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Abstract. The aim of this paper is to enlarge some known results from Fredholm and perturbation theory
via measure of non-compactness. As applications, we focus on the study of the essential ascent and the
essential descent spectra of an operator T defined on a given Banach space. Some perturbation results are
also investigated.

1. Introduction

The notion of a measure of non-compactness of operators have been successfully applied in operator
theory and turns out to be very useful tools in functional analysis, for instance in the theory of operator
equations in Banach spaces, in the characterizations of compact operators between Banach spaces and in
the metric fixed point theory. They are also used in the studies of functional equations, ordinary and partial
differential equations, fractional partial differential equations and optimal control theory, see for instance
[2–4, 10] and [16]. We refer to reader to these works with references given there.

Given a Banach space X, we denote by L(X) the algebra of all bounded linear operators on X and
K (X) its ideal of compact operators. For an operator T ∈ L(X), let N(T) and R(T) denote the null space
and the range of T, respectively. We say that T is upper semi-Fredholm (resp. lower semi-Fredholm) if
α(T) := dim(N(T)) < ∞ and R(T) is closed (resp. β(T) := codim(R(T)) < ∞ and R(T) is closed). The set of
upper semi-Fredholm (resp. lower semi-Fredholm) operators on X will be denoted by Φ+ (resp. Φ−). If
T ∈ Φ+ ∪ Φ−, then the index of T is given by ind(T) := α(T) − β(T). If ind(T) is finite, then T is called
Fredholm; such class of operators will be denoted by Φ. If T − λ ∈ Φ for all λ ∈ C, we say that T is a Riesz
operator. Define

R(X) :=
{
T ∈ L(X) : T − λ ∈ Φ for all λ ∈ C

}
.

Let T ∈ L(X). It is well known that (N(Tk))k forms an ascending sequence of subspaces, and if N(Tk) =
N(Tk+1) for some k ∈ N, then N(Tk) = N(Tr) for all r ≥ k. The smallest number k such that N(Tk) = N(Tk+1)
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is called the ascent of T, we denote it by a(T). If no such integer exists, then a(T) is taken to be ∞. For a
nonnegative integer k, let αk(T) = dim N(Tk+1)/N(Tk). Following [12], the essential ascent of T ∈ L(X) is
defined by

ae(T) = inf{k : αk(T) < ∞}.

It is easy to see that ae(T) = 0 for every upper semi-Fredholm operator T. Analogously, (R(Tk))k forms a
descending sequence; the smallest integer k for which R(Tk) = R(Tk+1) is called the descent of T; we denote
it by d(T). If no such integer exists, we shall say that T has an infinite descent. For a nonnegative integer k,
set βk(T) = dim R(Tk)/R(Tk+1). Following [7], the essential descent of T is defined by

de(T) = inf
{
k : βk(T) < ∞

}
.

Clearly de(T) = 0 for every lower semi-Fredholm operator T. For more information about the essential
ascent and the essential descent, we refer to [5–8, 12, 13]. We define the hyper-kernel and the hyper-range
of T ∈ L(X), respectively by

N∞(T) :=
∞⋃

n=0

N(Tn) and R∞(T) :=
∞⋂

n=0

R(Tn).

For given T ∈ L(X), the quantities

r+(T) := sup{ε ≥ 0 : |λ| < ε⇒ T − λ ∈ Φ+},

r−(T) := sup{ε ≥ 0 : |λ| < ε⇒ T − λ ∈ Φ−}

are semi-Fredholm radii of T (see [19, 21]). The number

re(T) := sup{|λ| : T − λ < Φ}

is called the essential spectral radius of T. Recall that an operator T ∈ R(X) if and only if re(T) = 0 (see [15,
Theorem 3.3.1]).

The essential minimum modulus and the essential surjection modulus of an operator T ∈ L(X) are
defined, respectively by

me(T) = inf{‖T + K‖ : K < Φ+}

and
ne(T) = inf{‖T + K‖ : K < Φ−}.

