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Abstract. In this paper, we introduce the notion of warped product skew CR-submanifolds in Kenmotsu
manifolds. We obtain several results on such submanifolds. A characterization for skew CR-submanifolds
is obtained. Furthermore, we establish an inequality for the squared norm of the second fundamental form
of a warped product skew CR-submanifold M1 × f M⊥ of order 1 in a Kenmotsu manifold M̃ in terms of the
warping function such that M1 = MT ×Mθ, where MT, M⊥ and Mθ are invariant, anti-invariant and proper
slant submanifolds of M̃, respectively. Finally, some applications of our results are given.

1. Introduction

The notion of CR-submanifolds was introduced by Bejancu [6] as a generalization of the complex and
totally real submanifolds of almost Hermitian manifolds. A more general family of submanifolds are slant
submanifolds introduced and defined by B.-Y. Chen [13, 14] in 1990. A generalization of slant submanifolds
was given by Papaghiuc [34] by defining semi-slant submanifolds of almost Hermitian manifolds, for which
the slant and CR-submanifolds are particular cases. Later on, J.L. Cabrerizo et al. [10, 11] studied slant and
semi-slant submanifolds of an almost contact metric manifold.

On the other hand, A. Carriazo defined hemi-slant submanifolds under the name of anti-slant submani-
folds [12] and showed that CR-submanifols and slant submanifolds are hemi-slant submanifolds. In [37], B.
Sahin studied these submanifolds under the name of hemi-slant submanifolds for their warped products.

In [35], Ronsse introduced skew CR-submanifolds of Kaehler manifolds as a generalization of slant
submanifolds and CR-submanifolds. It is important to observe that semi-slant submanifolds [34] and
hemi-slant submanifolds [37] are particular cases of skew CR-submanifols.

In the beginning of this century, B.-Y. Chen introduced the notion of warped product CR-submanifolds
[15, 16]. On the basis of Chen’s idea on warped product submanifolds many articles have been appeared
(for instance see [4, 5], [9], [17], [29], [32], [31] [36]) and references therein. For a detailed survey on warped
product manifolds and warped product submanifolds we referee to Chen’s books [18, 20] and his survey
article [19].
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Recently, Sahin [38] introduced the notion of skew CR-warped products of Kaehler manifolds which are
the generalizations of CR-warped products which are introduced by B.-Y. Chen [15] and warped product
hemi-slant submanifolds studied in [37].

As Kenmotsu manifolds are themselves warped product manifolds, it is interesting to study warped
product submanifolds of Kenmotsu manifolds. There are many papers on warped product submanifolds
of Kenmotsu manifolds (see [3], [4, 5], [2, 33]).

Motivated by the above studies, in this paper we introduce and study warped product skew CR-
submanfolds of Kenmotsu manifolds. It is shown that the skew CR-warped products are the generalizations
of CR-warped products studied in [3, 27] and warped product pseudo-slant submanifolds studied in [2] of
Kenmotsu manifolds. The construction of warped product skew CR-submanifolds can be considered as a
special case of multiply warped product submanifolds studied in [25].

The paper is organized as follows: In Section 2, we give some preliminaries (formulas and definitions)
for submanifolds of Kenmotsu manifolds. Section 3 is devoted to the study of skew CR-submanifolds
of Kenmotsu manifolds. Some basic lemmas are given which are useful in the next sections. In Section
4, we study warped product skew CR-submanifolds of Kenmotsu manifolds. We start with a non-trivial
example of warped product skew CR-submanifolds and then we derive some useful lemmas. In Section 5,
necessary and sufficient conditions for a skew CR-submanifold to be locally a warped product submanifold
are obtained. In Section 6, we establish a sharp relationship for the squared norm of the second fundamental
form ‖h‖2 in terms of the warping function f of a warped product skew CR-submanifold M of order 1 in
Kenmotsu manifolds. The equality case is also considered. In Section 7, some applications of our results
are given.

2. Preliminaries

A (2n + 1)-dimensional Riemannian manifold M̃ is said to be an almost contact metric manifold [8] if
it admits a (1, 1) tensor field ϕ, a vector field ξ, an 1-form η and a Riemannian metric 1, which satisfy the
following relations

ϕ2 = −I + η ⊗ ξ, ϕξ = 0, η ◦ ϕ = 0, η(ξ) = 1, (1)

1(ϕX, ϕY) = 1(X,Y) − η(X)η(Y), η(X) = 1(X, ξ), (2)

for any vector fields X,Y on M̃. In addition, if

(∇̃Xϕ)Y = 1(ϕX,Y)ξ − η(Y)ϕX, ∇̃Xξ = X − η(X)ξ (3)

where ∇̃ is the Reimannian connection with respect to 1, then (M̃, ϕ, ξ, η, 1) is called a Kenmotsu manifold
[28]. The covariant derivative of ϕ is defined as

(∇̃Xϕ)Y = ∇̃XϕY − ϕ∇̃XY (4)

for any vector fields X,Y on M̃.
Let M be a submanifold of an almost contact metric manifold M̃ with induced metric 1 and if ∇ and ∇⊥

are the induced connections on the tangent and normal bundles TM and T⊥M of M, respectively, then the
Gauss and Weingarten formulas are respectively given by

∇̃XY = ∇XY + h(X,Y), ∇̃XV = −AVX + ∇⊥XV, (5)

for any vector fields X, Y ∈ Γ(TM) and N ∈ Γ(T⊥M), where h is the second fundamental form of M and AN is
the Weingarten endomorphism associated with N. The second fundamental form h and the shape operator
A are related by

1(h(X,Y),N) = 1(ANX,Y). (6)
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For any X ∈ Γ(TM), we write

ϕX = TX + FX, (7)

where TX is the tangential component of ϕX and FX is the normal component of ϕX. Similarly, for any
vector field N normal to M, we put

ϕN = BN + CN, (8)

where BN and CN are the tangential and normal components of ϕN, respectively.
The invariant and anti-invariant submanifolds are defined depending on the behaviour the tangent

spaces under the action of the almost contact structure ϕ. A submanifold M tangent to the structure vector
field ξ is said to be invariant (resp. anti-invariant) ifϕ(TpM) ⊆ TpM, ∀ p ∈M (resp. ϕ(TpM) ⊆ Tp

⊥M, ∀ p ∈M).
We denote by H, the mean curvature vector defined as H(p) = 1

m
∑m

i=1 h(ei, ei), where {e1, · · · , em} is an
orthonormal basis of the tangent space TpM, for any p ∈M.

Also, we set

‖h‖2 =

m∑
i, j=1

1(h(ei, e j), h(ei, e j)) and hr
i j = 1(h(ei, e j), er), (9)

for i, j = 1, · · · ,m and r = m + 1, · · · , 2n + 1, where {em+1, ..., e2n+1} is an orthonormal basis of the normal space
T⊥p M.

For a differentiable function f on an m-dimensional manifold M, the gradient ~∇ f of f is defined as

1(~∇ f ,X) = X( f )

for any X tangent to M. As a consequence, we have

‖~∇ f ‖2 =

m∑
i=1

(
ei( f )

)2 (10)

for an orthonormal frame {e1, · · · , em} on M.
A submanifold M of a Riemannian manifold M̃ is said to be totally umbilical if h(X,Y) = 1(X,Y)H and

totally geodesic if h(X,Y) = 0, for all X,Y ∈ Γ(TM). Also, M is minimal in M̃, if H = 0.
There are some other classes of submanifolds of almost contact Riemannian manifolds which are defined

as follows:

A submanifold M tangent to the structure vector field ξ is said to be a contact CR-submanifold if there exists
a pair of orthogonal distributionsD : p→Dp andD⊥ : p→D⊥p , ∀ p ∈M, such that

(i) TM = D⊕D⊥ ⊕ 〈ξ〉, where 〈ξ〉 is the 1-dimensional distribution spanned by ξ.
(ii) D is invariant by ϕ, i.e., ϕD = D.

(iii) D⊥ is anti-invariant by ϕ, i.e., ϕD⊥ ⊆ TM⊥.

Invariant and anti-invariant submanifolds are special cases of a contact CR-submanifolds. If we denote
the dimensions of the distribution D and D⊥ by d1 and d2, respectively, then M is invariant (resp. anti-
invariant) if d2 = 0 (resp. d1 = 0).

A submanifold M is called slant [11] if for each X ∈ TpM linearly independent on ξp, the angle θ(X) between
ϕX and TpM is a constant, i.e, it does not depend on the choice of p ∈M and X ∈ TpM − 〈ξp〉.

On a slant submanifold, if θ = 0, then M is invariant and if θ = π
2 then M is an anti-invariant submani-

fold. A slant submanifold is said to be proper slant if it is neither invariant nor anti-invariant.
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A submanifold M is called semi-slant [10] if it is endowed with two orthogonal distributions D and Dθ

such thatD is invariant with respect to ϕ andDθ is a proper slant distribution.
A submanifold M is called pseudo-slant submanifold if there exists a pair of orthogonal distributionsD⊥ and
D
θ such that

TM = D⊥ ⊕Dθ
⊕ 〈ξ〉

where D⊥ is an anti-invariant distribution and its orthogonal complementary distribution Dθ is proper
slant.

From the definition of a pseudo-slant submanifold, if we consider the dimensions dimD⊥ = d1, and
dimDθ = d2, then it is clear that contact CR-submanifolds and slant submanifolds are particular classes of
pseudo-slant submanifolds with θ = 0 and d1 = 0, respectively. Also, an invariant (resp. anti-invariant)
submanifold is a pseudo-slant submanifold with θ = 0 and d1 = 0 (resp. d2 = 0).

The normal bundle T⊥M of a pseudo-slant submanifold M is decomposed as

T⊥M = ϕD⊥ ⊕ FDθ
⊕ ν

where ν is a ϕ-invariant normal subbundle in the normal bundle T⊥M.
A useful characterization of slant submanifolds was given in [11] as follows:

Theorem 2.1. [11] Let M be a submanifold of an almost contact metric manifold M̃, such that ξ ∈ Γ(TM). Then M
is slant if and only if there exists a constant λ ∈ [0, 1] such that

T2 = λ(−I + η ⊗ ξ) (11)

Furthermore, if θ is slant angle, then λ = cos2 θ.

