
1
nm), (x2

1, y
2
1 + m), (x2

2, y
2
2 + m), . . . , (x2

nk, y
2
nk + m)),
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is defined as the pass which covers the table n × (m + k). In the rest of the paper, for the sake of clarity of
notation we will omit the outer brackets in the notation of the pass.

In this section we examine the existence of different types of passes (mostly (1, 2) and (2, 2)-passes) in
tables of size n ×m, where m is odd. The construction of the passes will depend on the parity of n.

3.1. (1, 2)-passes for n ∈ 2N

Lemma 3.1. The following statements are true

(i) There is a (1, 2)-pass through the table of size 2 × 3 from the upper-left cell to the lower-right cell.

(ii) There is a (1, 2)-pass through the table of size 2 × 3 from the cell with coordinates (1, 2) to the cell in the
lower-right corner.

(iii) There is a (1, 2)-pass through the table of size 2 × 4 from the upper-left cell to the lower-right cell.

(iv) There is a (1, 2)-pass through the table of size 2 × 5 from the upper-left cell to the lower-right cell.

(v) There is a (1, 2)-pass through the table of size 2 × 5 from the upper-left cell to the lower-left cell.

(vi) There is a (1, 2)-pass through the table of size 2 × 5 from the cell with coordinates (1, 2) to the cell in the
lower-right corner.

Proof. The labels in the cells of the following tables represent the indices of the pairs of the coordinates of
the passes that cover the tables from (i)-(vi), respectively.

1 5 3
4 2 6

5 1 3
2 4 6

1 7 5 3
6 4 2 8

1 5 7 9 3
6 8 2 4 10

1 9 5 3 7
10 2 8 6 4

7 1 3 9 5
2 8 6 4 10 .

Lemma 3.2. For a given positive integer m ≥ 3, there is a (1, 2)-pass through the table of size 2 ×m from the cell in
the upper-left corner to the cell in the lower-right corner.

Proof. The proof will proceed by induction on m. For m ∈ {3, 4, 5} the statement of the lemma is true,
according to parts (i), (iii) and (iv) of Lemma 3.1. For m ≥ 6, it is assumed by the induction hypothesis that
there is a (1, 2)-pass through the first m− 3 columns of the table from the cell (1, 1) to the cell (2,m− 3). Now,
by the first part of Lemma 3.1 there is a (1, 2)-pass through the columns m − 2, m − 1 and m, starting from
the cell (1,m − 2) and ending at the cell (2,m). To obtain a (1, 2)−pass through the whole table, it suffices to
concatenate the two mentioned passes by joining the cells (2,m − 3) and (1,m − 2). The illustration of the
proof is given by the following table.

1 . . . 2m − 5
2m − 6 2m

Lemma 3.3. For a given odd number m ≥ 5, there is a (1, 2)-pass through the table of size 2 ×m from the cell in the
upper-left corner to the cell in the lower-left corner.
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Proof. The proof will proceed by induction on m. For the base case for which m = 5 we use part (v) of
Lemma 3.1. For m ≥ 7, it is assumed by the induction hypothesis that there is a (1, 2)-pass through the last
m − 2 columns of the table from the cell (1, 3) to the cell (2, 3). Denote this pass by p. Now, the pass

(1, 1), (2, 1), p(1), p(2), . . . , p(2m − 2), (1, 2), (2, 1)

represents a (1, 2)−pass through the whole table which is also shown by the table below.

1 2m − 1 3 . . .
2m 2 2m − 2

Remark 3.4. Notice that there is no such (1, 2)−pass through the table of size 2 × 3.

Lemma 3.5. For a given odd number m ≥ 3, there is a (1, 2)-pass through the table of size 2 ×m from the cell (1, 2)
to the cell in the lower-right corner.

Proof. For m = 5 there is a (1, 2)−pass from the cell (1, 2) to the cell (2, 5), according to the part (vi) of Lemma
3.1. Suppose that m = 3 or m ≥ 7. By the second part of Lemma 3.1 there is a (1, 2)-pass through the first
three columns of the table, starting with the cell (1, 2) and ending at the cell (2, 3). Moreover, for m ≥ 7
there is a (1, 2)-pass from the cell (1, 4) to the cell (2,m), according to Lemma 3.2. Finally, connecting the
mentioned passes the assertion of the lemma immediately follows.

1 7 . . .
6 2m

Theorem 3.6. Let m ≥ 3 be an odd positive integer and n ≥ 2 an even positive integer. Then, if mn , 6 there is a
(1, 2)-pass through the table of size n×m from the cell in the upper-left corner to the cell in the lower-right (lower-left)
corner.

Proof. Suppose that n = 2k, for some positive integer k. We prove that there is a (1, 2)-pass in the 2k × m
table from the upper-left to the lower-right (lower-left) cell. The proof will be carried out by induction on
k. Suppose first that m ≥ 5. For k = 1 the statement of the theorem is true, according to Lemmas 3.2 and 3.3.
Using the induction hypothesis there is a (1, 2)-pass through the rows {1, 2, . . . , 2k − 2} of the table from the
cell (1, 1) to the cell (2k − 2, 1). Applying Lemma 3.5 there is a (1, 2)−pass from (2k − 1, 2) to (2k,m). Now,
joining the cells (2k − 2, 1) and (2k − 1, 2) we obtain a (1, 2)−pass through whole table. The problem of the
existence of a (1, 2)-pass in the 2k ×m table from the upper-left to the lower-left cell is symmetric to the one
in the previous case and can be proven in the same way. The starting and the ending cells of the mentioned
passes are shown in the following table.

1 2 3 . . . m
1

. . .

(2k − 2)m
(2k − 2)m + 1 . . .

2km

Now assume that m = 3. For k = 1 the statement of the theorem is true, according to Lemma 3.1 part (i) and
Remark 3.4 and the induction step can be similarly proven using Lemma 3.1 part (ii).
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3.2. (2, 2)-passes for n ∈ 2N + 1

Lemma 3.7. There is a (2, 2)-pass through the table of size 3 × 3 from the cell in the upper-left corner to the cell in
the lower-right (lower-left) corner.

