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Pointwise Planar Horizontal Sections Along Riemannian Submersions

Şerife Nur Bozdaḡa, Bayram Şahina

aEge University, Faculty of Science, Department of Mathematics, 35100 İzmir, Turkey

Abstract. We study Riemannian submersions with pointwise k-planar horizontal sections. We provide
examples, obtain characterizations and give a geometric interpretation of such property.

1. Introduction

Let M be an n−dimensional submanifold in m−dimensional Euclidean space Em. For any point p in
M and any nonzero vector t at p tangent to M, the vector t and the normal space (TpM)⊥ determine an
(m − n + 1) dimensional vector space E(p, t) in Em. The intersection of M and E(p, t) gives rise a curve γ(s)
(in a neighbourhood of p), called the normal section of M at p in the direction t, where s denotes the arc
length of γ. In general the normal section γ is a twisted space curve in E(p, t). In particular, γ

′

∧γ
′′

∧γ
′′′

, 0
at p in general. A submanifold M is said to have pointwise planar normal sections if each normal section γ
at p satisfies γ

′

∧ γ
′′

∧ γ
′′′

= 0 for each p in M. And a submanifold is said to have planar normal sections
if its normal sections are planar curves, that is, γ

′

∧ γ
′′

∧ γ
′′′

≡ 0 for each normal section γ, [9]. The notion
of submanifolds with planar normal sections was defined by Chen [9] and main results were given in [10].
Later such submanifolds have been studied by many authors and they have shown that this notion is useful
for characterizing parallel submanifolds in Euclidean space, see: [1], [2], [3], [4], [5], [6], [11], [12], [13], [14],
[15],[16], [19], [20].

Riemannian submersions between Riemannian manifolds were studied by O’Neill [23] and Gray [18]
and they are useful for obtaining new manifolds with certain curvature. Riemannian submersions have been
studied widely in differential geometry, see [17], however this subject is still an active area of differential
geometry, see a recent paper [26] and references there in.

In this paper, we study the notion of planar normal sections by considering Riemannian submersion. As
far as we know, there is no any study on planar normal sections along a Riemannian submersion. We provide
an example, obtain certain characterizations and give a geometric meaning for a submersion to have such
properties. We show that the projection of warped product submanifold onto its first factor has pointwise
2−planar horizontal sections. Since there are many warped product submanifolds in an Euclidean space,
this shows that there are many Riemannian submersions having pointwise 2−planar horizontal sections.
We also observe that Riemannian submersions with totally geodesic fibers has this property. Since there
is a close relation between Riemannian submersions from spheres with totally geodesic fibers and Clifford

2010 Mathematics Subject Classification. Primary 53B20; Secondary 53B21
Keywords. Riemannian submersion, planar normal section, warped product manifold, planar horizontal section, Clifford algebra
Received: 24 September 2017; Accepted: 04 December 2017
Communicated by Mića S. Stanković
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algebra, this relation shows that it will be possible to use Clifford algebra and their representation to study
pointwise planar horizontal sections along Riemannian submersions.

The paper is organized as follows: In section 2, we present the basic information needed for this paper. In
section 3, we introduced notion of pointwise k-planar horizontal sections and give certain characterizations.
We also obtain a method to obtain examples of Riemannian submersions with pointwise 2-planar horizontal
sections. Then by using this method we provide a numerical example.

2. Preliminaries

In this section, we define Riemannian submersions between Riemannian manifolds and give a brief
review of basic facts of Riemannian submersions.

Let (Mm, 1M ) and (Nn, 1N ) Riemannian manifolds, where dim(M) = m, dim(N) = n and m > n. A
Riemannian submersion F : M −→ N is a map of M onto N satisfying the following axioms:

(S1) F has maximal rank.

(S2) The differential F∗ preserves the lenghts of horizontal vectors.

For each q ∈ N, F−1(q) is an (m − n) dimensional submanifold of M. The submanifolds F−1(q), q ∈ N, are
called fibers. A vector field on M is called vertical if it is always tangent to fibres. A vector field on M is
called horizontal if it is always orthogonal to fibres. A vector field U on M is called basic if U is horizontal
and F− related to a vector field U∗ on N, i.e., F∗Up = U∗F(p) for all p ∈M. Note that we denote the projection
morphisms on the distributions kerF∗ and (kerF∗)⊥ byV andH , respectively.

We recall the following lemma from O’Neill [23].