The following relations are straightforward consequence of the above theorem

1(TX,TY) = cos2 θ
(
1(X,Y) − η(X)η(Y)

)
, (12)

1(FX,FY) = sin2 θ
(
1(X,Y) − η(X)η(Y)

)
, (13)

for any vector fields X,Y tangent to M.
Also, for a slant submanifold of an almost contact metric manifold, we have the following useful result.

Theorem 2.2. [41] Let M be a proper slant submanifold of an almost contact metric manifold M̃, such that ξ ∈ Γ(TM).
Then

(a) BFX = sin2 θ(−X + η(X)ξ), (b) CFX = −FTX (14)

for any X ∈ Γ(TM).

3. Skew CR-submanifolds of Kenmotsu manifolds

Let M be a submanifold of a Kenmotsu manifold M̃. We recall the definition of skew CR-submanifolds
from [35]. Throughout the paper we consider the the structure vector field ξ is tangent to the submanifold
otherwise the submanifold is C-totally real [29].

For any X and Y in TpM, we have 1(TX,Y) = −1(X,TY). Hence, it follows that T2 is a symmetric
operator on the tangent space TpM, for all p ∈M. Therefore, its eigenvalues are real and it is diagonalizable.
Moreover, its eigenvalues are bounded by −1 and 0. For each p ∈M, we may set

D
λ
p = ker{T2 + λ2(p)I}p,

where I is the identity transformation and λ(p) ∈ [0, 1] such that −λ2(p) is an eigenvalue of T2(p). We note
that D1

p = kerF and D0
p = kerT. D1

p is the maximal ϕ-invariant subspace of TpM and D0
p is the maximal
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ϕ-anti-invariant subspace of TpM. From now on, we denote the distributions D1 and D0 by D ⊕ 〈ξ〉 and
D
⊥, respectively. Since T2

p is symmetric and diagonalizable, if −λ2
1(p), · · · ,−λ2

k(p) are the eigenvalues of T2

at p ∈M, then TpM can be decomposed as direct sum of mutually orthogonal eigenspaces, i.e.

TpM = Dλ1
p ⊕D

λ2
p · · · ⊕ D

λk
p .

EachDλi
p , 1 ≤ i ≤ k, is a T-invariant subspace of TpM. Moreover if λi , 0, thenDλi

p is even dimensional. We
say that a submanifold M of a Kenmotsu manifold M̃ is a generic submanifold if there exists an integer k
and functions λi, 1 ≤ i ≤ k defined on M with values in (0, 1) such that

(1) Each −λ2
i (p), 1 ≤ i ≤ k is a distinct eigenvalue of T2 with

TpM = Dp ⊕D
⊥

p ⊕D
λ1
p ⊕ · · · ⊕ D

λk
p ⊕ 〈ξ〉p

for any p ∈M.
(2) The dimensions ofDp, D⊥p andDλi ,1 ≤ i ≤ k are independent on p ∈M.

Moreover, if each λi is constant on M, then M is called a skew CR-submanifold. Thus, we observe that
CR-submanifolds are a particular class of skew CR-submanifolds with k = 0, D , {0} and D⊥ , {0}. And
slant submanifolds are also a particular class of skew CR-submanifolds with k = 1, D = {0}, D⊥ = {0} and
λ1 is constant. Moreover, ifD⊥ = {0},D , 0 and k = 1, then M is a semi-slant submanifold. Furthermore, if
D = {0},D⊥ , {0} and k = 1, then M is a pseudo-slant (or hemi-slant) submanifold.

A submanifold M of a Kenmotsu manifold M̃ is said to be a proper skew CR-submanifold of order 1 if M is
a skew CR-submanifold with k = 1 andλ1 is constant. In that case, the tangent bundle of M is decomposed as

TM = D⊕D⊥ ⊕Dθ
⊕ 〈ξ〉

The normal bundle T⊥M of a skew CR-submanifold M is decomposed as

T⊥M = ϕD⊥ ⊕ FDθ
⊕ ν,

where ν is a ϕ-invariant normal subbundle of T⊥M.
Now, we give the following results which are useful for the further study.

Lemma 3.1. Let M be a proper skew CR-submanifold of order 1 of a Kenmotsu manifold M̃ such that ξ is tangent to
M. Then

AϕZW = AϕWZ (15)

for any Z,W ∈ Γ(D⊥)

Proof. The proof of this lemma is similar to Lemma 3.2 [2].

Lemma 3.2. Let M be a proper skew CR-submanifold of order 1 of a Kenmotsu manifold M̃. Then the anti-invariant
distributionD⊥ is always integrable.

Proof. For any X1 ∈ Γ(D), Z,W ∈ Γ(D⊥), we have

1([Z,W],X1) = 1(∇̃ZW,X1) − 1(∇̃WZ,X1)

= 1(ϕ∇̃ZW, ϕX1) + η(∇̃ZW)η(X1) − 1(ϕ∇̃WZ, ϕX1) − η(∇̃WZ)η(X1).

Using (4), we derive

1([Z,W],X1) = 1(∇̃ZϕW, ϕX1) − 1((∇̃Zϕ)W, ϕX1) − 1(∇̃WϕZ, ϕX1) + 1((∇̃Wϕ)Z, ϕX1).
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Then from (3) and (5), we have

1([Z,W],X1) = −1(AϕWZ, ϕX1) + 1(AϕZW, ϕX1).

From (15), we find

1([Z,W],X1) = 0. (16)

Similarly, for any X2 ∈ Γ(Dθ) and Z,W ∈ Γ(D⊥), we have

1([Z,W],X2) = 1(∇̃ZW,X2) − 1(∇̃WZ,X2)

= 1(ϕ∇̃ZW, ϕX2) + η(∇̃ZW)η(X2) − 1(ϕ∇̃WZ, ϕX2) − η(∇̃WZ)η(X2).

From (4), we obtain

1([Z,W],X2) = 1(∇̃ZϕW, ϕX2) − 1((∇̃Zϕ)W, ϕX2) − 1(∇̃WϕZ, ϕX2) + 1((∇̃Wϕ)Z, ϕX2).

Then from (3) and (7), we derive

1([Z,W],X2) = 1(∇̃ZϕW,TX2) + 1(∇̃ZϕW,FX2) − 1(∇̃WϕZ,TX2) − 1(∇̃WϕZ,FX2).

Using (5), we get

1([Z,W],X2) = 1(AϕWZ,TX2) + 1(W, ϕ∇̃ZFX2) − 1(AϕZW,TX2) − 1(Z, ϕ∇̃WFX2).

Again, using (4) and (15), we obtain

1([Z,W],X2) = 1(∇̃ZϕFX2,W) − 1((∇̃Zϕ)FX2,W) − 1(∇̃WϕFX2,Z) + 1((∇̃Wϕ)FX2,Z).

Then from (4) and (8), we find that

1([Z,W],X2) = 1(∇̃ZBFX2,W) + 1(∇̃ZCFX2,W) − 1(∇̃WBFX2,Z) − 1(∇̃WCFX2,Z).

Thus by Theorem 2.2, we get

1([Z,W],X2) = − sin2 θ1(∇̃ZX2,W) − 1(∇̃ZFTX2,W) + sin2 θ1(∇̃WX2,Z) + 1(∇̃WFTX2,Z)

= sin2 θ1(∇̃ZW,X2) + 1(AFTX2 Z,W) − sin2 θ1(∇̃WZ,X2) − 1(AFTX2 W,Z).

By the symmetric property of the shape operator, we find

cos2 θ1([Z,W],X2) = 0.

Since M is a proper skew CR-submanifold, thus cos2 θ , 0. Then, we have

1([Z,W],X2) = 0 (17)

Also, for any Z,W ∈ Γ(D⊥), we have

1([Z,W], ξ) = 1(∇̃ZW, ξ) − 1(∇̃WZ, ξ) = −1(∇̃Zξ,W) + 1(∇̃Wξ,Z).

By using (3), the right hand side of the above relation vanishes identically, hence we find that

1([Z,W], ξ) = 0. (18)

By combining (16), (17) and (18), the result follows immediately.
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Lemma 3.3. Let M be a proper skew CR-submanifold of order 1 of a Kenmotsu manifold M̃ such that ξ ∈ Γ(D⊕Dθ).
Then, we have

1(∇X1 Y1,Z) = 1(AϕZX1, ϕY1), (19)

1(∇X1 Y2,Z) = sec2 θ
(
1(AϕZX1,TY2) − 1(AFTY2 Z,X1)

)
, (20)

1(∇Y2 X1,Z) = 1(AϕZϕX1,Y2) (21)

for any X1, Y1 ∈ Γ(D), Y2 ∈ Γ(Dθ) and Z ∈ Γ(D⊥).

Proof. For any X1, Y1 ∈ Γ(D) and Z ∈ Γ(D⊥), we have

1(∇X1 Y1,Z) = 1(∇̃X1 Y1,Z) = 1(ϕ∇̃X1 Y1, ϕZ) + η(∇̃X1 Y1)η(Z).

Using (4) and the fact that ξ is orthogonal toD⊥, we obtain

1(∇X1 Y1,Z) = 1(∇̃X1ϕY1, ϕZ) − 1((∇̃X1ϕ)Y1, ϕZ).

Then from (3) and (5), we get

1(∇X1 Y1,Z) = 1(h(X1, ϕY1), ϕZ).

Thus, (19) follows from the above relation by using (6). Also, for any X1 ∈ Γ(D), Y2 ∈ Γ(Dθ) and Z ∈ Γ(D⊥),
we have

1(∇X1 Y2,Z) = 1(∇̃X1 Y2,Z) = 1(ϕ∇̃X1 Y2, ϕZ) + η(∇̃X1 Y2)η(Z).