Proof. The labels in the cells of the following tables represent the ordinal numbers of passes’ elements in
each of the above cases, respectively

1 8 5
4 6 2
7 3 9

1 8 5
4 6 2
9 3 7 .

Lemma 3.8. For a given odd number m ≥ 3, there is a (2, 2)-pass through the table of size 3 ×m from the cell in the
upper-left corner to the cell in the lower-right corner.

Proof. The proof will proceed by induction on m. The base case for m = 3 holds according to Lemma 3.7. For
m ≥ 5, it is assumed by the induction hypothesis that there is a (2, 2)-pass through the columns {1, 2, . . .m−2}
of the table from the cell (1, 1) to the cell (3,m − 2). Furthermore, by the second part of Lemma 3.1 there is
the (2, 1)-pass through the columns m − 1 and m, starting at the cell (2,m − 1) and ending at the cell (3,m).
To obtain a (2, 2)−pass through the whole table, it suffices to concatenate the two mentioned passes joining
the cells (3,m − 2) and (2,m − 1). The illustration of the proof is given by the following table.

1
. . . 3m − 5

3m − 6 3m

Lemma 3.9. For a given odd number m ≥ 3, there is a (2, 2)-pass through the table of size 3 ×m from the cell in the
upper-left corner to the cell in the lower-left corner.

Proof. The proof will proceed by induction on m. For the base case if m = 3 we use Lemma 3.7. For m ≥ 5,
it is assumed by the induction hypothesis that there is a (2, 2)-pass through the columns {3, 4, . . . ,m} of the
table from the cell (3, 3) to the cell (1, 3). Denote this pass by p. Now the pass

(1, 1), (2, 2), p(1), p(2), . . . , p(3m − 6), (3, 2), (2, 1), (1, 2), (3, 1)

represents a (2, 2)−pass through the whole table which is also shown by the table below.

1 3m − 1 3m − 4
3m − 2 2 . . .

3m 3m − 3 3

Theorem 3.10. Let m,n ≥ 3 be odd numbers. Then there is a (2, 2)-pass through the table of size n×m from the cell
in the upper-left corner to the cell in the lower-right (lower-left) corner.

Proof. Let n = 2k + 1 for some positive integer k. We prove that there is a (2, 2)-pass in the (2k + 1) × m
table from the upper-left to the lower-right and lower-left cell, respectively. The proof will be carried out
by induction on k. For k = 1 the statement of the theorem is true, according to Lemmas 3.8 and 3.9. Now,
suppose that there is a (2, 2)-pass through the first 2k − 1 rows of the table from the cell (1, 1) to the cell
(2k − 2, 1) and (2k − 2,m), respectively.

Applying Lemma 3.5 there are (1, 2)−passes from (2k, 2) to (2k + 1,m) and from (2k,m − 1) to (2k + 1, 1).
Now, joining the cells (2k − 1, 1) and (2k, 2) ((2k − 1,m) and (2k,m − 1)) we obtain a (2, 2)−pass through

the whole table from the cell in the upper-left corner to the cell in the lower-right (lower-left) corner.
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1 2 . . . m
1

. . .

(2k − 1)m
(2k − 1)m + 1 . . .

(2k + 1)m

Remark 3.11. Let m,n be positive odd integers and m = 2k + 1. Notice that there exists a cover of the table of size
m×n by a sequence of the passes p1, p2, . . . , pk, where the pass p1 starts at the cell (1, 1) and ends at (n, 3) and pi starts
at (1, 2i) and ends at (n, 2i + 1) for 2 ≤ i ≤ k. Similarly, the same table can be covered by a sequence of the passes
p1, p′2, . . . , p

′

k, where the pass p′i starts at the fleld (2, 2i) and ends at (n, 2i + 1) for 2 ≤ i ≤ k. The above observation
holds according to Lemma 3.8, Lemma 3.2 and Lemma 3.5.

1 2 3 4 5 . . . m − 1 m
1 1 . . . 1

1′ . . . 1′

. . .

3n 2n 2n

Theorem 3.12. Let n ≥ 3 and m ≥ 5 be odd integers. Then, there is a (2, 2)-pass through the table of the size n ×m
from the cell in the upper-left corner to the cell in the upper-right corner.

Proof. Suppose that n ≥ 5. According to Theorem 3.10 there is a (2, 2)−path connecting the cells (1, 1) and
(n − 2, 3) through the columns 1 to 3 and the rows 1 to n − 2. Moreover, there is a (1, 2)−path from (n, 2) to
(n − 1, 3) through the columns 1 to 3 and the rows n − 1 and n, by Lemma 3.1 part (ii). Now a (2, 2)−pass
p from the cell (1, 1) to the cell (n − 1, 3) can be obtained by concatenating the above paths. The same
(2, 2)-pass, for n = 3, can be obtained by connecting the cells (1, 1) and (2, 3) in the following table

1 7 4
6 3 9
8 5 2 .

Now, using Theorem 3.6, there is a (2, 1)−pass q connecting the cell (n, 4) with the cell (1,m). Finally,
concatenating the pass q to the pass p, we obtain a (2, 2)−pass through the whole table.

1 2 3 . . . m
1 nm

...
. . .

...

3n − 4
3n

3n − 5 3n + 1

Remark 3.13. Notice that the (2, 2)−pass from the proof of the previous theorem that covers the table contains (1, 2) and
(2, 2) movements only in the covering of the first three columns. More precisely, in the pass (x1, y1), (x2, y2), . . . , (xmn, ymn),
it holds that |yi+1 − yi| = 2 if and only if yi, yi+1 ∈ {1, 3} and yi , yi+1, 1 ≤ i ≤ mn − 1.
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4. Hamiltonicity of Unitary Cayley Graphs

In this section, we prove by induction that every bipartite unitary Cayley graph is hamiltonian-laceable
and every nonbipartite unitary Cayley graph is hamiltonian-connected.

