Filomat 32:10 (2018), 3541-3548
https://doi.org/10.2298/FIL1810541Y

Published by Faculty of Sciences and Mathematics,
University of Ni§, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

Further Refinements of Some Inequalities
Involving Unitarily Invariant Norm

Chaojun Yang?, Fangyan Lu®*

?Department of Mathematics, Soochow University, Suzhou 215006, P. R. China

Abstract. Let A, B, X € M,,(C) and ||| - ||| be an arbitrary unitarily invariant norm. We give a new function
f(t,s) that is log-convex in each of its variables such that f(1/2,1/2) < f(t,s) for any t,s € [0,1] which
generalize the log-convex function defined in [4] and obtain the inequalities as follows:
NIAXB|IP = £(1/2,1/2)
< f(t,1-1)
< (HIAAXII + (1 = )IXB*Bl| - r(VIA*AXIIl - VIIXB*BIl)*)
X (1 = BIAAXII| + HIXB Bl - r(VIIlA“AXII| = VIIXBBII)?),

where t € [0,1] and r = min {¢, 1 — t}. Furthermore, we refine some inequalities as well.

1. Introduction

Let M,,(C) be the space of n x n complex matrices and let ||| - ||| denote any unitarily invariant norm.
Therefore, [|[UAV]| = [||All| for every A € IM,,(C) and for all unitarily matrices U, V € IM,,(C). If A is arbitrary,
then its singular values are enumerated as s1(A) > s,(A) > --- > 5,(A). These are the eigenvalues of the
positive semidefinite matrix |A| = (A*A)2 arranged in a decreasing order and repeated according to multi-
plicity. So [|A]| = s1(A) is the operator norm of A. Note that s;(A) = s;(A") = s;(|A]) for j = 1,2,--- ,n. The
Ky Fan norm of a matrix A is defined as ||Allg) = Zk»:l sj(A), k =1,2,--- ,n. The Fan dominance theorem
asserts that ||Allg < |IBllw for k =1,2,---,nif and only if [||A[|| < |||B|| for every unitarily invariant norm. A
special unitarily invariant norm is the Hilbert-Schmidt norm which is defined by [|All, = (Zlle s? (A))%.

The classical Young inequality for two scalars is the weighted arithmetic-geometric mean inequality for
two nonnegative real numbers. The inequality states thatifa,b > 0and 0 <f <1, then
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ab't <ta+(1-1tb

with equality if and only if a = b.

The matrix version of Young inequality [1] for unitarily invariant norm proved by Ando states that if
A, B are positive definite matrices and 0 < t < 1, then

IA'B*Il < [lItA + (1 = HBII. 1)

Recently, Kittaneh et al. gave a refinement of inequality (1) in [9] as follows:

NAXB™ Il + r(VIIAXII = VIIXBIN)* < HIAXII + (1 = HIIXBII,

where A, B are positive definite matrices, 0 <t < 1,7 =min{¢,1 - ¢}.

The classical Cauchy-Schwarz inequality for scalars a;, b; > 0(1 < i < n) states that
(T aibi)® < (L a))(EiL b))

with equality if and only if (a1,--- ,a,) and (by,- - - , b,,) are proportional.

The matrix Cauchy-Schwarz inequality [5] was proved by Bhatia as follows:

IAXB > < IIA*AXIIIXB*BIll, 2)
where A, B, X € M,,(C).

In [3], Kittaneh et al. extend ineqaulity (2) as follows:

IAXBII? < lIICA"A)* X(BB)' Il lI[(A*A) " X(BB)"Ill,

In [2], Audenaert give an inequality that interpolates between arithmetic-geometric mean inequality
(t= %) and Cauchy-Schwarz inequality (¢ = 0 or ¢ = 1) as follows:

NABI? < [lItA*A + (1 = HB'BIIlII(1 = HA'A + tB"BI, )
where A,B € M,,(C),0 <t < 1.
In the paper [10], Zou gave a generalization of (3) as follows:
NAXB ||| < [IItA*AX + (1 = HXB*BI|| (1 — H)A*AX + tXB*BJ||, 4)
where A,B € M,,(C),0 <t < 1.