Lemma 2.1. Let F : M −→ N be a Riemannian submersion between Riemannian manifolds and U,V be basic vector
fields of M. Then

(a) 1M (U,V) = 1N (U∗,V∗) ◦ F

(b) the horizontal part [U,V]H of [U,V] is a basic vector field and corresponds to [U∗,V∗], i.e.,
F∗([U,V]H ) = [U∗,V∗].

(c) [X,U] is vertical for any vector field X of kerF∗.

(d) (∇
M

UV)H is the basic vector field corresponding to ∇N

U∗
V∗.

The geometry of Riemannian submersions is characterized by O’Neill’s tensors T andA defined for vector
fields E,F on M by

AEF = h∇hEvF + v∇hEhF, TEF = h∇vEvF + v∇vEhF (1)

where ∇ is the Levi-Civita connection of 1M . It is easy to see that a Riemannian submersion F : M −→ N
has totally geodesic fibres if and only if T vanishes identically. For any E ∈ Γ(TM), TE and AE are skew-
symmetric operators on (Γ(TM), 1) reversing the horizontal and the vertical distributions. It is also easy to
see thatT is vertical, TE = TvE andA is horizontal,A = AhE. We note that the tensor fieldsT andA satisfy

TXY = TYX, AUV = −AVU =
1
2

v[U,V] (2)

for X,Y ∈ Γ(kerF∗) and U,V ∈ Γ((kerF∗)⊥).
On the other hand, from (1) we have

∇XY = TXY + ∇̂XY (3)
∇XV = h∇XV + TXV (4)

for X,Y ∈ Γ(kerF∗) and U,V ∈ Γ((kerF∗)⊥), where ∇̂XY = v∇XY. If U is basic, then h∇XU = AUX.
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3. Riemannian Submersions with Planar Horizontal Sections

In this section, we define Riemannian submersions with planar horizontal sections and obtain charac-
terizations. We also relate this notion with covariant derivative of the tensor field T . We first present the
following definition.

Definition 3.1. Let (M, 1) be a m−dimensional Riemannian manifold and (En, <, >) be a n-dimensional Euclidean
space. Consider a Riemannian submersion F : En

→M and denote its vertical distribution and horizontal distribution
byV andH , respectively. It is known that the vertical distributionV is always integrable. We denote the integral
manifold ofV by M̄. For p ∈ M̄ and a non-zero vector X ∈ XV(En), we define (m + 1)−dimensional affine subspace
E(p,X) of En by

E(p,X) = p + Span{X, Hp}. (5)

In a neighbourhood of p, the intersection M̄ ∩ E(p,X) is a regular curve α : (−ε, ε) → M̄. We suppose that the
parameter t ∈ (−ε, ε) is a multiple of the arc-length such that α(0) = p and α′ (0) = X. Each choice of X ∈ Vp yields
a different curve. We will call α the horizontal section of M̄ at p in the direction of X. The Riemannian submersion
F is said to have ”pointwise k-planar horizontal sections (Pk-PHS)” if for each horizontal section α, the higher order
derivatives

{α
′

(0), α
′′

(0), ..., αk+1(0)} (6)

are linearly dependent as vectors in En.

Thus a horizontal section can be written as below

α(t) = p + λ(t)X + U(t) (7)

where U ∈ XH (En), λ(t) ∈ R.

First of all, we have the following result.

Proposition 3.2. Let F : (En, <, >) −→ (M, 1M ) be a Riemannian submersion. Then F has P1-PHS if and only if F
is a Riemannian submersion with totally geodesic fibers.

Proof. Let α : (−ε, ε) −→ M̄, M̄ ⊂ En, α(0) = p, α′ (0) = X ∈ XV(En). Then if F has P1-PHS, from the
definition it follows that α

′

(0) and α
′′

(0) are linearly dependent. Set

α
′

(0) = X (8)

and using (3) we have

α
′′

(0) = ∇XX = TXX + ∇̂XX. (9)

Since X, ∇̂XX = v∇XX ∈ XV(En) and TXX ∈ XH (En); α
′

(0) and α
′′

(0) are linearly dependent for only

TXX = 0. (10)

Hence we have

TYZ = 0

for Y,Z ∈ XV(En). This shows that F is a Riemannian submersion with totally geodesic fibers. The converse
is clear.
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The above theorem shows that P1-PHS condition is a very strong condition for Riemannian submersion.
Indeed, this property implies that T = 0. But this proposition enables us to put a weaker condition for a
Riemannian submersion with totally geodesic fibers. For instance, from Hermann’s Theorem [17, Page:37],
we can give the following result.