Let us briefly explain the motivation behind the idea of the proof. Namely, we have mentioned
that hypercubes, recursive circulants and unitary Cayley graphs have recursive structures. For example
the n-dimensional hypercubes can be obtained from the Cartesian product of n copies of 2-dimensional
hypercubes, i.e. Qn = Qn−1 × Q2. Similarly, recursive circulants can be constructed by a certain more
complex operation (than the Cartesian product) starting from a certain number of recursive circulants of
lower dimension. Also, unitary Cayley graphs XN of a given order N can be represented as tensor products
of graphs Xn and Xm, where N = nm and gcd(n,m) = 1. This decomposition allows us to list the vertices of
XN as functions of the vertices of Xn and Xm, which is shown by the table R in the comment after Proposition
4.2. We actually want to prove that there exists a hamiltonian path on XN if there are hamiltonian paths on
both Xn and Xm.

Notice that the unitary Cayley graph Xn is bipartite if and only if n is even. Indeed, it is clear that the
bipartition classes are equivalent to the classes modulo 2.

4.1. N is odd

We show that unitary Cayley graphs of the odd order are hamiltonian-connected. Since the graphs in
this class are vertex-transitive, it is sufficient to prove that there exists a hamiltonian path joining the vertex
0 to an arbitrary vertex 1 ≤ t ≤ n − 1. So, our task here is to find a permutation p0, p1, . . . , pn−1 of vertices
{0, 1, . . . ,n − 1}, such that p0 = 0, pn−1 = t and pi is adjacent to pi+1 (gcd(pi+1 − pi,n) = 1), for 0 ≤ i ≤ n − 2.

In this section we will label the rows and columns of the table of size n×m by the numbers 0, 1, . . . ,n− 1
and 0, 1, . . . ,m − 1, respectively.

Lemma 4.1. Let p be a prime number and n be a power of p.

(i) For p = 2 the graph Xn is hamiltonian laceable.

(ii) For p > 2 the graph Xn is hamiltonian-connected. Moreover, for any two vertices there exists a hamiltonian
path a0, a1, . . . , an−1 joining them such that ai and ai+2 are adjacent, for 0 ≤ i ≤ n − 3.

Proof. We prove that there is hamiltonian path joining the vertex 0 to an arbitrary vertex 1 ≤ t ≤ n − 1.
Let n = pk and C0,C1, . . . ,Cp−1 be the classes modulo p,

Ci = { j | 0 ≤ j < pk, j ≡ i (mod p)}, 0 ≤ i ≤ p − 1.

Two vertices a and b from Xn are adjacent if and only if gcd(a − b,n) = gcd(a − b, pk) = 1 or, equivalently, if
p - a−b. This means that for each 0 ≤ i ≤ p−1 all the vertices from Ci are adjacent to the vertices from Xn \Ci,
while there are no edges between any two vertices from Ci. In other words, Xn is a complete multipartite
graph.

If p - t then t ≡ i (mod p), for some 1 ≤ i ≤ p − 1. This implies that t ∈ Ci and we can find the vertices
a0, a1, . . . , an−1 of the desired hamiltonian path by choosing the vertices akp, akp+1, . . . , akp+(p−1) from the sets
C0,C1, . . . ,Ci−1,Ci+1, . . . ,Cp−1,Ci, respectively, for 0 ≤ k ≤ n/p − 1.

For odd p, if p | t we have 0, t ∈ C0. Now, we can choose the vertices of the hamiltonian path from the
sets C0,C1, . . . ,Cp−1,C0,C1, . . . ,Cp−1, . . . ,C0,C1, . . . ,Cp−1︸                                                               ︷︷                                                               ︸

n−p

,C1, . . . ,Cp−1,C0, respectively.

For odd p, in both of the two mentioned cases in the hamiltonian path a0, a1, . . . , an−1 the vertices ai and
ai+2 are adjacent, for every 0 ≤ i ≤ n − 3, since they belong to different classes C j modulo p ≥ 3.
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Proposition 4.2. Let S be a complete (reduced) residue system modulo m, T be a complete (reduced) residue system
modulo n and gcd(m,n) = 1. Then the set

R = {an + bm | a ∈ S, b ∈ T}

is a complete (reduced) residue system modulo mn.

Proof. We prove the first part of the statement. Let S and T be complete residue systems modulo m and
n, respectively. Assume that there exist a1, a2 ∈ S and b1, b2 ∈ T such that a1n + b1m ≡ a2n + b2m mod mn.
From the last relation we have that mn | (a2 − a1)n + (b2 − b1)m implying that m | (a2 − a1)n and n | (b2 − b1)m.
As gcd(m,n) = 1 it holds that m | a2 − a1 and n | b2 − b1. This is a contradiction since S and T are complete
residue systems modulo m and n, respectively.

Let S and T be reduced residue systems modulo m and n, respectively. Now, assume that gcd(am +
bn,mn) , 1 for a ∈ S and b ∈ T. Without loss of generality, this means that there exists an odd prime p | n
such that p | am + bn. This further implies that p | am and p | a, since gcd(m,n) = 1. Finally, we obtain that
p | gcd(a,n), which is a contradiction since a ∈ S.

If S = {a0, a2, . . . an−1} and T = {b0, b2, . . . bm−1}, in the rest of the section the elements of the set R in the
previous lemma will be denoted by ci, j = aim + b jn for 0 ≤ i ≤ n − 1 and 0 ≤ j ≤ m − 1 and arranged in the
following table

R =


a0m + b0n a0m + b1n . . . a0m + bm−1n
a1m + b0n a1m + b1n . . . a1m + bm−1n

...
...

. . .
...

an−1m + b0n an−1m + b1n . . . an−1m + bm−1n


Now, we prove the following useful assertion concerning the elements ci j of R.

Proposition 4.3. Let m and n be positive relatively prime integers greater than 1. Then gcd(ci, j − ck,l,nm) = 1 if
and only if gcd(ai − ak,n) = 1 and gcd(b j − bl,m) = 1.