An operator F is said to be an upper (resp. lower) semi-Fredholm perturbation if F + T ∈ Φ+ (resp.
F + T ∈ Φ−) whenever T ∈ Φ+ (resp. T ∈ Φ−). The sets of all upper semi-Fredholm and all lower
semi-Fredholm perturbations are denoted by PΦ+ and PΦ−, respectively. ObviouslyK (X) ⊂ PΦ+ ∩ PΦ−.

Let us consider the following functions

‖T‖K := inf{‖T + K‖ : K ∈ K (X)},

‖T‖PΦ+
:= inf{‖T + K‖ : K ∈ PΦ+},

‖T‖PΦ− := inf{‖T + K‖ : K ∈ PΦ−}.

Clearly ‖T‖PΦ+
and ‖T‖PΦ− are two semi-norms on X.

In this paper, we are interested to the stability of the class of semi-Fredholm, finite ascent, finite es-
sential ascent, finite descent and finite essential descent operators under perturbations via measure of
non-compactness. The paper is organized as follows. Section 2 is devoted to some semi-Fredholm per-
turbation results, and to the stability of the essential spectra of bounded operators on a Banach space. In
particular, we give conditions under which a polynomial P(T) of an operator T is Fredholm. As applications,
we study in Section 3, the stability of the ascent, the essential ascent, the descent and the essential descent
of a bounded operator under perturbations.

We end this introduction by recalling some preliminary results needed in the sequel.
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Lemma 1.1. ([17, 21]) Let T,S ∈ L(X). Then

(i) me(T + S) = me(T) whenever S ∈ PΦ+;
(ii) me(T + S) ≤ me(T) + ‖S‖PΦ+

;
(iii) T ∈ Φ+ if and only if me(T) > 0;
(iv) if ‖S‖PΦ+

< me(T) then T,T + S ∈ Φ+ and ind(T + S) = ind(T);
(v) if ‖S‖ < me(T) then T,T + S ∈ Φ+ and ind(T + S) = ind(T);

(vi) me(λT) = |λ|me(T) for every λ ∈ C;
(vii) me(T) ≤ r+(T);

(viii) 0 < me(I) ≤ 1, where I denotes the identity operator on X.

Lemma 1.2. ([17, 21]). Let T,S ∈ L(X). Then

(i) ne(T + S) = ne(T) whenever S ∈ PΦ−;
(ii) ne(T + S) ≤ ne(T) + ‖S‖PΦ− ;

(iii) T ∈ Φ− if and only if ne(T) > 0;
(iv) if ‖S‖PΦ− < ne(T) then T,T + S ∈ Φ− and ind(T + S) = ind(T);
(v) if ‖S‖ < ne(T) then T,T + S ∈ Φ− and ind(T + S) = ind(T);

(vi) ne(λT) = |λ|ne(T) for every λ ∈ C;
(vii) ne(T) ≤ r−(T).

Lemma 1.3. ([1, Theorems 1.42, 1.46, 1.47]) Let S,T ∈ L(X). Then

(i) If ST ∈ Φ− then S ∈ Φ−;
(ii) if ST ∈ Φ+ then T ∈ Φ+;

(iii) if ST ∈ Φ then S ∈ Φ− and T ∈ Φ+;
(iv) if S,T ∈ Φ+ then ST ∈ Φ+ with ind(ST) = ind(S) + ind(T);
(v) if S,T ∈ Φ− then ST ∈ Φ− with ind(ST) = ind(S) + ind(T);

(vi) if S,T ∈ Φ then ST ∈ Φ with ind(ST) = ind(S) + ind(T).

2. Stability of Semi-Fredholm Operators

Let us introduce the following quantities for an operator T ∈ L(X):

δ(T) := sup{me(T + K) : me(K) = 0}

and
γ(T) := sup{ne(T + K) : ne(K) = 0}.