In [4], Alakhrass utilized a log-convex function to refine the inequalities presented above. We shall
generalize this log-convex function and present some inequalities that further refine some known results.
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2. Main Results

Lemma 2.1. [6] Let A, B, X € M,,(C) such that A and B are positive semidefinite. If 0 < ¢ < 1, then
INATXB™ || < IIAXIIIF [I1IXBIII*.

Theorem 2.2. Let P, Py, X € M,(C) such that Py, P, are positive semidefinite. Then the function f :
[0,1] X [0, 1] = [0, o0) defined by

f(t,s) = IPLXP3IILIP XPy |l

is log-convex in each of its variables.

Proof. We only prove the log-convexity for ¢, cause the other case can be proved similarly. First we give a
more general result. Set t1,t,51,5,,a,8 € [0,1] witha + 5 =1.

Compute
|||Pll)¥t1 +ﬁf2 ngcs] +ﬁ52 |||
_ oty +(1-a)t (1-B)s1+PBs
=[P} EXP, PR
= IPy PPy Py 5)
< |IP2PRXP||1* IPEXPS PE~|IF (by Lemma 2.1)
_ 13 13
= [IP} X P |II* IPEXPEIP.
Similarly,

1Py PR X P, R < P XY I I[Py X PP (6)

Apply inequalities (5) and (6) we have

f((th + ﬁtz, ast + ‘352)
— |||Pikt1+ﬁfzxpgsl+ﬁ52”| |I|P1—(Ott1+ﬁf2)XP;—(lX51+ﬁSZ)|||.

< (P XP Py XPy (P XPS I IPy ™ XP 1)
= f(t1,1)" f(t2, 52)P.
Putting 51 = s, = 5 in the preceding inequality we thus obtain
flaty + By, s) < f(tr,5)" f(t2, 5)F.
This completes the proof. [
Corollary 2.3. Let Py, P, X € M,,(C) such that P; and P, are positive semidefinite. Then the function
t = [P XPy P XPYII

is log-convex on the inverval [0, 1].



C Yang, F Lu / Filomat 32:10 (2018), 3541-3548 3544

Proof. By putting s = 1 —t in Theorem 2.2, we obtain the result. [

Lemma 2.4. [8] The generalization of Fan Dominance Theorem states as follows:

A, < IBllgy ICllgy for k=1,2,---,n if and only if [IAl* < IBIIICII

for every A, B, C € M, (C).

The following theorem was proved in [7] using Fan Dominance Theorem, which should be corrected by
using Lemma 2.4.

Theorem 2.5. Let A,B, X € M,,(C) and ¢,s € [0, 1]. Then
IAXBI? < (A" A) X (BB (A" AY' ' X (B B)' |

for every unitarily invariant norm.

Corollary 2.6. Let P1, P, X € M,(C) such that Py, P, are positive semidefinite and f(t,s) is defined as in
Theorem 2.2. Then we get

f(1/2,1/2) < f(t,9)

forevery t,s € [0, 1].
1 1
Proof. Put A = P} and B = P] in Theorem 2.5, we obtain

1 1
£(1/2,1/2) = IP; XP3IIP < IP{XP3IINIPT XPy Il = f(t,5). O

The following result is a direct consequence of Theorem 2.5 by Young inequality.

Corollary 2.7. Let A,B € M,,(C) and ¢,5, @ € [0, 1]. Then

IABIP < lll(A*A)s + (1 = a)(B'B) Tl II(1 — a)(A*A) 1= +a(B'B) =]l

Corollary 2.7 is a refinement of Theorem 2.2 in [4] by putting @ = tands =1 —+¢.

Proposition 2.8. Let A,B,X € M,(C) such that X is positive semidefinite with |A|,|B] < X < ml and

t,s,a €[0,1] with max{3(12_s), %} <ac< min{%, %} Then

3( 3 t=a s+a=1

4 aX | llam S (AT + (1 - a)m T (BB .