Proof. Assume that gcd(ci, j−ck,l,nm) = 1 and let p be an arbitrary prime divisor of n. From these assumptions
we have that p - ci, j − ck,l = (ai − ak)m + (b j − bl)n and thus p - (ai − ak)m. From the last conclusion it must be
also p - ai − ak. Since no prime divisor of n divides ai − ak, it follows that gcd(ai − ak,n) = 1. The equation
gcd(b j − bl,m) = 1 can be established in the same way.

Now let gcd(ai − ak,n) = 1 and gcd(b j − bl,m) = 1 and assume that there exists a prime number p such
that p | nm and p | ci, j − ck,l = (ai − ak)m + (b j − bl)n. Without loss of generality we may assume that p | n and
thus, since gcd(m,n) = 1, we have that p | ai − ak, which is a contradiction with gcd(ai − ak,n) = 1.

Lemma 4.4. Let N be an odd positive integer other than a power of prime and m a divisor of N such that N = pαm for
some positive integer α and prime number p not dividing m. For any 1 ≤ t ≤ N− 1 such that m divides t, there exists
a permutation (p0, p1, . . . , pN−1) of the numbers {0, 1, . . . ,N − 1} such that p0 = 0, pN−1 = t, gcd(pi+1 − pi,N) = 1
and gcd(p2,N) = 1, for 0 ≤ i ≤ N − 2.

Proof. Let n = pα, t = mq and bi = i for 0 ≤ i ≤ m − 1. According to Lemma 4.1 there exists a permutation
a of the numbers {0, 1, . . . ,n − 1}, such that a0 = 0, an−1 = q and gcd(ai+1 − ai,n) = 1 for 1 ≤ i ≤ n − 1. Now,
we see that the sets {a0, a1, . . . an−1} and {b0, b1, . . . , bm−1} are the permutations of the numeber {0, ..,n− 1} and
{0, ..,m−1} and therefore form complete residue systems modulo n and m, respectively whence we conclude
that the set {ci, j = aim + b jn | 0 ≤ i ≤ n− 1, 0 ≤ j ≤ m− 1} is a complete residue system modulo N (according
to Proposition 4.2).

Furthermore, according to Theorem 3.10 there is a (2, 2)−pass

(x0, y0) = (0, 0), (x1, y1), . . . , (xnm−1, ynm−1) = (n − 1, 0)
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from the upper-left cell to the lower-left cell through some table of size n × m. If we define pi = cxi,yi for
0 ≤ i ≤ nm − 1, then we have that

p0 = cx0,y0 = c0,0 = a0m + b0n = 0
pnm−1 = cxnm−1,ynm−1 = cn−1,0 = an−1m + b0n = qm = t.

Moreover, for any 0 ≤ i ≤ N − 2 it holds that gcd(pi+1 − pi,N) = 1 if and only if gcd(cxi+1,yi+1 − cxi,yi ,N) = 1.
Using Proposition 4.3, the last equation holds if and only if gcd(axi+1 − axi ,n) = 1 and gcd(byi+1 − byi ,m) = 1.
Since, {(xi, yi) | 0 ≤ i ≤ N − 1} is a (2, 2)−pass, we conclude that |xi+1 − xi|, |yi+1 − yi| ∈ {1, 2}. From the last
observation and the definition of the sequence b we have |byi+1 − byi | ∈ {1, 2} and thus gcd(byi+1 − byi ,m) = 1
trivially holds. Furthermore, from the proof of Lemma 4.1 we conclude that the p consecutive numbers
ai+1, ai+2, . . . ai+p (0 ≤ i ≤ n−p−1) belong to different classes modulo p, given that p ≥ 3, and that consequently
axi and axi+1 belong to different classes modulo p. Finally, p - axi+1 − axi and gcd(axi+1 − axi ,n) = 1 hold.

Furthermore, since p2 = cx2,y2 , according to the proof of Theorem 3.10 we conclude that either x2 = y2 = 2
or x2 = 2 and y2 = 1 and thus either p2 = c2,2 or p2 = c2,1. Notice that p2 = c2,2 and N are relatively prime if
and only if gcd(a2,n) = 1 and gcd(b2,m) = 1. Since, a0 and a2 belong to different classes modulo p ≥ 3 and
p | a0, we have that p - a2 and therefore gcd(a2,n) = 1. As b2 = 2 and m is odd, the fact gcd(b2,m) = 1 clearly
holds. In the same fashion we conclude that gcd(p2,N) = 1 for p2 = c2,1.

Theorem 4.5. Let N be an odd positive number and 1 ≤ t ≤ N−1. Then there exists a permutation p of the numbers
{0, 1, . . . ,N − 1} , such that p0 = 0, pN−1 = t, gcd(pi+1 − pi,N) = 1 and gcd(p2,N) = 1, for 0 ≤ i ≤ N − 2.

Proof. If N is a power of prime then the assertion holds by Lemma 4.1. Now, let N = qα1
1 qα2

2 · . . . · q
αk
k be the

prime factorization of N, where q1 < q2 < . . . < qk are distinct primes, αi ≥ 1, and let n = qα1
1 and m = N/n.

Using Bezout’s identity, since gcd(m,n) = 1 we can find two positive integers 0 ≤ q ≤ n−1 and 0 ≤ s ≤ m−1
such that qm + sn ≡ t (mod N). If s = 0 then m | t and using Lemma 4.4 the assertion of the theorem
immediately follows. Now suppose that s , 0.

We prove the assertion using induction on N. The base case, when N is a power of prime, holds
according to Lemma 4.1 (part (ii)). Suppose that the assertion of the theorem holds for any l < N. Thus,
applying the induction hypothesis to m we conclude that there exists a permutation b0, b1, . . . , bm−1 such
that b0 = 0, bm−1 = s, gcd(bi+1 − bi,m) = 1 and gcd(b2,m) = 1, for 0 ≤ i ≤ m − 2. We distinguish two cases
depending on whether q is equal to zero or not.