We have the following properties

Proposition 2.1. Let T ∈ L(X). Then

(i) δ(T) = 0 if and only if T ∈ PΦ+;
(ii) δ(T + S) ≤ δ(T) + ‖S‖PΦ+

≤ δ(T) + ‖S‖K ;
(iii) δ(T + S) = δ(T) for all S ∈ PΦ+;
(iv) δ(λT) = |λ|δ(T) for all λ ∈ C;
(v) me(T) ≤ δ(T).
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Proof. (i) Suppose that δ(T) = 0 and let K ∈ φ+. Then me(K) > 0 (Lemma 1.1, Part (iii) ). Assume that
T + K < φ+ then from the definition of δ we have that δ(T) ≥ me(T − (T − K)) = me(K) > 0 which is
Contradiction. Thus T + K ∈ φ+ and consequently T ∈ Pφ+. Conversely, suppose that T ∈ Pφ+. Then,
by using Lemma 1.1 (ii) and (vi), one can deduce that me(T + T + S) = me(T + S) for all S ∈ L(X). It
follows that

2δ(T) = 2 sup{me(T + K) : me(K) = 0}
= sup{me(T + T + 2K) : me(K) = 0}
= sup{me(T + T + S) : me(S) = 0}
= sup{me(T + S) : me(S) = 0}
= δ(T).

Consequently, δ(T) = 0.
(ii) We have

δ(T + S) = sup{me(T + S + K) : me(K) = 0}
≤ sup{me(T + K) + ‖S‖PΦ+

: me(K) = 0} (by Lemma 1.1, Part (ii))
= sup{me(T + K) : me(K) = 0} + ‖S‖PΦ+

= δ(T) + ‖S‖PΦ+

≤ δ(T) + ‖S‖K (asK (X) ⊂ PΦ+).

(iii) Let S ∈ PΦ+. From Part (ii) we have δ(T + S) ≤ δ(T) + ‖S‖PΦ+
= δ(T) and δ(T) = δ(T + S − S) ≤

δ(T + S) + ‖S‖PΦ+
= δ(T + S). Thus δ(T + S) = δ(T).

(iv) The result is trivial if λ = 0. Suppose that λ is nonzero. Then, since me(λK) = |λ|me(K), it follows that
me(K) = 0 if and only if me(λK) = 0 for any K ∈ L(X).
Thus,

δ(λT) = sup{me(λT + K) : me(K) = 0}
= sup{me(λT + λK) : me(K) = 0}
= |λ| sup{me(T + K) : me(K) = 0}
= |λ|δ(T).

(v) Clear.

In the following theorem we establish stability property in the semi-Fredholm operators set and the Fred-
holm operators set. This theorem provides an extension of the important results [21, Theorem 6.1] and [11,
Proposition 1]

Theorem 2.2. Let S,T ∈ L(X). Then

(i) If δ(T) < me(S), then S, T + S ∈ Φ+ and ind(T + S) = ind(S);
(ii) if T ∈ Φ+, then δ(T) > 0;

(iii) if δ(T) < |λ|me(I) for λ ∈ C, then T − λ ∈ Φ and ind(T − λ) = 0;
(iv) re(T) = lim

n→∞
(δ(Tn))

1
n ;

(v) δ(T) ≤ r+(T) + r0, where r0 := sup{‖S‖PΦ+
: me(S) = 0}.

Proof. (i) Trivially by Lemma 1.1, Part (iii), we have S ∈ Φ+. On the other hand, let λ ≥ 1 and suppose
that T + λS < Φ+. By Proposition 2.1, we get me(T + λS) = 0 which implies that

δ(T) ≥ me(T − (T + λS)) = me(λS) = |λ|me(S) ≥ me(S)
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leading to a contraction. Thus T + λS ∈ Φ+. For λ = 1, we get in particular T + S ∈ Φ+. Now, if
t ∈ [0, 1], then δ(tT) ≤ tδ(T) < me(S). This implies that tT + S ∈ Φ+. By the continuity of the index on
[0, 1], we obtain

ind(T + S) = ind(1.T + S) = ind(0.T + S) = ind(S).

(ii) This follows immediately from Lemma 1.1, Part (iii) and Proposition 2.1, Part (v).
(iii) Replacing S by λI in Part (i), we obtain T − λ ∈ Φ+ with ind(T − λ) = ind(λI) = 0, which implies that

T − λ ∈ Φ.
(iv) From Proposition 2.1, Part (ii), we have δ(T) ≤ ‖T‖K. Hence

lim
n→∞

(δ(Tn))
1
n ≤ re(T).