IAXBI> < XL - a)X
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Proof. . We have

IIAXB|I? = [IIAX2 X2 B'||]2
1 2t 1, 2 1,2(-1) 1,2(01-s)
< NAX T + (1= @) BXZ TS ||| I(1 - a)lAX?| T +alBX?| ||
= (X2 IARPX?) " + (1 — a)(X2 [BPX2) 5|11 — a) (X JAPX?) T + (X2 |BREX2) < ||
= lllms (X/m)2|AP(X/m)?)7 + (1 — aym™s ((X/m)2 |BR(X/m)?) T |
X II(1 = a)(XHAPXE) S +a(XHBPXY) T

sta—1

< IX2 (am'® AT + (1 — a)ym T+ [BIE)X (1 — a)(XZARX?) T + a(X? BPX) <

(by operator convexity of x& and x77)
< Xl llam s (A"A)E + (1 = a)m T (B'B) T I[II(1 — a)(X*IAPX )™ +a(X?BPX) Tl
3(1-t) 3(1-s) - St

< XL = a)X = +aX =« ||| llam's (A" A)% + (1 — a)ym T (B'B)Ts |l (by [12, p 12])

This completes the proof. [

Proposition 2.9. Let A, B, X € M,,(C) such that X is positive semidefinite with |A|,|B| < X and t,s, « € [0, 1]
1

. 3(1- (3421 oo
with max{%, %} <a< mm{%,% . Then

3(1 3t—a

-5) . oy 25zl
« IHlla(A*A) 2 + (1 — a)(B*B) 20 ||.

3(1-5)
NAXB[I> < IXNIA - o)X= +aX

Proof. We have

IIAXB|I? = [I|AX2 X2 B'||]2
1 2t 1, 2 1,20-9 1,2(1-s)
< NAX3 [T + (1= @) BXZT5 ||| I(1 - a)lAX?| T + alBX?| ||
= (X2 IARPX?) s + (1 — a)(X2 BPX2)TH ([ II(1 — a)(XEJAPX?) T + (X2 |BREX2) < ||
= llaXZ AI(AIXIA Y AIX? + (1 — @)X 2 [BI(BIX|BI) ™=~ |BIX?]|
X |I(1 = a)(X2|APX?) T + a(XZ|BPX2) Tl

< X @IAIS + (1= @Bl FH)XENNIL - )(XHAPXE) + a(XEBEXE) <
(by [12,p 12])

3s+a-1

< XN (A" A) = + (1 — a)(B*B) 200 [[|I[(1 — a)(XZ|APX?) T+ + a(X?|BPX?) < ||

3(1 3t-a

31-1) D) .\ 3=a NS
S HIXMNEA = )X 7= + aX ™o || [lla(A™A) = + (1 = a)(B'B)2@= || (by [12, p 12])

This completes the proof. [

Lemma 2.10. [9] Let Py, P, X € M,,(C) such that P; and P, are positive semidefinite. If f € [0, 1], then

1P XP, || + r( VITPL XTI = VIIXPI)? < HIP Xl + (1 = HIIXP, I,
where r = min{t,1 —t}.
Let A, B, X € M,,(C). Put P; = A*A, P, = B'B in Theorem 2.2 thus we get the following function

f(t,s) = A AYX(B'BY Il IA"A)' ' X(B'B)'*Ill,  t,5 €[0,1]. (7)
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By Theorem 2.2 the function f(f,s) is log-convex in each of its variables. Therefore f(t,s) is convex in
each of its variables. By Young inequality and Corollary 2.6 we get

f(1/2,1/2) < f(ats + Pta, s)
< f(t1,9)" f(ta, s)f
< af(ty,s) + Bf(ta,s),

where t1,t5,5,a,€[0,1]]and a + f = 1.
Theorem 2.11. Let A, B, X € M,,(C) and ¢t € [0, 1]. We have

IIAXB|I* = £(1/2,1/2)
< f(t,1-1)
< (HIA*AXII| + (1 - BIIXB* Bl - r(IIA*AXII| - VIIXB*BIl))?)
x (1= BHIA"AXI + HIXB*BIIl - r(VIlA*AXIl - VIIXB*BIll)?),

where r = min {t,1 —t}.