Case 1 q = 0. Let ai = i for 0 ≤ i ≤ n − 1. Now, since the sets {a0, a1, . . . an−1} and {b0, b1, . . . , bm−1} are complete
residue systems modulo n and m, respectively, the set {ci, j = aim + b jn | 0 ≤ i ≤ n − 1, 0 ≤ j ≤ m − 1} is
also a complete residue system modulo N, according to Proposition 4.2.

Furthermore, according to Theorem 3.12 there is a (2, 2)−pass

(x0, y0) = (0, 0), (x1, y1), . . . , (xnm−1, ynm−1) = (0,m − 1)

from the upper-left cell to the upper-right cell through some table of size n ×m. If we define pi = cxi,yi

for 0 ≤ i ≤ nm − 1, then we have that

p0 = cx0,y0 = c0,0 = a0m + b0n = 0
pnm−1 = cxnm−1,ynm−1 = c0,m−1 = a0m + bm−1n = sn = t.

For any 0 ≤ i ≤ N − 2 it holds that gcd(pi+1 − pi,N) = 1 if and only if gcd(cxi+1,yi+1 − cxi,yi ,N) = 1. Using
Proposition 4.3, the last equation holds if and only if gcd(axi+1 − axi ,n) = 1 and gcd(byi+1 − byi ,m) = 1.
Since, {(xi, yi) | 0 ≤ i ≤ N− 1} is a (2, 2)−pass we conclude that |xi+1 − xi|, |yi+1 − yi| ∈ {1, 2}. From the last
observation and the definition of the sequence a we have |axi+1−axi | ∈ {1, 2} and thus gcd(axi+1−axi ,n) = 1
trivially holds. Moreover, from Remark 3.13 we see that |yi+1 − yi| = 2 if and only if yi, yi+1 ∈ {0, 2} and
yi , yi+1, which further implies that in this case |byi+1 − byi | = b2 and gcd(byi+1 − byi ,m) = 1, according
to the induction hypothesis. If |yi+1 − yi| = 1 we obtain that byi and byi+1 are consecutive elements of
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the sequence b0, b1, . . . bm−1 and by the induction hypothesis we have that gcd(byi+1 − byi ,m) = 1 holds
in this case, also.

Finally, according to the proof of Theorem 3.12 we have that p2 = c2,1 = a2m + b1n, for n ≥ 5. p2 and N
are relatively prime if and only if gcd(a2,n) = 1 and gcd(b1,m) = 1. This is clearly true, since a2 = 2
and gcd(b1 − b0,m) = 1. If n = 3, we have p2 = c2,2 = a2m + b2n and for the same reason gcd(a2,n) = 1
and gcd(b2,m) = 1 trivially follows from the induction hypothesis.

Case 2. q , 0. As n = qα1 , by Lemma 4.1 there exists a permutation a of the numbers {0, 1, . . . ,n − 1}, such that
a0 = 0, an−1 = q and gcd(ai+1 − ai,n) = 1 for 1 ≤ i ≤ n − 1. Similarly, as in the previous case we have
that the set {ci, j = aim + b jn | 0 ≤ i ≤ n − 1, 0 ≤ j ≤ m − 1} is also a complete residue system modulo N,
according to Proposition 4.2.

Assume that gcd(q,n) = 1. Let m = 2l + 1. According to Remark 3.11 there is a sequence of passes
r1, r2, . . . , rl, where the pass r1 starts at the cell (0, 0) and ends at (n − 1, 2) and ri starts at (0, 2i − 1) and
ends at (n − 1, 2i) for 2 ≤ i ≤ l. Now, consider the pass

r = r1 ⊕ r2 ⊕ . . . ⊕ rl = (x0, y0), (x1, y1), . . . , (xnm−1, ynm−1)

((x0, y0) = (0, 0) and (xnm−1, ynm−1) = (n − 1,m − 1)) from the upper-left cell to the lower-right cell
through some table of size n ×m. If we define pi = cxi,yi for 0 ≤ i ≤ nm − 1, then we have that

p0 = cx0,y0 = c0,0 = a0m + b0n = 0
pnm−1 = cxnm−1,ynm−1 = cn−1,m−1 = an−1m + bm−1n = qm + sn = t.

We prove that gcd(pi+1 − pi,N) = 1 for 0 ≤ i ≤ N − 2, which is true if and only if gcd(axi+1 − axi ,n) = 1
and gcd(byi+1 − byi ,m) = 1, according Proposition 4.3. We consider three cases depending on which
part of the pass r the pairs (xi, yi) and (xi+1, yi+1) belong to for 0 ≤ i ≤ mn − 2. If both (xi, yi) and
(xi+1, yi+1) are from r1 then it must be that |xi+1 − xi|, |yi+1 − yi| ∈ {1, 2}, since r1 is a (2, 2)−pass. On the
other hand, if |yi+1− yi| = 2, then as r1 covers the first three columns of the table it holds that yi = 0 and
yi+1 = 2 and thus, using the induction hypothesis, gcd(byi+1 − byi ,m) = gcd(b2,m) = 1. If |yi+1 − yi| = 1,
gcd(byi+1 − byi ,m) = 1 holds by the induction hypothesis. From the proof of Lemma 4.1 we conclude
that the q1 consecutive numbers ai+1, ai+2, . . . ai+q1 (0 ≤ i ≤ n− 1− q1) belong to different classes modulo
q1 and since q1 ≥ 3, that axi and axi+1 belong to different classes modulo q1. Thus, q1 - axi+1 − axi and
gcd(axi+1 − axi ,n) = 1. Assume that (xi, yi) and (xi+1, yi+1) are elements of the sequence r j for some
2 ≤ j ≤ l. Since r j is a (2, 1)−pass, for the same reason as in the previous case we conclude that
gcd(axi+1 − axi ,n) = 1 and by the induction hypothesis gcd(byi+1 − byi ,m) = 1 holds, since |yi+1 − yi| = 1.
Finally, assume that (xi, yi) is an element of the pass r j and (xi+1, yi+1) is an element of r j+1 for some
2 ≤ j ≤ l − 1. According to Remark 3.11 xi = n − 1, yi = 2 j, xi+1 = 0 and yi+1 = 2 j + 1. Furthermore, we
see that |axi+1 − axi | = q which is relatively prime with n. As yi+1 − yi = 1, by the induction hypothesis
now directly implies that gcd(byi+1 − byi ,m) = 1. The same conclusion holds if (xi, yi) belongs to r1 and
(xi+1, yi+1) belongs to r2.