Now let us consider |λ| > (δ( 1
me(I)

Tn))
1
n for some n ∈ N. Then δ(Tn) < |λ|nme(I). By Part (iii), it follows

that Tn
− λn

∈ Φ with ind(Tn
− λn) = 0. Since

Tn
− λn = (T − λ)(Tn−1 + λTn−2 + ... + λn−2T + λn−1)

= (Tn−1 + λTn−2 + ... + λn−2T + λn−1)(T − λ),

then by Lemma 1.3, Part (iii), T − λ ∈ Φ. Hence re(T)(me(I))
1
n ) ≤ (δ(Tn))

1
n for all n ∈N. Thus

re(T) ≤ lim
n→∞

(δ(Tn))
1
n ≤ lim

n→∞
(δ(Tn))

1
n ≤ re(T).

This proves (iv).
(v) By Proposition 2.1, me(T + S) ≤ me(T) + ‖S‖PΦ+

≤ r+(T) + r0 for all S satisfying me(S) = 0. Consequently,

δ(T) ≤ r+(T) + r0.

As a consequence of the above theorem we have the following results.

Corollary 2.3. Let T ∈ L(X) and let P(T) and Q(T) be polynomials in T such that Q(0) , 0. Let λ0 := min{|z| :
P(z) = 0} and λ ∈ C\{0}.

(i) If δ(T) < |λ0|me(I), then P(T) ∈ Φ with ind(P(T)) = 0;
(ii) if Q(z) divides P(z) − λ and δ(P(T)) < |λ|me(I), then Q(T) ∈ Φ. Moreover if δ(P(tT)) < |λ|me(I) for all

t ∈ [0, 1], then ind(Q(T)) = 0;
(iii) if δ(Tn) < me(I) for some n ∈N, then I − T,Tn−1 + ...+ T + I ∈ Φ and ind(I − T) = ind(Tn−1 + ...+ T + I) = 0.

Proof. (i) Let P(T) :=
p∏

i=1

(T − λi)mi and assume that δ(T) < |λ0|me(I). From Theorem 2.2 it follows that

T − λi ∈ Φ with ind(T − λi) = 0 for 1 ≤ i ≤ p; then P(T) ∈ Φ. Moreover,

ind(P(T)) =

p∑
i=1

ind(T − λi)mi =

p∑
i=1

miind(T − λi) = 0.

(ii) Let P(z) − λ = Q(z)H(z) for some polynomial H(z), then P(T) − λ = Q(T)H(T). Since δ(P(T)) < |λ|, it
follows from Theorem 2.2, Part (iii), that Q(T)H(T) ∈ Φ. By using Lemma 1.3 (iii) and the fact that
Q(T)H(T) = H(T)Q(T), we obtain Q(T) ∈ φ. Suppose moreover that δ(P(tT)) < |λ|me(I) for all t ∈ [0, 1].
We prove in the same way as above by interchanging T and tT and since Q(0) , 0, that Q(tT) ∈ Φ for
all t ∈ [0, 1]. Now, by the stability of the index in each connected component of Φ and the compactness
of [0, 1], we get

ind(Q(T)) = ind(Q(1.T)) = ind(Q(0.T)) = 0.
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(iii) This follows from Part (ii) by taking P(z) = zn, Q(z) = zn−1 + ... + z + 1 and λ = 1.

For T ∈ L(X), let σ(T), σe(T), ρ(T) and T∗ denote the spectrum, the essential spectrum, the resolvent and the
adjoint operator of T. For r > 0 and x ∈ X, let B(x, r) =

{
y ∈ X : ‖x − y‖ < r

}
. If L ⊂ X, then we denote its

closure by L.

Corollary 2.4. If T ∈ L(X), then
σe(T) =

⋂
S∈S

σ(T + S) ⊂ B(0, re(T)),

where S :=
{
S ∈ L(X) : δ(S(T + S − λ)−1) < me(I) for all λ ∈ ρ(T + S)

}
.