Again, using (4), we get

1(∇X1 Y2,Z) = 1(∇̃X1ϕY2, ϕZ) − 1((∇̃X1ϕ)Y2, ϕZ).

From (3) and (7), we derive

1(∇X1 Y2,Z) = 1(∇̃X1 TY2, ϕZ) + 1(∇̃X1 FY2, ϕZ)

= 1(h(X1,TY2), ϕZ) − 1(∇̃X1ϕFY2,Z) + 1((∇̃X1ϕ)FY2,Z).

The last term in the right hand side vanishes identically by using (3). Then from (8), the above equation
takes the form

1(∇X1 Y2,Z) = 1(h(X1,TY2), ϕZ) − 1(∇̃X1 BFY2,Z) − 1(∇̃X1 CFY2,Z).

Thus, on using Theorem 2.2, we find

1(∇X1 Y2,Z) = 1(h(X1,TY2), ϕZ) + sin2 θ1(∇̃X1 Y2,Z) − sin2 θη(Y2)1(∇̃X1ξ,Z) + 1(∇̃X1 FTY2,Z).

Again, using (3) and (5), we get (20). Similarly, we have

1(∇Y2 X1,Z) = 1(∇̃Y2 X1,Z) = 1(ϕ∇̃Y2 X1, ϕZ) + η(∇̃Y2 X1)η(Z).

Then from (3), we get

1(∇Y2 X1,Z) = 1(∇̃Y2ϕX1, ϕZ) = 1(h(Y2, ϕX1), ϕZ) = 1(AϕZϕX1,Y2),

which is (21). Hence, the lemma is proved completely.

Lemma 3.4. Let M be a proper skew CR-submanifold of order 1 of a Kenmotsu manifold M̃ such that ξ is orthogonal
toD⊥. Then, the following hold:
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(i) If ξ ∈ Γ(D⊕Dθ), then

1(∇X2 Y2,Z) = sec2 θ
(
1(AϕZX2,TY2) − 1(AFTY2 Z,X2)

)
(22)

for any X2,Y2 ∈ Γ(Dθ), Z ∈ Γ(D⊥).
(ii) If ξ ∈ Γ(D), then

1(∇ZV,X2) = sec2 θ
(
1(AFTX2 Z,V) − 1(AϕVZ,TX2)

)
, (23)

1(∇ZV,X1) = −1(AϕVZ, ϕX1) − η(X1)1(Z,V), (24)

for any X1 ∈ Γ(D⊕ 〈ξ〉) , X2 ∈ Γ(Dθ) and Z,V ∈ Γ(D⊥).
(iii) If ξ ∈ Γ(Dθ), then

1(∇ZV,X2) = sec2 θ
(
1(AFTX2 Z,V) − 1(AϕVZ,TX2)

)
− η(X2)1(Z,V), (25)

1(∇ZV,X1) = −1(AϕVZ, ϕX1) (26)

for any X1 ∈ Γ(D) , X2 ∈ Γ(Dθ
⊕ 〈ξ〉) and Z,V ∈ Γ(D⊥).

Proof. For any X2,Y2 ∈ Γ(Dθ) and Z ∈ Γ(D⊥), we have

1(∇X2 Y2,Z) = 1(∇̃X2 Y2,Z) = 1(ϕ∇̃X2 Y2, ϕZ) + η(∇̃X2 Y2)η(Z).

Using (4), we get

1(∇X2 Y2,Z) = 1(∇̃X2ϕY2, ϕZ) − 1((∇̃X2ϕ)Y2, ϕZ).

The second term in the right hand side is identically zero by using (3). Then from (7), we derive

1(∇X2 Y2,Z) = 1(∇̃X2 TY2, ϕZ) + 1(∇̃X2 FY2, ϕZ).

Using (4) and (7), we find

1(∇X2 Y2,Z) = 1(h(X2,TY2), ϕZ) − 1(∇̃X2ϕFY2,Z) + 1((∇̃X2ϕ)FY2,Z)

= 1(AϕZTY2),X2) − 1(∇̃X2 BFY2,Z) − 1(∇̃X2 CFY2,Z).

Then using Theorem 2.2, we arrive at

1(∇X2 Y2,Z) = 1(AϕZTY2),X2) + sin2 θ1(∇̃X2 Y2,Z) + 1(∇̃X2 FTY2,Z).

Hence, the first part of the Lemma follows from the above relation by using (5) and (6). Now, for any
X2 ∈ Γ(Dθ) and Z,V ∈ Γ(D⊥), we have

1(∇ZV,X2) = 1(∇̃ZV,X2) = 1(ϕ∇̃ZV, ϕX2) + η(X2)η(∇̃ZV).

Using (4), we obtain

1(∇ZV,X2) = 1(∇̃ZϕV, ϕX2) − 1((∇̃Zϕ)V, ϕX2).

Then from (3) and (7), we find that

1(∇ZV,X2) = 1(∇̃ZϕV,TX2) + 1(∇̃ZϕV,FX2).
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Again, using (4) and (5), we obtain

1(∇ZV,X2) = 1(ϕ∇̃ZFX2,V) − 1(AϕVZ,TX2)

= 1(∇̃ZϕFX2,V) − 1(AϕVZ,TX2) − 1((∇̃Zϕ)FX2,V)

= 1(∇̃ZBFX2,V) − 1(AϕVZ,TX2) + 1(∇̃ZCFX2,V).

Hence by Theorem 2.2, we derive

1(∇ZV,X2) = −1(AϕVZ,TX2) − sin2 θ1(∇̃ZX2,V) − 1(∇̃ZFTX2,V)

= −1(AϕVZ,TX2) + sin2 θ1(∇ZV,X2) + 1(AFTX2 Z,V)

or,

cos2 θ1(∇ZV,X2) = 1(AFTX2 Z,V) − 1(AϕVZ,TX2)

which gives (23). Also, for any X1 ∈ Γ(D⊕ 〈ξ〉) and Z,V ∈ Γ(D⊥), we have

1(∇ZV,X1) = 1(∇̃ZV,X1) = 1(ϕ∇̃ZV, ϕX1) + η(X1)η(∇̃ZV).

Using (3)-(5), we derive

1(∇ZV,X1) = 1(∇̃ZϕV, ϕX1) − 1((∇̃Zϕ)V, ϕX1) + η(X1) 1(∇̃ZV, ξ)

= 1(∇̃ZϕV, ϕX1) − η(X1) 1(∇̃Zξ,V)
= −1(AϕVZ, ϕX1) − η(X1) 1(Z,V),

which is (24). Now, to prove the last part of the lemma, consider any X2 ∈ Γ(Dθ
⊕ 〈ξ〉) and Z,V ∈ Γ(D⊥).

Then, we have

1(∇ZV,X2) = 1(∇̃ZV,X2) = 1(ϕ∇̃ZV, ϕX2) + η(∇̃ZV)η(X2).

Using (4), we obtain

1(∇ZV,X2) = 1(∇̃ZϕV, ϕX2) − 1((∇̃Zϕ)V, ϕX2) + η(X2) 1(∇̃ZV, ξ).

Then from (3) and (7), we derive

1(∇ZV,X2) = 1(∇̃ZϕV,TX2) + 1(∇̃ZφV,FX2) − η(X2) 1(Z,V).

Again, using (4) and (5), we get

1(∇ZV,X2) = −1(AϕVZ,TX2) − 1(∇̃ZFX2, ϕV) − η(X2) 1(Z,V)

= −1(AϕVZ,TX2) + 1(ϕ∇̃ZFX2,V) − η(X2) 1(Z,V)

= −1(AϕVZ,TX2) + 1(∇̃ZBFX2,V) + 1(∇̃ZCFX2,V) − η(X2) 1(Z,V).

Hence, by Theorem 2.2, we obtain

1(∇ZV,X2) = −1(AϕVZ,TX2) − sin2 θ 1(∇̃ZX2,V) + sin2 θη(X2) 1(∇̃Zξ,V) + 1(∇̃ZFTX2,V) − η(X2) 1(Z,V)

= −1(AϕVZ,TX2) + sin2 θ 1(∇̃ZV,X2) + sin2 θη(X2) 1(Z,V) + 1(AFTX2 Z,V) − η(X2) 1(Z,V)

or,

cos2 θ 1(∇ZV,X2) = 1(AFTX2 Z,V) − 1(AϕVZ,TX2) − cos2 θη(X2) 1(Z,V)
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which gives (25). Similarly, for any X1 ∈ Γ(D⊕ 〈ξ〉) and Z,V ∈ Γ(D⊥), we have

1(∇ZV,X1) = 1(∇̃ZV,X1) = 1(ϕ∇̃ZV, ϕX1) + η(X1)η(∇̃ZV).

Using (3) and the fact that ξ ∈ Γ(Dθ), we derive

1(∇ZV,X1) = 1(∇̃ZϕV, ϕX1) − 1((∇̃Zϕ)V, ϕX1) = −1(AϕVZ, ϕX1),

which is (26). Hence, the proof of the lemma is complete.

Lemma 3.5. Let M be a proper skew CR-submanifold of order 1 of a Kenmotsu manifold M̃ such that ξ is orthogonal
toD⊥. Then, we have

1(∇ZX1,Y2) = csc2 θ
(
1(AFY2 Z, ϕX1) − 1(AFTY2 Z,X1)

)
(27)

for any X1 ∈ Γ(D), Y2 ∈ Γ(Dθ) and Z ∈ Γ(D⊥).

Proof. For any X1 ∈ Γ(D), Y2 ∈ Γ(Dθ) and Z ∈ Γ(D⊥), we have

1(∇ZX1,Y2) = 1(∇̃ZX1,Y2) = 1(ϕ∇̃ZX1, ϕY2) + η(Y2)η(∇̃ZX1).

Using (4), we find that

1(∇ZX1,Y2) = 1(∇̃ZϕX1, ϕY2) − 1((∇̃Zϕ)X1, ϕY2) − η(Y2) 1(∇̃Zξ,X1).