If gcd(q,n) , 1 then q1 | q implying that a0 = 0 and an−1 = q belong to the same class modulo q1. Since
gcd(a1 − a0,n) = gcd(a1,n) = 1, which means that q1 - a1, it holds that q1 - an−1 − a1. Now, we can use
a similar construction of the pass as in the previous case. In fact, the construction of the pass is given
in Remark 3.11. So, we can repeat the above proof in the same manner considering the pass

r′ = r′1 ⊕ r′2 ⊕ . . . ⊕ r′l
where the pass r′1 starts at the filed (0, 0) and ends at (n − 1, 2) and r′i starts at (1, 2i − 1) and ends at
(n − 1, 2i) for 2 ≤ i ≤ l where m = 2l + 1.

Finally, according to Remark 3.11 and the proof of Lemma 3.8 we have that p2 = c2,1 = a2m + b1n.
By the induction hypothesis it trivially holds that gcd(b1,m) = 1. According to the definition of the
sequence a0, a1, . . . , an−1 we conclude that q1 - a2, since q1 ≥ 3, and thus gcd(a2,n) = 1. Now, it is clear
that gcd(p2,N) = 1, according to Proposition 4.3.
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Notice that, following the proof of the above theorem we can find numbers p(i), for 0 ≤ i ≤ N − 1, which
form a complete residue system modulo N, but they are not necessarily nonnegative and less than N. It is
clear that if we replace p(i) by p1(i) so that p1(i) ≡ p(i) (mod N) and 0 ≤ p1(i) ≤ N − 1, the assertion of the
theorem still holds. From this fact and the previous theorem we conclude that unitary Cayley graphs of the
odd order are hamiltonian-connected.

4.2. N is even
Now, we show that unitary Cayley graphs of even order N , 6 are hamiltonian-laceable.

Theorem 4.6. Let N , 6 be an even positive integer and 1 ≤ t ≤ N − 1 be an odd number. Then there exists a
permutation p of the numbers {0, 1, . . .N−1}, such that p0 = 0, pN−1 = t and gcd(pi+1−pi,N) = 1, for 0 ≤ i ≤ N−2.

Proof. If N is a power of two then the assertion holds by Lemma 4.1. Let N = 2α1 qα2
2 · . . . · q

αk
k be the prime

factorization of N, where 2 < q2 < . . . < qk are distinct primes, αi ≥ 1. Let qr be an arbitrary odd prime
divisor of N, n = qr

αr and m = N/n, for some 2 ≤ r ≤ k. According to Bezout’s identity, since gcd(m,n) = 1
we can find two nonegative integers 0 ≤ q ≤ n − 1 and 0 ≤ s ≤ m − 1 such that qm + sn ≡ t (mod N). As t is
odd and m is even, then s must also be odd (and thus s , 0). Therefore we distinguish two cases, q = 0 and
q , 0. For the sake of simplicity of notation we set p = qr and α = αr.

We prove the assertion using induction on N. The base case holds according to the first part of Lemma 4.1.
Suppose that the assertion of the theorem holds for any l < N. Thus, applying the induction hypothesis to m
we conclude that there exists a permutation b0, b1, . . . , bm−1 such that b0 = 0, bm−1 = s and gcd(bi+1−bi,m) = 1,
for 0 ≤ i ≤ m − 2.

Case 1 q = 0. Let ai = i for 0 ≤ i ≤ n − 1. Now, since gcd(m,n) = 1, it is clear that the set {ci, j = aim + b jn | 0 ≤
i ≤ n − 1, 0 ≤ j ≤ m − 1} is a complete residue system modulo N.

Assume that N , 6. According to Theorem 3.6 there is a (2, 1)−pass

(x0, y0) = (0, 0), (x1, y1), . . . , (xnm−1, ynm−1) = (0,m − 1)

from the upper-left cell to the upper-right cell through some table of size n ×m. If we define pi = cxi,yi

for 0 ≤ i ≤ nm − 1, then we have that

p0 = cx0,y0 = c0,0 = a0m + b0n = 0
pnm−1 = cxnm−1,ynm−1 = c0,m−1 = a0m + bm−1n = sn = t.

Since {(xi, yi) | 0 ≤ i ≤ N−1} is a (2, 1)−pass we conclude that |xi+1−xi| ∈ {1, 2} and |yi+1−yi| = 1. From the
definition of the sequence a it is clear that 1 ≤ |axi+1 − axi | ≤ 2 and therefore gcd(axi+1 − axi ,n) = 1 trivially
holds. On the other hand, since |yi+1−yi| = 1 by the induction hypothesis we have gcd(byi+1−byi ,m) = 1.
Using Proposition 4.3, gcd(pi+1 − pi,N) = 1 holds for all 0 ≤ i ≤ N − 2.

Case 2 q , 0. According to Lemma 4.1 there exists a permutation a of the numbers {0, 1, . . . ,n − 1}, such that
a0 = 0, an−1 = q and gcd(ai+1 − ai,n) = 1 for 1 ≤ i ≤ n − 1. Again, we conclude that {ci, j = aim + b jn | 0 ≤
i ≤ n − 1, 0 ≤ j ≤ m − 1} is a residue system modulo N, according to Proposition 4.2.