Corollary 3.3. Let F : (En, <, >) −→ (M, 1M ) be a Riemannian submersion. If F has P1-PHS, then F acts as the
projection of a bundle associated with a principal fibre bundle with structure group the Lie group of isometries of the
fibre.

From [17, Page:41], we also write the following result by putting P1-PHS condition instead of the totally
geodesicity.

Corollary 3.4. Let F : (En, <, >) −→ (M, 1M ) be a Riemannian submersion. If F has P1-PHS and n ≥ 3, then
(M, 1M ) is a locally symmetric space.

We now consider P2-PHS condition for Riemannian submersions. We first have the following result.

Theorem 3.5. Let F : (En, <, >) −→ (M, 1M ) be a Riemannian submersion. Then F has P2-PHS if and only if
(∇XT )XX and TXX satisfy

(∇XT )XX ∧ TXX = 0 (11)

for any X ∈ XV(En).

Proof. From (3) and (4) we obtain

α
′

(0) = X (12)

α
′′

(0) = ∇XX = TXX + ∇̂XX (13)

α
′′′

(0) = h∇XTXX + TXTXX + TX∇̂XX + ∇̂X∇̂XX. (14)

If F has P2-PHS from the definition; α
′

(0), α
′′

(0) and α
′′′

(0) are linearly dependent. Taking vertical parts
and horizontal parts of above equations, we get

TXTXX + ∇̂X∇̂XX = − ‖ TXX ‖2 X (15)

and

h∇XTXX = aTXX (16)

where a ∈ C∞(En,R). On the other hand, for a vector field E ∈ X(En) and X ∈ XV(En), we have

(∇XT )XE = ∇XTXE − T∇XXE − TX∇XE. (17)

Using (16) and (17), we get

(∇XT )XX = aTXX

which shows that (∇XT )XX ∧ TXX = 0. Conversely, if the (11) is satisfied, then it is easy to see that F has
P2-PHS.

The following result gives a geometric interpretation for the notion of the Riemannian submersion having
P2-PHS.

Theorem 3.6. Let F : (En, <, >) −→ (M, 1M ) be a Riemannian submersion with non-totally geodesic fibers. Then
the following three statements are equivalent

1. (∇XT )XX = 0
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2.
∑

XYZ(∇XT )ZY = 0 where
∑

XYZ denotes the cyclic sum of over the vertical vector fields X, Y and Z.
3. Horizontal section of the fiber along F at p ∈ En is pointwise 2-planar horizontal section with p as one of its

vertices.

Proof. (1)⇔ (2) Taking X + Y + Z instead of X in (∇XT )XX = 0, we get

(∇X+Y+ZT )X+Y+ZX + Y + Z = (∇XT )YZ + (∇YT )XZ + (∇XT )ZY + (∇ZT )XY + (∇YT )ZX
+ (∇ZT )YX + (∇XT )XY + (∇YT )YX + (∇XT )XZ + (∇ZT )ZX
+ (∇YT )YZ + (∇ZT )ZY + (∇XT )YY + (∇XT )ZZ + (∇YT )XX
+ (∇YT )ZZ + (∇ZT )XX + (∇ZT )YY + (∇XT )YX + (∇XT )ZX
+ (∇YT )XY + (∇YT )ZY + (∇ZT )XZ + (∇ZT )YZ = 0. (18)

On the other hand for X,Y,Z ∈ XV(En), taking Y + Z instead of X in (∇XT )XX = 0, we obtain

(∇Y+ZT )Y+ZY + Z = ∇YTYY + ∇YTYZ + ∇YTZY + ∇YTZZ
+ ∇ZTYY + ∇ZTYZ + ∇ZTZY + ∇ZTZZ
− T∇YYY − T∇YYZ − T∇YZY − T∇YZZ
− T∇ZYY − T∇ZYZ − T∇ZZY − T∇ZZZ
− TY∇YY − TY∇YZ − TY∇ZY − TY∇ZZ
− TZ∇YY − TZ∇YZ − TZ∇ZY − TZ∇ZZ = 0. (19)