Then from (3) and (7), we obtain

1(∇ZX1,Y2) = 1(∇̃ZϕX1,TY2) + 1(∇̃ZϕX1,FY2)

= 1(X1, ϕ∇̃ZTY2) + 1(h(Z, ϕX1),FY2)

= 1(X1, ∇̃ZϕTY2) − 1(X1, (∇̃Zϕ)TY2) + 1(h(Z, ϕX1),FY2).

By using (3), (7) and (12), we derive

1(∇ZX1,Y2) = − cos2 θ 1(∇̃ZY2,X1) + cos2 θη(Y2)1(X1, ∇̃Zξ) − 1(AFTY2 Z,X1) + 1(AFY2 Z, ϕX1)

= cos2 θ 1(∇ZX1,Y2) + 1(AFY2 Z, ϕX1) − 1(AFTY2 Z,X1).

which gives (3.13), hence the lemma is proved.

4. Warped product skew CR-submanifolds of Kenmotsu manifolds

In [7], R.L. Bishop and B. O’Neill introduced the notion of warped product manifolds to study the
manifolds of negative curvatures. These manifolds are natural generalizations of Riemannian product
manifolds. The definition of a warped product is formulated as: Let (M1, 11) and (M2, 12) be two Riemannian
manifolds and f a positive differentiable function on M1. Consider the product manifold M1 ×M2 with its
canonical projections π1 : M1 ×M2 → M1 and π2 : M1 ×M2 → M2. The warped product M = M1 × f M2 is
the product manifold M1 ×M2 equipped with the Riemannian metric 1 given by

1(X,Y) = 11(π1∗(X), π1∗(Y)) + ( f ◦ π1)2 12(π2∗(X), π2∗(Y))

for any tangent vector X,Y ∈ TM, where ∗ is the symbol for the tangent maps. If X is tangent to M1 and V
is tangent to M2, then from lemma 7.3 of [7] we have

∇XV = ∇VX = X(ln f )V. (28)

Recall that if M = M1× f M2 is a warped product manifold, then M1 is totally geodesic in M and M2 is totally
umbilical in M [7, 15].
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In this section, we consider a warped product M = M1 × f M⊥ in a Kenmotsu manifold M̃ such that
M1 = MT ×Mθ, where MT, Mθ and M⊥ are invariant, proper slant and anti-invariant submanifolds of M̃,
respectively. Throughout this section we consider the structure vector field ξ is tangent to the submanifold
M. Therefore, two possible cases arise:

Case 1. When ξ is tangent to M⊥, then it is easy to see that the warped product is simply a Riemannian
product. Thus, we will not discuss this case anymore for the non-existence of such proper warped products.

Case 2. When ξ is tangent to M1 = MT ×Mθ. In this case either ξ is tangent to MT or Mθ and in both
subcases the warped product exists and we will discuss these kinds of warped products in our further
study.

Let M = M1× f M⊥ be a warped product skew CR-submanifold of order 1 of Kenmotsu manifold M̃ such
that M1 = MT ×Mθ and the structure vector field ξ is tangent to M1. Then, we call such submanifolds skew
CR-warped products analogous to the CR-warped products introduced by Chen in [15, 16]. If we consider the
dimensions of these submanifolds as dim MT = d1, dim Mθ = d2 and dim M⊥ = d3, then it is obvious that
M is a CR-warped product if d2 = 0 and M is a warped product pseudo-slant (or hemi-slant) submanifold
if d1 = 0.

Now, we provide the following non-trivial example of warped product skew CR-submanifolds of order
1 of an almost contact metric manifold.

Example 4.1. Consider a submanifold ofR11 with the cartesian coordinates (x1, x2, x3, x4, x5, y1, y2, y3, y4, y5, t)
and the almost contact structure

ϕ

(
∂
∂xi

)
= −

∂
∂yi

, ϕ

(
∂
∂y j

)
=

∂
∂x j

, ϕ

(
∂
∂t

)
= 0, 1 ≤ i, j ≤ 5.

It is easy to show R11 is an almost contact metric manifold with respect to the Euclidean metric tensor of
R11. Let us consider a submanifold M of R11 defined by the immersion χ as follows

χ(u, v,w, s, r, t) = (u cos w,u sin w,u + v, s, 0, v cos w, v sin w,u − v, r, 0, t).

Then the tangent space of M is spanned by the following vectors

Z1 = cos w
∂
∂x1

+ sin w
∂
∂x2

+
∂
∂x3

+
∂
∂y3

, Z2 = cos w
∂
∂y1

+ sin w
∂
∂y2
−

∂
∂y3

+
∂
∂x3

,

Z3 = −u sin w
∂
∂x1

+ u cos w
∂
∂x2
− v sin w

∂
∂y1

+ v cos w
∂
∂y2

, Z4 =
∂
∂x4

, Z5 =
∂
∂y4

, Z6 =
∂
∂t
.

Then, we find

ϕZ1 = − cos w
∂
∂y1
− sin w

∂
∂y2
−

∂
∂y3

+
∂
∂x3

, ϕZ2 = cos w
∂
∂x1

+ sin w
∂
∂x2
−

∂
∂x3
−

∂
∂y3

,

ϕZ3 = u sin w
∂
∂y1
− u cos w

∂
∂y2
− v sin w

∂
∂x1

+ v cos w
∂
∂x2

; ϕZ4 = −
∂
∂y4

, ϕZ5 =
∂
∂x4

, ϕZ6 = 0.

It is easy to see that D = Span{Z4,Z5} is an invariant distribution, D⊥ = Span{Z3} is an anti-invariant
distribution andDθ = Span{Z1,Z2} is a slant distribution with slant angle θ = arccos( 1

3 ) = 70◦52
′

such that
ξ = ∂

∂t is tangent toD⊕Dθ. Hence, we conclude that M is a proper skew CR-submanifold of order 1 ofR11.
It is easy to observe thatD⊕Dθ andD⊥ are integrable. Denoting the integral manifolds ofD,Dθ andD⊥

by MT, Mθ and M⊥, respectively. Then the induced metric tensor 1 of M is given by

ds2 = 3(du2 + dv2) + ds2 + dr2 + dt2 + (u2 + v2)dw2

= 1M1 + (u2 + v2)1M⊥ .

Thus M is a warped product skew CR submanifold of R11 with the warping function f =
√

u2 + v2 such
that M1 = MT ×Mθ.
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Now, we prove the following useful lemmas for a warped product skew CR-submanifold of a Kenmotsu
manifold.

Lemma 4.2. Let M = M1 × f M⊥ be a warped product skew CR-submanifold of order 1 of a Kenmotsu manifold M̃
such that ξ is tangent to M1 and M1 = MT ×Mθ, where MT and Mθ are invariant and proper slant submanifolds of
M̃, respectively. Then, the following hold:

(i) ξ(ln f ) = 1,
(ii) 1(h(X1,Y1), ϕZ) = 0,

(iii) 1(h(X1,Z),FY2) = h(X1,Y2), ϕZ) = 0,
(iv) 1(h(X2,Z),FY2) = 1(h(X2,Y2), ϕZ)

for any X1,Y1 ∈ Γ(TMT), X2,Y2 ∈ Γ(TMθ) and Z ∈ Γ(TM⊥).

Proof. For any Z ∈ Γ(TM⊥), we have ∇̃Zξ = Z. Then from (5), we get

∇Zξ + h(Z, ξ) = Z.

Equating the tangential components and then using (28), we obtain ξ(ln f )Z = Z. Taking the inner product
with Z, we get (i). Now, for the other parts of the lemma we consider any X1,Y1 ∈ Γ(TMT) and Z ∈ Γ(TM⊥).
Then, we have

1(h(X1,Y1), ϕZ) = 1(∇̃X1 Y1, ϕZ) = −1(ϕ∇̃X1 Y1,Z).

Then from (4), we arrive at

1(h(X1,Y1), ϕZ) = 1((∇̃X1ϕ)Y1,Z) − 1(∇̃X1ϕY1,Z) = 1(∇X1 Z, ϕY1).

Thus, on using (28), we get 1(h(X1,Y1), ϕZ) = X1(ln f ) 1(ϕY1,Z) = 0, which is (ii). To prove the third part of
the lemma, consider any X1 ∈ Γ(TMT), Y2 ∈ Γ(TMθ), and Z ∈ Γ(TM⊥). Then, we have

1(h(X1,Y2), ϕZ) = 1(∇̃X1 Y2, ϕZ) = −1(ϕ∇̃X1 Y2,Z).

Using (4), we obtain

1(h(X1,Y2), ϕZ) = 1((∇̃X1ϕ)Y2,Z) − 1(∇̃X1ϕY2,Z).

First term in the right hand side vanishes identically by using (3). Then from (7), we get

1(h(X1,Y2), ϕZ) = −1(∇̃X1 TY2,Z) − 1(∇̃X1 FY2,Z).

Using (5) and (28), we find that

1(h(X1,Y2), ϕZ) = X1(ln f ) 1(TY2,Z) + 1(AFY2 Z,X1).

Hence, first equality of (iii) follows from the above relation by using (6) and the orthogonality of vector
fields. For the second equality of (iii), we have

1(h(X1,Y2), ϕZ) = 1(∇̃Y2 X1, ϕZ) = −1(ϕ∇̃Y2 X1,Z) = 1((∇̃Y2ϕ)X1,Z) − 1(ϕ∇̃Y2 X1,Z).

From (3), (5) and (28) , we derive

1(h(X1,Y2), ϕZ) = Y2(ln f ) 1(ϕX1,Z) = 0,

which is the second equality of (iii). Similarly, for any X2,Y2 ∈ Γ(TMθ), and Z ∈ Γ(TM⊥), we have

1(h(X2,Y2), ϕZ) = 1(∇̃X2 Y2, ϕZ) = −1(ϕ∇̃X2 Y2,Z).
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From (4), we find

1(h(X2,Y2), ϕZ) = 1((∇̃X2ϕ)Y2,Z) − 1(∇̃X2ϕY2,Z) = 1(∇̃X2 Z,TY2) + 1(AFY2 X2,Z).