Assume that N , 6. According to Theorem 3.6 there is a (2, 1)−pass

(x0, y0) = (0, 0), (x1, y1), . . . , (xnm−1, ynm−1) = (n − 1,m − 1)

from the upper-left cell to the lower-right cell through some table of size n ×m. If we define pi = cxi,yi

for 0 ≤ i ≤ nm − 1, then we have that

p0 = cx0,y0 = c0,0 = a0m + b0n = 0
pnm−1 = cxnm−1,ynm−1 = cn−1,m−1 = an−1m + bm−1n = qm + sn = t.
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Since {(xi, yi) | 0 ≤ i ≤ N − 1} is a (2, 1)−pass we conclude that |xi+1 − xi| ∈ {1, 2} and |yi+1 − yi| = 1. From
the proof of Lemma 4.1 we conclude that any p consecutive numbers from ai+1, ai+2, . . . ai+p belong to
different classes modulo p ≥ 3 (0 ≤ i ≤ n − p − 1), which implies that gcd(axi+1 − axi ,n) = 1. On the
other hand, since |yi+1 − yi| = 1 by the induction hypothesis we have gcd(byi+1 − byi ,m) = 1. Using
Proposition 4.3, gcd(pi+1 − pi,N) = 1 holds for all 0 ≤ i ≤ N − 2.

By Theorem 4.5, we have actually shown that there is a hamiltonian path between the vertex 0 and each
vertex of unitary Cayley graph Xn. As Xn is vertex-transitive, there is a hamiltonian path between any two
vertices of Xn, i.e. Xn is hamiltonian-connected. Similarly, according to Theorem 4.6, there is a hamiltonian
path between the vertex 0 and each odd vertex t of Xn (with the exception for n = 6). Since 0 and t belong to
different classes of the bipartition of Xn, we conclude that Xn is hamiltonian-laceable. These results imply
that every unitary Cayley graph Xn is hamiltonian, for n , 6.

5. Pancyclicity of Unitary Cayley Graphs

In this section, we give a method for embedding cycles of arbitrary even length into unitary Cayley
graphs. Throughout this section we let n = pα1

1 pα2
2 · . . . · p

αk
k be the prime factorization of n, where p1 < p2 <

. . . < pk are distinct primes, αi ≥ 1.

Theorem 5.1. Every unitary Cayley graph Xn is bipancyclic for n ≥ 4.

Proof. Let 4 ≤ l ≤ n be even. We want to prove that there exists a cycle of length l in Xn. We will find the
cycle as the sequence of the vertices in the following form

v0 = 0, v1 = l1, v2 = l1 + 1, . . . , vl−2 = l1 + l − 3, vl−1 = l1 + l − 2, vl = 0,

where 0 < l1 ≤ n − 1, (the addition in the above formulas is taken modulo n). It is clear that the vertex vi is
adjacent to vi+1 for 1 ≤ i ≤ l−2. We prove that there exists l1 such that v0 is adjacent to v1 and vl−1 is adjacent
to vl, for every l. Such l1 must satisfy gcd(l1,n) = 1 and gcd(l1 + l− 2,n) = 1 and thus we could conclude that
pi - l1 and pi - l1 + l− 2. The last relation can be rewritten in the following form l1 . 0 (mod pi) and l1 . 2− l
(mod pi) for 1 ≤ i ≤ k. Since l is even the system of congruences l1 . {0, 2− l} (mod pi) has a solution modulo
pi, for 1 ≤ i ≤ k. Thus, according to the Chinese remainder theorem, it follows that there exists a solution s
of the above system of congruences such that 0 ≤ s < M and l1 ≡ s (mod M) where M = p1p2 . . . pk.

If l = n then we can choose l1 = 1 and thus vi = i for 1 ≤ i ≤ n − 1. Assume that l < n. If v j , 0, for
2 ≤ j ≤ l − 1 then the sequence v0, . . . , vl indeed forms a cycle. If there is a vertex v j, for 2 ≤ j ≤ l − 1 such
that v j = 0, we conclude that the vertices of the sequence v0, v1, . . . , vl−1, vl do not form a cycle, in fact form
a closed walk, and l1 + l − n − 1, l1 + l − n, . . . , l1 − 1 are not included in the walk. Therefore, we distinguish
two cases depending on the different values of l modulo 3.

Suppose that l . 1 (mod 3). Putting u = l1 + l − n − 1 we have already concluded that u , v j for
0 ≤ j ≤ l. The vertex u is adjacent to the vertex v j−1 = n − 1 if and only if gcd(v j−1 − u,n) = 1 and the
last relation is satisfied if and only if l1 . −l (mod pi) for 1 ≤ i ≤ k. Since l is even and l . 1 (mod 3)
we conclude that the system l1 . {0, 2 − l,−l} (mod pi) (1 ≤ i ≤ k) has a solution modulo M. The vertices
v0, v1, . . . , v j−1,u, vl−1, vl−2, . . . , v1, v0 are mutually distinct and thus form a cycle.

Suppose that l ≡ 1 (mod 3). According to the previous case we can form a cycle of length l − 2 ≡ 2
(mod 3).

First, it can be assumed that the cycle contains the sequence of the vertices v0 = 0, v1, . . . , v j−1,
u, vl−3, vl−4, . . . , v1, v0 = 0, where u = l1 + l − n − 3. The number of vertices that do not belong to the cycle is
equal to n− l + 2 ≥ 3, whence we conclude that the vertices u + 1 and u + 2 do not belong to the cycle. Since
u is adjacent to v j−1 = n − 1, u + 1 is also adjacent to v0 = 0 and u + 2 is adjacent to v j+1 = 1. Therefore, the
sequence v0, v1, . . . , v j−1,u, vl−3, vl−4 . . . , v j+1,u + 2,u + 1, v0 forms a cycle of length l.