In a similar way, for Y − Z we derive

(∇Y−ZT )Y−ZY − Z = ∇YTYY − ∇YTYZ − ∇YTZY + ∇YTZZ
− ∇ZTYY + ∇ZTYZ + ∇ZTZY − ∇ZTZZ
− T∇YYY + T∇YYZ + T∇YZY − T∇YZZ
+ T∇ZYY − T∇ZYZ − T∇ZZY + T∇ZZZ
− TY∇YY + TY∇YZ + TY∇ZY − TY∇ZZ
+ TZ∇YY − TZ∇YZ − TZ∇ZY + TZ∇ZZ = 0. (20)

Adding and subtracting (19) and (20), we have

(∇YT )ZZ + (∇ZT )YZ + (∇ZT )ZY = 0

and

(∇YT )YZ + (∇YT )ZY + (∇ZT )YY = 0

respectively. Hence we get

(∇YT )ZZ + (∇ZT )YZ + (∇ZT )ZY + (∇YT )YZ + (∇YT )ZY + (∇ZT )YY = 0. (21)

Repeating similar calculations for X + Z,X − Z and X + Y, X − Y we obtain

(∇XT )ZZ + (∇ZT )XZ + (∇ZT )ZX + (∇XT )XZ + (∇XT )ZX + (∇ZT )XX = 0 (22)

and

(∇XT )YY + (∇YT )XY + (∇YT )YX + (∇XT )XY + (∇XT )YX + (∇YT )XX = 0 (23)

Using (21), (22) and (23) in (18) , we obtain

(∇XT )YZ + (∇YT )XZ + (∇XT )ZY + (∇ZT )XY + (∇YT )ZX + (∇ZT )YX = 0. (24)

Since En is flat, using (3) and (4) we get;

h∇XTYZ + TXTYZ + TX∇̂YZ + ∇̂X∇̂YZ − h∇YTXZ
− TYTXZ − TY∇̂XZ − ∇̂Y∇̂XZ − T[X,Y]Z − ∇̂[X,Y]Z = 0 (25)
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where X,Y,Z ∈ XV(En). Thus taking vertical parts and horizontal parts of (25) we derive,

R̂(X,Y)Z = −TXTYZ + TYTXZ (26)

and

h∇XTYZ + TX∇̂YZ − h∇YTXZ − TY∇̂XZ − T[X,Y]Z = 0 (27)

respectively, where R̂ is the curvature tensor field of M̄. Using (27) we find

(∇XT )YZ − (∇YT )XZ = 2(TXTYZ − TYTXZ). (28)

Thus from (26) and (28) we get

(∇XT )YZ − (∇YT )XZ = −2R̂(X,Y,Z). (29)

Appliying cyclic permutation to (29), we have

2(∇YT )XZ − 2R̂(X,Y,Z) + 2(∇XT )ZY − 2R̂(Z,X,Y) + 2(∇ZT )YX − 2R̂(Y,Z,X) = 0. (30)

Using the first Bianchi identity, we arrived at

(∇YT )XZ + (∇XT )ZY + (∇ZT )YX = 0. (31)

This means
∑

XYZ(∇XT )ZY = 0. The converse is clear.

(1) ⇔ (3) If (1) is satisfied, we have (∇XT )XX = 0 so (∇XT )XX and TXX are linearly dependent. Then
from (3) we have

k2 = 1(∇XX,∇XX) = 1(TXX,TXX)

where k is the curvature of horizontal section. Taking covariant derivative of k2 with respect to s, and using
(4) we obtain

dk2

ds
= 21(∇XTXX,TXX)

= 21((∇XT )XX,TXX) (32)

which implies dk2

ds = 0. Conversely, if F has planar horizontal section at p ∈ En with p as one of its vertices,
then Theorem 3.5 and (32) tell us both (∇XT )XX and TXX are linearly dependent and they are orthogonal
to each other which implies that (∇XT )XX = 0.