Proof. We first claim that σe(T) ⊂
⋂
S∈S

σ(T + S). Indeed, if λ <
⋂
S∈S

σ(T + S), then there exists S ∈ S such that

λ ∈ ρ(T+S), so T+S−λ ∈ Φ with ind(T+S−λ) = 0 and δ(S(T+S−λ)−1) < me(I). From Theorem 2.2, Part (iii),
we have I−S(T+S−λ)−1

∈ Φ+ and ind(I−(T+S−λ)−1) = 0. Using the fact that T−λ = (I−S(T+S−λ)−1)(T+S−λ)
and Lemma 1.3, we derive that T − λ ∈ Φ. Thus σe(T) ⊂

⋂
S∈S

σ(T + S).

Conversely, let S ∈ K (X), then S(T + S−λ)−1
∈ K (X) for all λ ∈ ρ(T + S). It follows from Proposition 2.1,

Part (i), that δ(S(T + S − λ)−1) = 0 < me(I) and hence S ∈ S. Consequently,⋂
S∈S

σ(T + S) ⊂
⋂

S∈K (X)

σ(T + S) = σe(T).

On the other hand, let |λ| > re(T) = lim
n→∞

(δ(Tn))
1
n = lim

n→∞
(

1
me(I)

δ(Tn))
1
n . Then, there exists k for which

|λ| > ( 1
me(I)

δ(Tk))
1
k , that is, |λ|kme(I) > δ(Tk). From Theorem 2.2, Part (iii), we have Tk

− λk
∈ Φ. Now, since

Tn
− λn = (T − λ)(Tn−1 + λTn−2 + ... + λn−2T + λn−1)

= (Tn−1 + λTn−2 + ... + λn−2T + λn−1)(T − λ),

it follows from Lemma 1.3 that T − λ ∈ Φ. Consequently, λ < σe(T).

The next proposition is obtained by duality from Proposition 2.1, so we omit its proof.

Proposition 2.5. Let T ∈ L(X). Then

(i) γ(T) = 0 if and only if T ∈ PΦ−;
(ii) γ(T + S) ≤ γ(T) + ‖S‖PΦ− ≤ γ(T) + ‖S‖K ;

(iii) γ(T + S) = γ(T) for all S ∈ PΦ−;
(iv) γ(λT) = |λ|γ(T) for all λ ∈ C;
(v) ne(T) ≤ γ(T).

Using the same arguments as in the proof of Theorem 2.2, we get the following results.

Theorem 2.6. Let S,T ∈ L(X). Then

(i) If γ(T) < ne(S), then S, T + S ∈ Φ− and ind(T + S) = ind(S);
(ii) if T ∈ Φ−, then γ(T) > 0;

(iii) if γ(T) < |λ|ne(I) for λ ∈ C, then T − λ ∈ Φ and ind(T − λ) = 0;
(iv) re(T) = lim

n→∞
(γ(Tn))

1
n ;

(v) γ(T) ≤ r+(T) + r0, where r0 := sup{‖S‖PΦ− : ne(S) = 0}.
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Corollary 2.7. Let T ∈ L(X) and let P(T) and Q(T) be polynomials in T such that Q(0) , 0. Let λ0 := min{|z| :
P(z) = 0} and λ ∈ C\{0}.

(i) If γ(T) < |λ0|ne(I), then P(T) ∈ Φ with ind(P(T)) = 0;
(ii) if Q(z) divides P(z) − λ and γ(P(T)) < |λ|ne(I), then Q(T) ∈ Φ and ind(Q(T)) = 0;

(iii) if γ(Tn) < ne(I) for some n ∈N, then I − T,Tn−1 + ...+ T + I ∈ Φ and ind(I − T) = ind(Tn−1 + ...+ T + I) = 0.

Corollary 2.8. If T ∈ L(X), then

σe(T) =
⋂
S∈S

σ(T + S) ⊂ B(0, re(T)),

where S :=
{
S ∈ L(X) : γ(S(T + S − λ)−1) < ne(I) for all λ ∈ ρ(T + S)

}
.