Then (6) and (28), we obtain

1(h(X2,Y2), ϕZ) = X2(ln f ) 1(TY2,Z) + 1(h(X2,Z),FY2).

Thus, the fourth part of the lemma follows form the above relation by using the orthogonality of vector
fields. Hence, the lemma is proved completely.

Lemma 4.3. Let M = M1 × f M⊥ be a warped product skew CR-submanifold of order 1 of a Kenmotsu manifold M̃
such that ξ is tangent to M1, where M1 = MT ×Mθ. Then, we have

1(h(X1,Z), ϕV) = −ϕX1(ln f ) 1(Z,V) (29)

for any X1 ∈ Γ(TMT) and Z,V ∈ Γ(TM⊥).

Proof. For any X1 ∈ Γ(TMT) and Z,V ∈ Γ(TM⊥), we have

1(h(X1,Z), ϕV) = 1(∇̃ZX1, ϕV) = −1(ϕ∇̃VX1,V).

Then from (4), we obtain

1(h(X1,Z), ϕV) = 1((∇̃Zϕ)X1,V) − 1(∇̃VϕX1,V).

First term in the right hand side is identically zero by using (3). Then from (5) and (28), we get

1(h(X1,Z), ϕV) = −ϕX1(ln f ) 1(Z,V),

which is (29). Thus, the proof is complete.

If we interchange X1 by ϕX1 in (29) for any X1 ∈ Γ(TMT), then two cases arise:

(i) When ξ ∈ Γ(TMT), then

1(h(ϕX1,Z), ϕV) =
(
X1(ln f ) − η(X1)

)
1(Z,V), (30)

for any X1 ∈ Γ(TMT) and Z,V ∈ Γ(TM⊥).
(ii) When ξ ∈ Γ(TMθ), then

1(h(ϕX1,Z), ϕV) = X1(ln f ) 1(Z,V), (31)

for any X1 ∈ Γ(TMT) and Z,V ∈ Γ(TM⊥).

Let M = M1 × f M⊥ be a warped product skew CR-submanifold of a Kenmotsu manifold M̃ such that
M1 = MT×Mθ. We denote the tangent spaces of MT, Mθ and M⊥ byD, Dθ andD⊥, respectively. Then M is
calledD−D⊥ mixed totally geodesic if h(X1,Z) = 0, for any X1 ∈ Γ(D) and Z ∈ Γ(D⊥), respectively. Similarly,
M is aDθ

−D
⊥ mixed totally geodesic if h(X2,Z) = 0, for any X2 ∈ Γ(Dθ) and Z ∈ Γ(D⊥), respectively.

The following theorem is a consequence of Lemma 4.3.

Theorem 4.4. Let M = M1 × f M⊥ be a warped product skew CR-submanifold of order 1 of a Kenmotsu manifold M̃
such that M1 = MT ×Mθ, where MT and Mθ are invariant and proper slant submanifolds of M̃, respectively. If M is
D−D

⊥ mixed totally geodesic warped product, then f is constant on M.

Proof. The proof follows from Lemma 4.3.
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Lemma 4.5. Let M = M1 × f M⊥ be a warped product skew CR-submanifold of order 1 of a Kenmotsu manifold M̃
such that ξ is tangent to M1, where M1 = MT ×Mθ. Then, we have

1(h(Z,V),FX2) − 1(h(Z,X2), ϕV) = TX2(ln f ) 1(Z,V) (32)

for any X2 ∈ Γ(TMθ) and Z,V ∈ Γ(TM⊥).

Proof. For any X2 ∈ Γ(TMθ) and Z,V ∈ Γ(TM⊥), we have

1(h(X2,Z), ϕV) = 1(∇̃ZX2, ϕV) = −1(ϕ∇̃ZX2,V).

Then (4), we derive

1(h(X2,Z), ϕV) = 1((∇̃Zϕ)X2,V) − 1(∇̃ZϕX2,V).

First term in the right hand side identically vanishes by using (3). Then from (7), we get

1(h(X2,Z), ϕV) = −1(∇̃ZTX2,V) − 1(∇̃ZFX2,V).

Using (5) and (28), we obtain

1(h(X2,Z), ϕV) = −TX2(ln f ) 1(Z,V) + 1(AFX2 Z,V),

which gives (32). Hence the proof is complete.

If we interchange X2 by TX2 in (32) for any X2 ∈ Γ(TMθ), then two cases arise:

(i) When ξ ∈ Γ(TMT), then

1(h(Z,V),FTX2) − 1(h(TX2,Z), ϕV) = − cos2 θX2(ln f ) 1(Z,V), (33)

for any X2 ∈ Γ(TMθ) and Z,V ∈ Γ(TM⊥).
(ii) When ξ ∈ Γ(TMθ), then

1(h(Z,V),FTX2) − 1(h(TX2,Z), ϕV) = cos2 θ
(
η(X2) − X2(ln f )

)
1(Z,V), (34)

for any X2 ∈ Γ(TMθ) and Z,V ∈ Γ(TM⊥).

5. A characterization of skew CR-warped products

As we have seen that there is no proper warped product skew CR-submanifold M of order 1 of a
Kenmotsu manifold M̃, if M is D − D⊥ mixed totally geodesic (Theorem 4.4). Thus, for further study,
we consider the warped product skew CR-submanifold of order 1 of a Kenmotsu manifold, when it is a
D
θ
−D

⊥ mixed totally geodesic. Before proving a characterization, we need the following definitions.

Definition 5.1. A foliation on a manifold M is an integrable subbundle F of the tangent bundle of M, i.e.,
for any sections X and Y of F , then the Lie bracket [X,Y] is a section of F as well.

Definition 5.2. A foliation L on a Riemannian manifold M is called totally umbilical if every leaf of L is a
totally umbilical Riemannian submanifold of M. If, in addition, the mean curvature vector of every leaf
is parallel in the normal bundle, then L is called a spherical foliation, because in this case each leaf of L is
an extrinsic sphere in M. If every leaf of L is a totally geodesic submanifold of M, then L is called a totally
geodesic foliation.
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Now, we recall the following well-known result of S. Hiepko [26].

Hiepko’s Theorem. Let D1 and D2 be two orthogonal distribution on a Riemannian manifold M. Suppose that
bothD1 andD2 are involutive such thatD1 is a totally geodesic foliation andD2 is a spherical foliation. Then M is
locally isometric to a non-trivial warped product M1 × f M2, where M1 and M2 are integral manifolds ofD1 andD2,
respectively.

Now, we prove the following characterization by using Hiepko’s Theorem and useful lemmas of Sections
3 and Sections 4.

Theorem 5.3. Let M be a proper skew CR-submanifold of order 1 of a Kenmotsu manifold M̃. Then M is locally a
D
θ
−D

⊥ mixed totally geodesic warped product skew CR-submanifold if and only if

(i) AϕZX has no component in Γ(Dθ) and Γ(D), i.e., AϕZX ∈ Γ(D⊥), for any X ∈ Γ(D⊕Dθ
⊕〈ξ〉) and Z ∈ Γ(D⊥).

(ii) For any X1 ∈ Γ(D), X2 ∈ Γ(Dθ) and Z ∈ Γ(D⊥), we have

AϕZX1 = −ϕX1(µ)Z, AϕZX2 = 0, AFX2 Z = TX2(µ)Z, (ξµ) = 1 (35)

for some smooth function µ on M satisfying V(µ) = 0, for any V ∈ Γ(D⊥).

Proof. Let M = M1× f M⊥ be aDθ
−D

⊥mixed totally geodesic proper warped product skew CR-submanifold
of order 1 of a Kenmotsu manifold M̃ such that M1 = MT×Mθ. In this theorem the tangent spaces of MT, Mθ

and M⊥ are also denoted byD, Dθ andD⊥, respectively. Then, from Lemma 4.2 (ii), we have

AϕZX1 ⊥ D, ∀ X1 ∈ Γ(D), Z ∈ Γ(D⊥). (36)

Similarly, from the second equality of lemma 4.2 (iii), we have

AϕZX1 ⊥ D
θ, ∀ X1 ∈ Γ(D), Z ∈ Γ(D⊥). (37)

Also, for any X1 ∈ Γ(D) and Z ∈ Γ(D⊥), we have

1(AϕZX1, ξ) = 1(h(X1, ξ), ϕZ) = 0, (38)

since for a submanifold of a Kenmotsu manifold h(U, ξ) = 0, ∀ U ∈ Γ(TM). Thus, from (36)-(38), we
conclude that

AϕZX1 ∈ Γ(D⊥), ∀ X1 ∈ Γ(D), Z ∈ Γ(D⊥). (39)

Similarly, from the second equality of Lemma 4.2 (iii), we have

AϕZX2 ⊥ D, ∀ X2 ∈ Γ(Dθ), Z ∈ Γ(D⊥). (40)

Also, for a Dθ
− D

⊥ mixed totally geodesic warped product skew CR-submanifold, from Lemma 4.2 (iv),
we have

AϕZX2 ⊥ D
θ, ∀ X2 ∈ Γ(Dθ), Z ∈ Γ(D⊥). (41)

On the other hand, for any X2 ∈ Γ(Dθ) and Z ∈ Γ(D⊥), we have

1(AϕZX2, ξ) = 1(h(X2, ξ), ϕZ) = 0. (42)

Then, from (40)-(42), we conclude that

AϕZX2 ∈ Γ(D⊥), ∀ X2 ∈ Γ(Dθ), Z ∈ Γ(D⊥). (43)
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Also, from (38) and (42), we conclude that AϕZξ orthogonal to both D and Dθ. While 1(AϕZξ, ξ) = 0, i.e.,
AϕZξ ⊥ 〈ξ〉, for all Z ∈ Γ(D⊥). Thus, we find that

AϕZξ ∈ Γ(D⊥), Z ∈ Γ(D⊥). (44)

Thus, from (39), (43) and (44), we get AϕZX ∈ Γ(D⊥), for any X ∈ Γ(D⊕Dθ
⊕ 〈ξ〉) and Z ∈ Γ(D⊥), which is

(i).
For (ii), we proceed the proof as follows: From Lemma 4.2 (ii), we have 1(AϕZX1,Y1) = 0, for any

X1,Y1 ∈ Γ(D), and Z ∈ Γ(D⊥). And, from the second equality of lemma 4.2 (iii), we have 1(AϕZX1,Y2) = 0,
for any X1 ∈ Γ(D), Y2 ∈ Γ(Dθ) and Z ∈ Γ(D⊥). Also, for any X1 ∈ Γ(D) and Z ∈ Γ(D⊥), we have
1(AϕZX1, ξ) = 1(h(X1, ξ), ϕZ) = 0. Thus, we conclude that 1(AϕZX1,X) = 0, for any X ∈ Γ(D ⊕ Dθ

⊕ 〈ξ〉),
which means that either AϕZX1 ∈ Γ(D⊥) or AϕZX1 = 0. If AϕZX1 ∈ Γ(D⊥), then by taking the inner product
with V ∈ Γ(D⊥) and using Lemma 4.3, we get the first relation of (ii).