In 1969, Bishop and O’Neill [8] introduced a new concept of product manifolds, called warped product
manifolds, as follows. Let (M1, 11) and (M2, 12) be two Riemannian manifolds, f : M1 → ( 0, ∞ ) and
π : M1 × M2 → M1, σ : M1 × M2 → M2 the projection maps given by π (x, y) = x and σ (x, y) = y for
every (x, y) ∈ M1 ×M2. Denote the warped product manifold M = (M1 × f M2, 1 ), where

1 ( X, Y ) = 11 (π∗ X, π∗ Y ) + f (π(x, y))212 ( σ∗ X, σ∗ Y )

for every X and Y of M and ∗ is symbol for the tangent map. The manifolds M1 and M2 are called the
base and the fiber of M. Bishop and O’Neill constructed a large variety of complete Riemannian manifolds
of everywhere negative sectional curvature by using warped product. For each y ∈ M2, the map π|(M1×y)
is an isometry onto M1. For each x ∈ M1, the map σ|(x×M2) is a positive homothety onto M2, with scalar
factor 1/ f (x). For each (x, y) ∈ M, the leaf M1 × y and the fiber x ×M2 are orthogonal at (x, y). The fibers
x ×M2 = π−1(x) and the leaves M1 × y = σ−1(y) of the warped product are totally geodesic and totally
umbilical, respectively.
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It is easy to prove that the first projection π : M1 × f M2 −→ M1 is a Riemannian submersion whose
vertical and horizontal spaces at any point p = (p1, p2) are respectively identified with Tp2 M2,Tp1 M1. Since
the horizontal distribution is integrable, the invariant A associated with π vanishes. To compute the
invariant T , for any X,Y ∈ XV(M), U ∈ XH (M) applying (1), one obtains:

TXY = −
1
f
1(X,Y)1rad f , (33)

and any fibre of π (which is identified with M2) turns out to be a totally umbilical submanifold of M1 × f M2

with mean curvature vector field H = −
1
f
1rad f . Thus, if f is a non-constant function, the fibres of π are not

minimal submanifolds of M1 × f M2, for details, see: [17].

Proposition 3.7. Let M = M1× f M2 be a warped product submanifold of an Euclidean spaceEn. Then the projection
π : M1 × f M2 −→M1, as a Riemannian submersion, has P2 − PHS.

Proof. To show this, we compute (∇XT )XX. First of all, by straightforward calculation we have

(∇XT )XX = ∇XTXX − T∇XXX − TX∇XX. (34)

Then using (33) we get

(∇XT )XX = ∇X(−1(X,X)1rad(ln f )) + 1(∇XX,X)1rad(ln f ) + 1(X,∇XX)1rad(ln f ).

Hence we obtain (∇XT )XX = 0 which shows that π is a P2-PHS.

Above proposition gives a method to construct certain submersion to have P2 − PHS property. As an
application of above method we give the following example.

Example 3.8. Let M(r, t, s) = (rcoss, rsins, tcoss, tsins) be a submanifold in E4. It is easy to see that this is a warped
product submanifold M = M1 × f M2 with the warping function

√

r2 + t2 in the form

1 = dt2 + dr2 + (r2 + t2)ds2.

Now consider the Riemannian submersion π : M1 ×√r2+t2 M2 −→ M1. Then by direct computations the vertical
distribution is

kerF∗ = span{−rsins
δ
δx1

+ rcoss
δ
δx2
− tsins

δ
δx3

+ tcoss
δ
δx4
} = span{γ

′

}

and the horizontal distribution is spanned by Z1,Z2 where

Z1 = coss
δ
δx1

+ sins
δ
δx2

, Z2 = coss
δ
δx3

+ sins
δ
δx4

.

Then it is easy to see that γ′ , γ′′ , γ′′′ are linearly dependent.

Corollary 3.9. Let F : M1 −→ M2 be a Riemannian submersion with totally umbilical fibers. Then F has pointwise
2-planar horizontal section if the mean curvature vector field of the fibers are parallel along fibers.

Remark 3.10. From [10], we know that if a submanifold has planar normal section at p ∈ En with p as one of its
vertices, then implies that this submanifold is a parallel submanifold. But our Theorem 3.6 shows that if F has planar
horizontal section p ∈ En with p as one of its vertices, then the tensor field T may not be zero. Thus our results are
different from immersion case.

Remark 3.11. One can see that a Riemannian submersion with totally geodesic fibers has P2 − PHS property,
although the converse is not true. Ranjan classified the base manifold of the Riemannian submersion with totally
geodesic fibers from certain spheres of Euclidean spaces onto Riemannian manifolds by using Clifford algebras and
their representations via O’Neill’s tensor field A in [24], see also [17, Section 4 of Chapter 2]. Similar results
have been obtained by other authors in [7] and [25]. This suggests that it may be possible to obtain certain
characterizations of Riemannian submersions with pointwise k-planar horizontal sections by using Clifford algebras
and their representations. This problem will be our next research problem.
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