3. The framework of the ascent and the descent

In [5, Proposition 3.1], O. Bel Hadj Fredj has shown that the ascent spectrum and the essential ascent
spectrum are invariant under commuting perturbation F such that a power of F is of finite rank. Also in [6, 9]
O. BelHadj Fredj and M. A. Kaashoek, D. C. Lay established that if F is a bounded operator for which there
exists some positive integer n such that Fn is of finite rank, then for every bounded operator commuting
with F, T has finite descent (resp. finite essential descent) if and only if T + F does. In this section we focus
on to study the stability of the above spectrums under perturbations via measure of non-compactness as a
generalization of results proved in [5, 6] and [9]. We also extend the well known results [14, Corollary 2 and
Corollary 3]. We begin with the following lemmas which are used to prove the main result of this section.
The next lemma is an improvement of [18, Proposition 1.6].

Lemma 3.1. Let X be a Banach space and T ∈ L(X).

(i) If a(T) < ∞, then N∞(T) ∩ R∞(T) = {0};
(ii) if N∞(T) ∩ R∞(T) = {0} and ae(T) < ∞, then a(T) < ∞.

Proof. (i) Suppose that p := a(T) < ∞. Then N(Tp) = N(Tp+1), and therefore N(Tp) = N(Tn) for all n ≥ p.
It follows that N∞(T) = N(Tp). Let y ∈ N∞(T) ∩ R∞(T) = N(Tp) ∩ R∞(T). Then y = Tpx for some
x ∈ X and Tpy = 0. It follows that T2px = 0, so x ∈ N(T2p) = N(Tp). Thus y = Tpx = 0, and hence
N∞(T) ∩ R∞(T) = {0}.

(ii) Suppose that N∞(T)∩R∞(T) = {0} and p := ae(T) < ∞. Then N(T)∩R(Tp) = N(T)∩R(Tn) for all n ≥ p.
It follows that N(T)∩R(Tp) = N(T)∩R∞(T) ⊂ N∞(T)∩R∞(T) = {0}. Since N(T)∩R(Tp) ' N(Tp+1)/N(Tp)
then, N(Tp) = N(Tp+1). Consequently a(T) < ∞.

Lemma 3.2. ([1, Corollary 1.43]) Let T ∈ Φ− ∪Φ+. Then a(T) = d(T∗) and d(T) = a(T∗).

For S,T ∈ L(X),ST = TS and n ∈N, let Sn := S|R(Tn).

Theorem 3.3. Let S,T ∈ L(X). Then

(i) If δ(S) < me(T), then a(T) < ∞ if and only if a(T + S) < ∞;
(ii) if ST = TS,R(S) ⊂ R(T)∩R(T + S),R(Tn) is closed and Sn ∈ PΦ+ for all n ∈N, then ae(T) < ∞ if and only if

ae(T + S) < ∞;
(iii) if γ(T) < ne(S), then d(T) < ∞ if and only if d(T + S) < ∞;
(iv) if ST = TS,R(S) ⊂ R(T) ∩ R(T + S) and R(Tn) is closed for all n ∈ N, then de(T) < ∞ if and only if

de(T + S) < ∞.



E. Chafai, M.Boumazgour / Filomat 32:10 (2018), 3495–3504 3502

Proof. (i) Suppose that a(T) < ∞. According to Lemma 3.1, we have N∞(T) ∩ R∞(T) = {0}. If λ ∈ [0, 1],
then T + λS ∈ Φ+ by Theorem 2.2. Thus, there exists ε(λ) > 0 such that

N∞(T + λS) ∩ R∞(T + λS) = N∞(T + ηS) ∩ R∞(T + ηS)

for all η in B(λ, ε(λ)). This shows that N∞(T + λS) ∩ R∞(T + λS) is a locally constant function in the
connected set [0, 1], and so it is constant. Since N∞(T) ∩ R∞(T) = N∞(T) ∩ R∞(T) = {0}, we conclude
that N∞(T + S) ∩ R∞(T + S) = {0}. Hence a(T + S) < ∞.