Proof. Lett €[0,1] and ¥ = min {¢,1 — t}. By Lemma 2.10 (set P; = A*A and P, = B*B), we get
f(t,1=1) = |I(A*A) X(B'B) Il II(A"A)' " X (BBl
< (HIIA*AX]|| + (1 = HIIXB*BIll - r(VIIA*AXII - VIIXB*BII)?)
x (1 - HIIIA*AX][| + HIIXB*Blll - r(VIIlA*AXIl| - VIIXBBII)?).

Put A = UJA| and B = V|B| be the polar decompositions of A and B with unitarily matrices U and V.
Thus we get
£(1/2,1/2) = [I(A*A)/>X(B'B) /I
= [IIAIXIBIIIP
= [lLIAIXIBIV*|I1
= [IAXB|I>.

This completes the proof. [J
Remark 2.12. Theorem 2.11 can be seen as a refinement of Theorem 2.4 in [4].

Lemma 2.13. [11] Let Py, P>, X € M,,(C) such that P; and P, are positive semidefinite. If t € [0, 1] and N > 2
be an integer, then

IPLXP;* 115 + s3(OIP1 X — XPaf3
N k() k(0 ki(h+1 ki(h+1
7 _ prAnai T
+Z”Pl T XP, 3T — Py XP, T |
=
< ItP1X + (1 - £)XP,lf3,

T’j(t)+1

where kj(f) = [2/71], 7i(t) = [2/t] and s;(t) = (~1)1020 ¢ + (~1ynO+1 [ 192,
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We point out that Lemma 2.13 is a refinement of Lemma 2.2 in [4].

When we restrict the unitarily invariant norm in (7) to the particularly important Hilbert-Schmidt norm
|| - I, we reset the function as below

g(t,s) = IA"A)X(B'Byll2 I(A*A) X (B"B)' I, t,5 €[0,1].

Theorem 2.14. Let A, B, X € M,,(C) and t € [0, 1]. We have

IAXBI; = 9(1/2,1/2)
<g(t,1-1)
;) K;(0)
< (IA"AX + (1 - HXB'B)I; ~ Z (A" A)5 X(B'B)' 5
j=2

kj(+1 kj(+1

— (AA) 7T X(BB) TR - Sl(t)II(A A)X - X(BBB)?

kj(t) (f
x (I(A"A)X + (1 -~ HX(B'B)Il; — Z II(A*A)> X(B'B)"~
j=2
ki(t)+1 kj()+1

— (A"A) 7T X(BB) T} - S(DI(AA)X - X(B'B)IR)?.

Proof. Lett €[0,1] and ¥ = min {¢,1 — t}. By Lemma 2.13 (set P; = A*A and P, = B*B), we get

g(t, 1= 1) = (A" AYX(B'B) |l I(A°A) ' X(B*B)”‘ Il2
kj(t) ki(t)
< (I(A"A)X + (1 — HX(B'B)Il; — Z (A" A)7 T X(B'B) "7
j=2
kj()+1 kj(+1 .
~ (A" A) T X(BB) T - 2(t)II(A*A)X— X(B'B)ll5)?
kj(t) kj (f)
X (IA"A)X + (1 - HX(B'B)I; - Z (A" A) 77 X(B'B)'~
j=2

ki(B+1 kj(t)+1

— (A"A) 7T X(BB) T - S(DIAA)X - X(B'B)IR)?.

Put A = UJA| and B = V|B| be the polar decompositions of A and B with unitarily matrices U and V.
Thus we get

9(1/2,1/2) = |I((A*A)/*X(B"B)" |13
= IAIXIBIlI;
= | UIAIXIBIV'i3
= |AXB|3.

This completes the proof. O

Remark 2.15. We remark that Theorem 2.14 is a refinement of Theorem 2.5 in [4].
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