Now, for the second relation of (ii), form Lemma 4.2 (iii), we have 1(AϕZX2,X1) = 0, for any X1 ∈

Γ(D), X2 ∈ Γ(Dθ) and Z ∈ Γ(D⊥). And, for a Dθ
− D

⊥ mixed totally geodesic warped product skew
CR-submanifold, from Lemma 4.2 (iv), we have 1(AϕZX2,Y2) = 0, for any X2,Y2 ∈ Γ(Dθ) and Z ∈ Γ(D⊥).
On the other hand, for any X2 ∈ Γ(Dθ) and Z ∈ Γ(D⊥), we have 1(AϕZX2, ξ) = 1(h(X2, ξ), ϕZ) = 0. Hence,
we conclude that 1(AϕZX2,X) = 0, for any X ∈ Γ(D ⊕ Dθ

⊕ 〈ξ〉), which means that either AϕZX2 ∈ Γ(D⊥)
or AϕZX2 = 0. If AϕZX2 ∈ Γ(D⊥), then taking the inner product with V ∈ Γ(D⊥), we have 1(AϕZX2,V) =

1(h(X2,V), ϕZ) = 0, by using theDθ
−D

⊥ mixed totally geodesic condition. Hence, in both cases AϕZX2 = 0,
which is the second relation of (ii).

Similarly, from Lemma 4.2 (iii), we have 1(AFX2 Z,X1) = 0, for any X1 ∈ Γ(D), X2 ∈ Γ(Dθ) and Z ∈ Γ(D⊥).
And, for aDθ

−D
⊥mixed totally geodesic warped product skew CR-submanifold, we have 1(AFX2 Z,Y2) = 0,

for any X2,Y2 ∈ Γ(Dθ) and Z ∈ Γ(D⊥). Also, for any X2 ∈ Γ(Dθ) and Z ∈ Γ(D⊥), we have 1(AFX2 Z, ξ) =
1(h(Z, ξ),FX2) = 0. Thus, we conclude that 1(AFX2 Z,X) = 0, for any X ∈ Γ(D⊕Dθ

⊕ 〈ξ〉), which means that
either AFX2 Z ∈ Γ(D⊥) or AFX2 Z = 0. If AFX2 Z ∈ Γ(D⊥), then from Lemma 4.5, for a Dθ

− D
⊥ mixed totally

geodesic warped product submanifold, we find the third relation of (ii). The last relation of (ii) follows
from Lemma 4.3 (i).

Conversely, suppose that M is a proper skew CR-submanifold of order 1 of a Kenmotsu manifold M̃
such that (i) and (ii) hold. Then, from Lemma 3.3 and the given conditions of (ii), we have

1(∇X1 Y1,Z) = 0, 1(∇X1 Y2,Z) = 0, 1(∇Y2 X1,Z) = 0 (45)

for any X1 ∈ Γ(D), Y2 ∈ Γ(Dθ) and Z ∈ Γ(D⊥). Similarly, from Lemma 3.4 (i) and the given conditions of
(ii), we find that

1(∇X2 Y2,Z) = 0, (46)

for any X2,Y2 ∈ Γ(Dθ) and Z ∈ Γ(D⊥). Thus, the relations (45) and (46) imply that the leaves ofD⊕Dθ
⊕〈ξ〉

are totally geodesic in M. Consider M1 be a leaf ofD⊕Dθ
⊕ 〈ξ〉, thus M1 is totally geodesic in M. On the

other hand, from Lemma 3.2,D⊥ is always integrable. If we consider the integral manifold M⊥ ofD⊥ and
h⊥ be the second fundamental form of M⊥ in M, then for any X1 ∈ Γ(D) and Z,V ∈ Γ(D⊥), we have

1(h⊥(Z,V),X1) = 1(∇ZV,X1) = 1(∇̃ZV,X1) = −1(∇̃ZX1,V).

Using (2), (4) and the fact that ξ is orthogonal toD⊥, we obtain

1(h⊥(Z,V),X1) = 1((∇Zϕ)X1, ϕV) − 1(∇ZϕX1, ϕV).

Then from (3) and (5), we arrive at

1(h⊥(Z,V),X1) = −η(X1)1((Z,V) − 1(h(ϕX1,Z), ϕV) = −η(X1)1((Z,V) − 1(AϕVϕX1,Z).

Using the given hypothesis of the theorem i.e., the first relation of (ii) by interchanging X1 byϕX1, we derive

1(h⊥(Z,V),X1) = −X1(µ) 1(Z,V).
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Thus, from the gradient definition, we find

1(h⊥(Z,V),X1) = −1(~∇µ,X1) 1(Z,V). (47)

Similarly, for any X2 ∈ Γ(Dθ) and Z,V ∈ Γ(D⊥), we have

1(h⊥(Z,V),TX2) = 1(∇̃ZV,TX2) = 1(∇̃ZV, ϕX2) − 1(∇̃ZV,FX2).

Using the covariant derivative property of the connection and (2), we obtain

1(h⊥(Z,V),TX2) = 1(∇̃ZFX2,V) − 1(ϕ∇̃ZV,X2) = −1(AFX2 Z,V) + 1((∇̃Zϕ)V,X2) − 1(∇̃ZϕV,X2)

Then from (3), (5) and the hypothesis of the theorem, i.e., the third relation of (ii), we derive

1(h⊥(Z,V),TX2) = −TX2(µ) 1(Z,V) + 1(AϕVZ,X2).

From the gradient definition and the symmetric property of shape operator, we find that

1(h⊥(Z,V),TX2) = −1(~∇µ,TX2) 1(Z,V) + 1(AϕVX2,Z).

Second term in the right hand side of the above equation vanishes identically by using the second relation
of (ii), thus, we obtain

1(h⊥(Z,V),TX2) = −1(~∇µ,TX2) 1(Z,V). (48)

Also, for any Z,V ∈ Γ(D⊥), we have

1(h⊥(Z,V), ξ) = 1(∇̃ZV, ξ) = −1(∇̃Zξ,V) = −1(Z,V).

Then, from the hypothesis of the theorem, i.e., the last relation of (ii), we find that

1(h⊥(Z,V), ξ) = −(ξµ) 1(Z,V) = −1(~∇µ, ξ) 1(Z,V). (49)

Thus, from (47)-(49), we conclude that

1(h⊥(Z,V),X) = −1(~∇µ,X) 1(Z,V), (50)

for any X ∈ Γ(D⊕Dθ
⊕ 〈ξ〉), which means that

h⊥(Z,V) = −~∇µ 1(Z,V). (51)

The relation (51) implies that M⊥ is totally umbilical in M with mean curvature vector H⊥ = −~∇µ. Now, we
have to show that H⊥ is parallel with respect to the normal connection DN of M⊥ in M. For this, consider
any X ∈ Γ(D⊕Dθ

⊕ 〈ξ〉) and Z ∈ Γ(D⊥), thus we have

1(DN
Z
~∇µ,X) = 1(∇Z~∇µ,X) = 1(∇Z~∇

Tµ,X1) + 1(∇Z~∇
θµ,X2) + 1(∇Z~∇

ξµ, ξ),

where ~∇Tµ, ~∇θµ and ~∇ξµ are the gradient components of µ on M alongD, Dθ and 〈ξ〉, respectively. Using
the Riemannian metric property, we derive

1(DN
Z
~∇µ,X) = Z1(~∇Tµ,X1) − 1(~∇Tµ,∇ZX1) + Z1(~∇θµ,X2) − 1(~∇θµ,∇ZX2) + Z1(~∇ξµ, ξ) − Z1(~∇ξµ,∇Zξ)

= Z(X1µ) − 1(~∇Tµ, [Z,X1]) − 1(~∇Tµ,∇X1 Z) + Z(X2µ) − 1(~∇θµ, [Z,X2]) − 1(~∇θµ,∇X2 Z)

+ Z(ξµ) − 1(~∇ξµ, [Z, ξ]) − 1(~∇ξµ,∇ξZ).
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Now, using the definition of Lie bracket and a property of Riemannian connection, the above relation will
be

1(DN
Z
~∇µ,X) = X1(Zµ) + 1(∇X1

~∇Tµ,Z) + X2(Zµ) + 1(∇X2
~∇θµ,Z) + ξ(Zµ) + 1(∇ξ~∇ξµ,Z) = 0, (52)

since (Zµ) = 0, for any Z ∈ Γ(D⊥) and ∇X1
~∇Tµ + ∇X2

~∇θµ + ∇ξ~∇ξµ = ∇X~∇µ is orthogonal to D⊥, for any
X ∈ Γ(D ⊕ Dθ

⊕ 〈ξ〉) as we know that ~∇µ is the gradient along M1 and M1 is totally geodesic in M. This
means that the mean curvature vector H⊥ of M⊥ is parallel. Thus, the leaves of D⊥ are totally umbilical
with non vanishing parallel mean curvature vector −~∇µ, where ~∇µ is the gradient of the function µ, i.e.,
M⊥ is an extrinsic sphere in M. Hence, by Hiepko’s Theorem, M is a warped product submanifold, which
completes the proof.