Conversely, since δ(S) < me(T), then by Theorem 2.2, T ∈ Φ+ and T − S ∈ Φ+. Now, if we consider
T + S instead to T and follow a similar reasoning as in the above, we get a(T) = a(T + S − S) < ∞.

(ii) Note that, since S and T commute and R(S) ⊂ R(T), then S(R(Tk)) ⊂ R(Tk) and R(T + S)k
⊂ R(Tk) for all

k ∈N. Suppose that n = ae(T) < ∞. Then the operator Tn defined on the Banach space R(Tn) is upper
semi-Fredholm. Since Sn ∈ PΦ+, then Tn + Sn ∈ Φ+. Hence dimN(T + S) ∩ R(Tn) < ∞. It follows that
dimN(T + S) ∩ R(T + S)n

≤ dimN(T + S) ∩ R(Tn) < ∞. Consequently, ae(T + S) < ∞.

Conversely, suppose that n := ae(T + S) < ∞. Then dimN(T + S) ∩ R(T + S)n < ∞. Since T and
S commute then so is T + S and S. On the other hand the fact that R(S) ⊂ R(T + S) implies that
R(Tn) = R(T + S− S)n

⊂ R(T + S)n. It follows that dimN(T + S)∩R(Tn) ≤ dimN(T + S)∩R(T + S)n < ∞.
This means that Tn +Sn = (T +S)n ∈ Φ+ and hence Tn = Tn +Sn−Sn ∈ Φ+. Thus implies that ae(T) < ∞.

(iii) Assume that d(T) < ∞. Since γ(T) < ne(S), then T,T + S ∈ Φ−. By Lemma 3.2, we have T∗ ∈ Φ+ with
a(T∗) < ∞. Now by using Part (i), it follows that a(T∗ + S∗) < ∞, that is, d(T + S) < ∞. We prove the
reverse implication by using the same argument as above.

(iv) Likewise in Part (ii), we have S(R(Tk)) ⊂ R(Tk), k ≥ 1. Since n := de(T) < ∞, then dim
R(Tn)

R(Tn+1)
< ∞.

On the other hand, the fact that ST = TS and R(S) ⊂ R(T) ∩ R(T + S) implies that R(Tn) = R(T + S)n.

It follows that dim
R(T + S)n

R(T + S)n+1 = dim
R(Tn)

R(Tn+1)
< ∞. Thus de(T + S) < ∞. Conversely, it suffices to

interchange T and T + S.

Corollary 3.4. Let S,T ∈ L(X). Then

(i) If T ∈ Φ+ and S ∈ PΦ+, then a(T) < ∞ if and only if a(T + S) < ∞;
(ii) if T ∈ Φ− and S ∈ PΦ−, then d(T) < ∞ if and only if d(T + S) < ∞.

Proof. (i) Since S ∈ PΦ+, then by Proposition 2.1, we have δ(S) = 0. Moreover me(T) > 0 by Lemma 1.1.
Hence the equivalence follows immediately from Theorem 3.3 (i).

(ii) Similarly, since according to Proposition 2.5, γ(S) = 0, and ne(T) > 0, then the equivalence follows
directly from Theorem 3.3 (iii).

Corollary 3.5. For λ ∈ C put Tλ := T − λ.

(a) If T ∈ R(X) and S ∈ PΦ+, then

(i) σasc(T) = σasc(T + S);

(ii) σdes(T) = σdes(T + S);

(b) If ST = TS,R(S) ⊂ R(Tλ) ∩ R(Tλ + S) and R(Tλ)n is closed for all n ∈N, then

(i) σe
asc(T) = σe

asc(T + S) whenever S|R(Tλ)n ∈ Pφ+, λ ∈ C;

(ii) σe
des(T) = σe

des(T + S).
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Proof. (a) (i) If λ < σasc(T), then a(T−λ) < ∞, and since T−λ ∈ Φ+ as T ∈ R(X), then δ(S) = 0 < me(T−λ).
It follows, from Theorem 3.3(i), that a(T + S − λ) < ∞; so λ < σasc(T + S).

Conversely, since S ∈ PΦ+ and T ∈ R(X) then T + S − λ ∈ φ+ for all λ ∈ C. By using the same
reasoning as in the above and by writing T + S instead to T and −S instead to S we show that
λ < σasc(T).