Now, suppose that the cycle of length l − 2 consists of the consecutive vertices v0 = 0, v1, . . . , vl−3,
v0 = 0. Since n − l + 2 ≥ 3 vertices are not in the cycle, we conclude that the vertices 1, 2 < {v0, v1, . . . , vl−3}
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or n − 2,n − 1 < {v0, v1, . . . , vl−3}. If 1, 2 < {v0, v1, . . . , vl−3}, since v0 = 0 is adjacent to v1, it holds that 1 is
adjacent to v2 and 2 is adjacent to v3, as well. Therefore, the sequence of the vertices v0, v1, v2, 1, 2, v3, . . . , vl−3
forms a cycle of size l. Similarly, if n − 2,n − 1 < {v0, v1, . . . , vl−3}, since v0 = 0 is adjacent to vl−3 it holds
that n − 1 is adjacent to vl−4 and n − 2 is adjacent to vl−5, as well. Therefore, the sequence of the vertices
v0, v1, . . . , vl−5,n − 2,n − 1, vl−4, vl−3 forms a cycle of size l.

In the same way, following the proof of Theorem 5.1 the next result can be immediately obtained

Theorem 5.2. Every nonbipartite unitary Cayley graph Xn (for odd n ≥ 3) is pancyclic.

Remark 5.3. Note that no unitary Cayley graph Xn, for n even, contains a cycle of odd length, since Xn is bipartite.

6. Concluding Remarks

We propose the class of unitary Cayley graphs as a subclass of circulant graphs for efficient interconnec-
tion networks, since they possess many good properties such as small diameter, mirror symmetry, recursive
structure and regularity. In this paper we examine the hamiltonian properties as they are one of the most
important requirements in designing network topologies since the embedding problem can be modeled by
finding the longest paths and cycles. Furthermore, it is well known that hamiltonian paths and cycles can
efficiently simulate many algorithms designed on linear arrays or rings.

First we show that every bipartite unitary Cayley graph is hamiltonian-laceable and every nonbipartite
unitary Cayley graph is hamiltonian-connected. We actually prove this by transferring these propertiess
from two networks of lower dimensions n and m to a network of higher dimension nm, gcd(n,m) = 1. It is
worthwhile to carry out further investigation on this topic in a faulty setting, since fault-tolerant ability is
a highly desirable property in the interconnection networks that have high probability of failure. Namely,
it is well known that for a graph G such that G \ F has a hamiltonian cycle (resp. is hamiltonian connected)
for any set F of faulty elements with |F| ≤ f , it is necessary that f ≤ δ(G)− 2 (resp. f ≤ δ(G)− 3), where δ(G)
is the minimum degree of G. Testing the low-order graphs Xn suggests that the above upper bound can be
achieved as is the case for the class of restricted HL graphs [20].

The same authors in [21] also show that there exists a cycle of every length from 4 to |V(G \ F)| for any
faulty set F with |F| ≤ m − 2 and restricted m−dimensional HL-graph G with m ≥ 3. Since we prove that
every unitary Cayley graph Xn (n ≥ 4) is bipanciclic and every unitary nonbipartite Cayley graph Xn (n ≥ 3)
is panciclic, it is natural to extend our future research to the problem of examining pancyclity on the graphs
Xn with faulty elements. The examples for smaller values of n indicate that every graph Xn \F is bipancyclic
(Xn \ F is pancyclic for odd n) for any faulty set F with |F| ≤ δ(Xn) − 2.

Another possible direction in research would be the examination of the property of edge-pancyclity or
vertex-pancyclity which is an extension of pancyclity. More precisely, a graph G is edge-pancyclic (resp.
vertex-pancyclity) if every edge (resp. vertex) lies on a cycle of every length from 3 to |V(G)|. This concept
can again be studied in a faulty setting as it is done in [15].
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Milan Bašić / Filomat 32:1 (2018), 71–85 85

[11] F. K. Hwang, A survey on multi-loop networks, Theor. Comput. Sci. 299 (2003) 107–121.
[12] T.L. Kueng, T. Liang, L.H. Hsu, J. J. M. Tan, Long paths in hypercubes with conditional node-faults, Inform. Sci. 179(5) (2009) 667–681.
[13] W. Klotz, T. Sander, Some properties of unitary Cayley graphs, Electron. J. Combin. 14 (2007) #R45.
[14] W. Klotz, T. Sander, Integral Cayley graphs over abelian groups, Electron. J. Combin. 17 (2010) #R81.
[15] T.K. Li, C.H. Tsai, J.J.M. Tan, L.H. Hsu Bipanconnectivity and edge–fault–tolerant bipancyclicity of hypercubes, Inform. Process. Lett.

87 (2003), 107–110.
[16] H.S. Lim, J.H. Park, K.Y. Chwa, Embedding trees into recursive circulants, Discrete Appl. Math. 69 (1996) 83–99.
[17] J.H. Park, Cycle embedding of faulty recursive circulants, Journal of KISS 31(2) (2004), 86–94.
[18] J.H. Park, K.Y. Chwa, Recursive circulants and their embeddings among hypercubes, Theor. Comput. Sci. 244 (2000) 35–62.
[19] C.D. Park, K.Y. Chwa, Hamiltonian properties on the class of hypercube-like networks, Inform. Process. Lett. 91 (2004), 11–17.
[20] J.H. Park, H.C. Kim, H.S. Lim, Fault-hamiltonicity of hypercube-like interconnection networks, in Proc. IEEE International Parallel and

Distributed Processing Symposium IPDPS 2005, Denver, Apr. 2005.
[21] J.H. Park, H.S. Lim, H.C. Kim, Panconnectivity and pancyclicity of hypercube-like interconnection networks with faulty elements, Theor.

Comput. Sci. 377(1-3) (2007), 170–180.
[22] J.H. Park, H.C. Kim, H.S. Lim, Many-to-many disjoint path covers in the presence of faulty elements, IEEE Trans. Comput. 58(4) (2009)

528–540.
[23] H. N. Ramaswamy, C. R. Veena, On the Energy of Unitary Cayley Graphs, Electron. J. Combin. 16 (2007) #N24.
[24] N. Saxena, S. Severini, I. Shparlinski, Parameters of integral circulant graphs and periodic quantum dynamics, Int. J. Quantum Inf. 5

(2007), 417–430.
[25] A. Szepietowski, Hamiltonian cycles in hypercubes with 2n-4 faulty edges, Inform. Sci. 215 (2012), 75–82.