6. Inequalities for skew CR-warped products

In this section, we establish two estimates for the squared norm of the second fundamental form of a
warped product skew CR submanifold M = M1× f M⊥ in a Kenmotsu manifold M̃ such that M1 = MT ×Mθ,
where MT and Mθ are invariant and proper slant submanifolds of M̃, respectively. First, we construct the
following frame fields for a warped product skew CR-submanifold.

Let M = M1 × f M⊥ be a m-dimensional warped product skew CR-submanifold of order 1 of a (2n + 1)-
dimensional Kenmotsu manifold M̃ such that the structure vector fieldξ tangent to MT, where M1 = MT×Mθ.
Let us consider the dimensions dim MT = 2p + 1, dim Mθ = 2q and dim M⊥ = s and their corresponding
tangent spaces are denoted by D ⊕ 〈ξ〉, Dθ and D⊥, respectively. We set the orthonormal frame fields of
D⊕ 〈ξ〉 as follows

{e1, e2, · · · , ep, ep+1 = ϕe1, · · · , e2p = ϕep, e2p+1 = ξ}

and the orthonormal frame fields ofDθ andD⊥, respectively are

{e2p+2 = e∗1, · · · , e2p+q+1 = e∗q, e2p+q+2 = e∗q+1 = secθTe∗1, · · · , e2p+2q+1 = e∗2q = secθTeq
∗
}

and

{e2p+1+2q+1 = ê1, · · · , em = e2p+1+2q+s = ês}.

Then the orthonormal frames of the normal subbundles FDθ, ϕD⊥ and ν, respectively are

{em+1 = ẽ1 = cscθFe∗1, · · · em+q = ẽq = cscθFeq, em+q+1 = ẽq+1 = cscθ secθFTe∗1,

· · · , em+2q = ẽ2q = cscθ secθFTe∗q},

{em+2q+1 = ẽ2q+1 = ϕê1, · · · , em+2q+s = ẽ2q+s = ϕês}

and

{em+2q+s+1, · · · , e2n+1}.

It is clear that dim ν = (2n + 1 −m − 2q − s).
Now, we establish the following relationship for the squared norm of the second fundament form of the

warped product skew CR-submanifold in Kenmotsu manifolds.

Theorem 6.1. Let M = M1 × f M⊥ be a Dθ
− D

⊥ mixed totally geodesic warped product skew CR-submanifold of
order 1 of a Kenmotsu manifold M̃ such that ξ is tangent to MT, where M1 = MT ×Mθ. Then
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(i) The squared norm of the second fundamental form satisfies

‖h‖2 ≥ s
(
cot2 θ ‖~∇θ ln f ‖2

)
+ 2s

(
‖~∇T ln f ‖2 − 1

)
(53)

where ~∇T ln f and ~∇θ ln f are the gradient components of the function ln f along MT and Mθ, respectively and
s = dim M⊥.

(ii) If equality sign in (i) holds, then M1 is a totally geodesic submanifold and M⊥ is a totally umbilical submanifold
of M̃.

Proof. From the definition of h, we have

‖h‖2 =

m∑
i, j=1

1(h(ei, e j), h(ei, e j)) =

2n+1∑
r=m+1

m∑
i, j=1

1(h(ei, e j), er)2.

Using the constructed frame fields, we find

‖h‖2 =

2n+1∑
r=m+1

2p+1∑
i, j=1

1(h(ei, e j), er)2 + 2
2n+1∑

r=m+1

2p+1∑
i=1

2q∑
j=1

1(h(ei, e∗j), er)2 +

2n+1∑
r=m+1

2q∑
i, j=1

1(h(e∗i , e
∗

j), er)2

+ 2
2n+1∑

r=m+1

2q∑
i=1

s∑
j=1

1(h(e∗i , ê j), er)2 +

2n+1∑
r=m+1

s∑
i, j=1

1(h(êi, ê j), er)2 + 2
2n+1∑

r=m+1

2p+1∑
i=1

s∑
j=1

1(h(ei, ê j), er)2 (54)

Fourth term in the right hand side vanishes identically by using the Dθ
− D

⊥ mixed totally geodesic
condition, thus we derive

‖h‖2 =

m+2q∑
r=m+1

2p+1∑
i, j=1

1(h(ei, e j), er)2 +

m+2q+s∑
r=m+2q+1

2p+1∑
i, j=1

1(h(ei, e j), er)2 +

2n+1∑
r=m+2q+s+1

2p+1∑
i, j=1

1(h(ei, e j), er)2

+ 2
m+2q∑

r=m+1

2p+1∑
i=1

2q∑
j=1

1(h(ei, e∗j), er)2 + 2
m+2q+s∑

r=m+2q+1

2p+1∑
i=1

2q∑
j=1

1(h(ei, e∗j), er)2 + 2
2n+1∑

r=m+2q+s+1

2p+1∑
i

2q∑
j=1

1(h(ei, e∗j), er)2

+

m+2q∑
r=m+1

2q∑
i, j=1

1(h(e∗i , e
∗

j), er)2 +

m+2q+s∑
r=m+2q+1

2q∑
i, j=1

1(h(e∗i , e
∗

j), er)2 +

2n+1∑
r=m+2q+s+1

2q∑
i, j=1

1(h(e∗i , e
∗

j), er)2

+

m+2q∑
r=m+1

s∑
i, j=1

1(h(êi, ê j), er)2 +

m+2q+s∑
r=m+2q+1

s∑
i, j=1

1(h(êi, ê j), er)2 +

2n+1∑
r=m+2q+s+1

s∑
i, j=1

1(h(êi, ê j), er)2

+ 2
m+2q∑

r=m+1

2p+1∑
i=1

s∑
j=1

1(h(ei, ê j), er)2 + 2
m+2q+s∑

r=m+2q+1

2p+1∑
i=1

s∑
j=1

1(h(ei, ê j), er)2 + 2
2n+1∑

r=m+2q+s+1

2p+1∑
i=1

s∑
j=1

1(h(ei, ê j), er)2.

(55)

Since we could not find the relations for a warped product in the form 1(h(U,W), ν), for any U,W either in
D⊕ 〈ξ〉 orDθ orD⊥, therefore we will leave the positive third, sixth, ninth, twelfth and fifteenth terms in
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the right hand side of (55). Then, we find

‖h‖2 ≥
2q∑

r=1

2p+1∑
i, j=1

1(h(ei, e j), ẽr)2 +

s∑
r=1

2p+1∑
i, j=1

1(h(ei, e j), ϕẽr)2 + 2
2q∑

r=1

2p+1∑
i=1

q∑
j=1

1(h(ei, e∗j), ẽr)2

+ 2
s∑

r=1

2p+1∑
i=1

q∑
j=1

1(h(ei, e∗j), ϕêr)2 +

2q∑
r=1

2q∑
i, j=1

1(h(e∗i , e
∗

j), ẽr)2 +

s∑
r=1

2q∑
i, j=1

1(h(e∗i , e
∗

j), ϕêr)2

+

2q∑
r=1

s∑
i, j=1

1(h(êi, ê j), ẽr)2 +

s∑
r=1

s∑
i, j=1

1(h(êi, ê j), ϕêr)2 + 2
2q∑

r=1

2p+1∑
i=1

s∑
j=1

1(h(ei, ê j), ẽr)2

+ 2
s∑

r=1

2p+1∑
i=1

s∑
j=1

1(h(ei, ê j), ϕêr)2. (56)

The second and fourth terms vanish identically by using Lemma 4.2 (ii) and Lemma 4.2 (iii), respec-
tively and for a Dθ

− D
⊥ mixed totally geodesic warped product, the sixth term vanishes identically

by using Lemma 4.2 (iv). Also, we could not find the relations for a warped product in the forms
1(h(X1,Y1),FDθ), 1(h(X2,Y2),FDθ), 1(h(X1,X2),FDθ) and1(h(Z,V), ϕD⊥), for any X1,Y1 ∈ Γ(D⊕〈ξ〉), X2,Y2 ∈

Γ(Dθ) and Z,V ∈ Γ(D⊥). Hence, by leaving these positive terms in the right hand side of (56) and using the
constructed frame fields, we obtain

‖h‖2 ≥
q∑

r=1

s∑
i, j=1

1(h(êi, ê j), cscθFe∗r)
2 +

q∑
r=1

s∑
i, j=1

1(h(êi, ê j), cscθ secθFTe∗r)
2

+ 2
s∑

j,r=1

2p∑
i=1

1(h(ei, ê j), ϕêr)2 + 2
s∑

j,r=1

1(h(e2p+1, ê j), ϕêr). (57)

Since e2p+1 = ξ and for a submanifold of a Kenmotsu manifold, we have h(ξ,U) = 0, for any U ∈ Γ(TM),
thus the last term in the right hand side of (57) vanishes identically. Then, we derive

‖h‖2 ≥ csc2 θ

q∑
r=1

s∑
i, j=1

1(h(êi, ê j),Fe∗r)
2 + csc2 θ sec2 θ

q∑
r=1

s∑
i, j=1

1(h(êi, ê j),FTe∗r)
2

+ 2
s∑

j,r=1

p∑
i=1

1(h(ei, ê j), ϕêr)2 + 2
s∑

j,r=1

p∑
i=1

1(h(ϕei, ê j), ϕêr)2.

Then, from (29), (30), (32) and (33), we arrive at

‖h‖2 ≥ csc2 θ
s∑

i, j=1

q∑
r=1

(
Te∗r(ln f ) 1(êi, ê j)

)2
+ cot2 θ

s∑
i, j=1

q∑
r=1

(
e∗r(ln f ) 1(êi, ê j)

)2

+ 2
s∑

j,r=1

p∑
i=1

(
ϕei(ln f ) 1(ê j, êr)

)2
+ 2

s∑
j,r=1

p∑
i=1

(
ei(ln f ) − η(ei)

)2
1(ê j, êr)2.