(ii) The proof is similar to that of Part (i).
(b) Now suppose that ST = TS,R(S) ⊂ R(Tλ) ∩ R(Tλ + S) and R(Tλ)n is closed for all n ∈N

(i) Let λ < σe
asc(T), then n := ae(T − λ) < ∞. Now, by interchanging T and Tλ in Theorem 3.3 (ii), it

follows that ae(T + S−λ) < ∞. Consequently, λ < σe
asc(T). In the same way we prove the converse

inclusion.

(ii) The proof goes along the same lines as that of (iii).

Let σa(T) and σd(T) denote the approximate point spectrum and the approximate defect spectrum of
T ∈ L(X), respectively. We say that T ∈ L(X) is upper semi-Browder if T ∈ Φ+, ind(T) ≤ 0 and a(T) < ∞.
Such class of operators will be denoted by B+(X). We call T lower semi-Browder if T ∈ Φ−, ind(T) ≥ 0 and
d(T) < ∞. We denote this class of operators by B−(X). Set

σab(T) := {λ ∈ C : T − λ is not upper semi-Browder},

σad(T) := {λ ∈ C : T − λ is not lower semi-Browder}.

Recall that (see [15]) σab(T) =
⋂

TK=KT,K∈K (X)

σa(T + K) and σad(T) =
⋂

TK=KTK∈K (X)

σd(T + K). We call σab(T)

and σdb(T), respectively the Browder essential approximate point spectrum and the Browder essential
approximate defect spectrum of T. For T ∈ L(X), set

F
+(T) :=

{
S ∈ L(X) : δ(S) < me(T − λ) for all λ ∈ ρasc(T)

}
and

F
−(T) :=

{
S ∈ L(X) : δ(S) < ne(T − λ) for all λ ∈ ρdes(T)

}
.

Proposition 3.6. Let T ∈ L(X). Then

(i) σab(T + S) = σab(T) for all S ∈ F +(T);
(ii) σdb(T + S) = σdb(T) for all S ∈ F −(T).

Proof. (i) We first claim that σab(T + S) ⊂ σab(T). Indeed, if λ < σab(T), then T − λ ∈ Φ+, ind(T − λ) ≤ 0
and a(T − λ) < ∞. Since S ∈ F +(T), then δ(S) < me(T − λ), and hence by Theorem 3.3, Part (i),
we have a(T + S − λ) < ∞. Now, by using Theorem 2.2 one can deduce that T + S − λ ∈ Φ+

and ind(T + S − λ) = ind(T − λ) ≤ 0. This means that λ < σab(T + S). Similarly, we prove that
σab(T) ⊂ σab(T + S).

(ii) In the same way as in Part (i) we prove the equality σdb(T + S) = σdb(T) for all S ∈ F −(T).

Corollary 3.7. Let T ∈ L(X). Then

σab(T) ⊂
⋂

S∈F +(T)

σa(T + S);

(i)(ii) σdb(T) ⊂
⋂

S∈F −(T)

σd(T + S).
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Proof. (i) If λ <
⋂

S∈F +(T)

σa(T + S), then λ < σa(T + S0) for some S0 ∈ F
+(T). Hence inf

‖x‖=1
‖Tx + S0x − λx‖ > 0

which implies that T+S0−λ is bounded from below. This shows that a(T+S0−λ) = 0, ind(T+S0−λ) ≤ 0
and R(T + S0 − λ) is closed. Therefore T + S0 − λ ∈ B+(X). Now using Proposition 3.6, Part (i), one can
conclude that λ < σab(T + S0) = σab(T).

(ii) In the same way let λ <
⋂

S∈F −(T)

σd(T + S). Then there exists S0 ∈ F
−(T) such that T + S0 −λ is surjective

which implies that T + S0 ∈ Φ− with d(T + S0) = 0 and ind(T + S0) ≥ 0. Therefore T + S0 − λ ∈ B−(X).
From Proposition 3.6 we get λ < σdb(T + S0) = σdb(T).
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