Since η(ei) = 0, ∀ i = 1, · · · , 2p and η(e2p+1) = 1, thus we obtain

‖h‖2 ≥ s csc2 θ

2q∑
r=1

(Te∗r(ln f ))2
− s csc2 θ

2q∑
r=q+1

(Te∗r(ln f ))2

+ s cot2 θ

q∑
r=1

(e∗r(ln f ))2 + 2s
2p+1∑
i=1

(ei(ln f ))2
− 2s(e2p+1(ln f ))2.
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Using (10) and Lemma 4.2 (i), we find

‖h‖2 ≥ s csc2 θ‖T~∇θ ln f ‖2 − s csc2 θ

q∑
r=1

1(e∗q+r,T~∇
θ ln f )2

+ s cot2 θ

q∑
r=1

(e∗r(ln f ))2 + 2s‖~∇T ln f ‖2 − 2s

= s cot2 θ‖~∇θ ln f ‖2 − s csc2 θ

q∑
r=1

1(secθTe∗r,T~∇
θ ln f )2

+ s cot2 θ

q∑
r=1

(e∗r(ln f ))2 + 2s
(
‖~∇T ln f ‖2 − 1

)
.

Then, from the gradient definition, we obtain

‖h‖2 ≥ s cot2 θ‖~∇θ ln f ‖2 − s cot2 θ

q∑
r=1

(e∗r(ln f ))2

+ s cot2 θ

q∑
r=1

(e∗r(ln f ))2 + 2s
(
‖~∇T ln f ‖2 − 1

)
which is inequality (i). To prove the equality case of (53), we proceed as follows: From the given mixed
totally geodesic condition, we have

h(Dθ,D⊥) = 0. (58)

On the other hand, leaving the third term in (55) and the first term in (56), we respectively have

h(D,D) ⊥ ν and h(D,D) ⊥ FDθ, ⇒ h(D,D) ⊆ ϕD⊥. (59)

Also, from Lemma 4.2 (ii), we have

h(D,D) ⊥ ϕD⊥. (60)

Then, from (59) and (60), we conclude that

h(D,D) = 0. (61)

Similarly, from the leaving ninth term in the right hand side of (55) and leaving fifth term in the right hand
side of (56), we find

h(Dθ,Dθ) ⊥ ν and h(Dθ,Dθ) ⊥ FDθ, ⇒ h(Dθ,Dθ) ⊆ ϕD⊥. (62)

And for aDθ
−D

⊥ mixed totally geodesic warped product, from Lemma 4.2 (iv), we have

h(Dθ,Dθ) ⊥ ϕD⊥. (63)

Thus, from (62) and (63), we arrive at

h(Dθ,Dθ) = 0. (64)

From the leaving sixth term in the right hand side of (55) and leaving third term in (56), we respectively
find that

h(D,Dθ) ⊥ ν and h(D,Dθ) ⊥ FDθ, ⇒ h(D,Dθ) ⊆ ϕD⊥. (65)
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Also, from Lemma 4.2 (iii), we obtain

h(D,Dθ) ⊥ ϕD⊥. (66)

Then, from (65) and (66), we conclude that

h(D,Dθ) = 0. (67)

Since M1 is totally geodesic in M [7, 15], using this fact with (58), (61), (64) and (67), we get M1 is totally
geodesic in M̃. On the other hand, leaving the fifteenth term in the right hand side of (55), we find
h(D,D⊥) ⊥ ν. Also, from Lemma 4.2 (iii), we obtain h(D,D⊥) ⊥ FDθ. Thus, we conclude that

h(D,D⊥) ⊆ ϕD⊥. (68)

And, the leaving twelfth term in the right hand side of (55) and the leaving sixth term in the right hand side
of (56), we respectively have

h(D⊥,D⊥) ⊥ ν and h(D⊥,D⊥) ⊥ ϕD⊥, ⇒ h(D⊥,D⊥) ⊆ FDθ. (69)

Also, from Lemma 4.3 and Lemma 4.5, we respectively have

1(h(X1,Z), ϕV) = −ϕX1(ln f ) 1(Z,V) (70)

and

1(h(Z,V),FX2) = TX2(ln f ) 1(Z,V), (71)

for any X1 ∈ Γ(D ⊕ 〈ξ〉), X2 ∈ Γ(Dθ) and Z,V ∈ Γ(D⊥). Since M⊥ is totally umbilical in M [7, 15], using
this fact with (58) and (68)-(71), we observe that M⊥ is a totally umbilical submanifold of M̃. Hence, the
theorem is proved completely.

If the structure vector field ξ is tangent to Mθ, then we have the following result.

Theorem 6.2. Let M = M1 × f M⊥ be a Dθ
− D

⊥ mixed totally geodesic warped product skew CR-submanifold of
order 1 of a Kenmotsu manifold M̃ such that ξ is tangent to Mθ, where M1 = MT ×Mθ. Then

(i) The squared norm of the second fundamental form satisfies

‖h‖2 ≥ s cot2 θ
(
‖~∇θ ln f ‖2 − 1

)
+ 2s‖~∇T ln f ‖2 (72)

where ~∇T ln f and ~∇θ ln f are the gradient components of the function ln f along MT and Mθ, respectively.
(ii) If the equality sign in (i) holds, then M1 is a totally geodesic submanifold and M⊥ is a totally umbilical

submanifold of M̃.

We can prove this theorem like Theorem 5.3, just we have to handle the structure vector field ξ. In this case
the dimensions of MT and Mθ respectively are 2p and 2q + 1 and the orthonormal frames of their tangent
spaces D and Dθ

⊕ 〈ξ〉, respectively are {e1, e2, · · · , ep, ep+1 = ϕe1, · · · , e2p = ϕep} and {e2p+1 = e∗1, · · · , e2p+q =
e∗q, e2p+q+1 = e∗q+1 = secθTe∗1, · · · , e2p+2q = e∗2q = secθTeq

∗, e2p+2q+1 = e∗2q+1 = ξ}.

7. Some Applications

In this section, we give some applications of our derived results.
For the warped product skew CR-submanifolds of the form M = M1 × f M⊥ of a Kenmotsu manifold

M̃ such that M1 = MT ×Mθ, if dim Mθ = 0, then the warped product skew CR-submanifolds turn into
CR-warped products M = MT × f M⊥ which have been studied in [3, 27]. Hence, Theorem 5.3 generalise a
result of [27] as follows:
If we put dim Mθ = 0 in Theorem 5.3, then the warped product is of the form M = MT × f M⊥, a contact
CR-warped product in a Kenmotsu manifold M̃. Thus, we have the following special case of Theorem 5.3.
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Corollary 7.1. (Theorem 3.4 [27]) A proper contact CR-submanifold of a Kenmotsu manifold M̃ is locally a contact
CR-warped product if and only if

AϕZX1 = −(ϕX1µ)Z, ∀ X1 ∈ Γ(D⊕ 〈ξ〉), Z ∈ Γ(D⊥) (73)

for some function µ on M satisfying Vµ = 0, for any V ∈ Γ(D⊥).

On the other hand, in a warped product skew CR-submanifold M = M1 × f M⊥ such that M1 = MT ×Mθ,
if dim MT = 0, then the warped product skew CR-submanifold turns into a warped product pseudo-slant
submanifold M = Mθ × f M⊥ and the case has been considered in [2]. In this case, Theorem 4.1 of [2] is a
special case of Theorem 5.3, by interchanging X2 by TX2 in the third relation of Theorem 5.3 as follows:

Corollary 7.2. (Theorem 4.1 [2]) Let M be a proper pseudo-slant submanifold of a Kenmotsu manifold M̃. Then M
is locally a mixed totally geodesic warped product submanifold if and only if

AϕZX2 = 0 and AFTX2 Z = cos2 θ
(
η(X2) − (X2µ)

)
Z (74)

for any Z ∈ Γ(D⊥) and X2 ∈ Γ(Dθ
⊕ 〈ξ〉) for some smooth function µ on M such that V(µ) = 0, for any V ∈ Γ(D⊥).

Similarly, Theorem 3.1 of [3] is a special case of Theorem 6.1 as follows:
If we consider dim Mθ = 0 in Theorem 6.1, then the inequality (53) is true for contact CR-warped products
which have been considered in [3].

Corollary 7.3. (Theorem 3.1 [3]) Let M̃ be a (2n + 1)-dimensional Kenmotsu manifold and M = MT × f M⊥ an m-
dimensional contact CR-warped product submanifold, such that MT is a (2p + 1)-dimensional invariant submanifold
tangent to ξ and M⊥ a s-dimensional anti-invariant submanifold of M̃. Then

(i) The squared norm of the second fundamental form of M satisfies

‖h‖2 ≥ 2s
(
‖~∇T ln f ‖2 − 1

)
(75)

where ~∇T ln f is the gradient of ln f .
(ii) If the equality sign of (75) holds identically, then MT is a totally geodesic submanifold and M⊥ is a totally

umbilical submanifold of M̃. Moreover, M is a minimal submanifold of M̃.

On the other hand, if we consider dim MT = 0 in Theorem 6.2, then the warped product skew CR-
submanifold M turns to the warped product pseudo-slant submanifold M = Mθ × f M⊥ and the inequality
(72) generalise Theorem 5.1 of [2] as follows.

Corollary 7.4. (Theorem 5.1 [2]) Let M = Mθ × f M⊥ be a mixed totally geodesic warped product pseudo-slant
submanifold of a Kenmotsu manifold M̃ such that Mθ and M⊥ are proper slant and anti-invariant submanifolds of M̃
with their real dimensions (2q + 1) and s, respectively. Then

(i) The squared norm of the second fundamental form h of M satisfies

‖h‖2 ≥ s cot2 θ
(
‖~∇θ ln f ‖2 − 1

)
(76)

where ~∇θ ln f is gradient of the function ln f along Mθ.
(ii) If equality sign of (76) holds identically, then Mθ is totally geodesic and M⊥ is totally umbilical in M̃.
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