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Abstract. An important class of spaces was introduced by I.A. Bakhtin (under the name “metric-type”)
and independently rediscovered by S. Czerwik (under the name “b-metric”). Metric-type spaces generalize
“classic” metric spaces by replacing the triangularity axiom with a more general axiom d(x, z) ≤ k · (d(x, y) +
d(y, z)) for all x, y, z ∈ X where k ≥ 1 is a fixed constant. Recently R. Saadadi has introduced the fuzzy
version of “metric-type” spaces. In this paper we consider topological and sequential properties of such
spaces, illustrate them by several examples and prove a certain version of the Baire Category Theorem.

1. Introduction

Metric-type spaces were introduced in 1989 by I.A. Bakhtin [3] as a generalization of metric spaces;
later they were independently rediscovered by S. Czerwik [5, 6] under the name of b-metric spaces. The
class of metric-type spaces is essentially broader than the class of metric spaces and includes such natural
and important for application metric-type structures as ρ(x, y) =| x − y |2 on the real line or ρ( f , 1) =∫ b

a ( f (x) − 1(x))2dx on the class of Lebesgue measurable functions. Metric-type spaces were considered in
several recently published papers, see, e.g. [2, 12, 13].

Basing on K. Menger’s concept of a statistical metric [18], I. Kramosil and J. Michalek [15] introduced
the notion of a fuzzy metric. Actually their fuzzy metrics are in a certain sense equivalent to Menger’s
statistical metrics, but the essential difference is in their definition and interpretation. While in Menger’s
theory “distance” is realized as a certain probability, Kramosil - Michalek’s “distance” is described by a
certain fuzzy notion. A. George and R. Veeramani [10] slightly modified Kramosil-Michalek’s definition of a
fuzzy metric. in order to make fuzzy metrics more appropriate for consideration of the induced topological
structure. Recently R. Saadadi [20] has introduced the fuzzy version of metric-type spaces and considered
some topological properties of such spaces.

Being fully respectful to the “founders” of this concept, I.A. Bakhtin and S. Czerwik, we prefer to use
in this work the term a k-(pseudo)metric space and a fuzzy k-(pseudo)metric space for the following reasons.
The term “a metric type (space)” is cumbrous and not convenient especially when being applied in the
context of fuzzy structures and specified with other adjectives. On the other hand, the term “b-metric” has
no justification for the letter ”b” and says nothing about the constant ”k” laid in the basis of the definition
of such “metrics”.
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The structure of the paper is as follows. In the next section we recall definitions related to fuzzy
metric spaces and give a preliminary information about “ordinary” k-(pseudo)metric spaces. Section 3
contains basic definitions related to fuzzy k-(pseudo)metric spaces as well as a series of i examples of
fuzzy k-(pseudo)metric spaces. Section 4 is devoted to topological properties of fuzzy k-(pseudo)metric
spaces. We introduce two different structures induced by a fuzzy k-(pseudo)metric m: a topology Tm and a
supratopology Sm and consider Hausdorfness, compactness, boundedness and density in such spaces. In
Section 5 we consider sequential properties of fuzzy k-(pseudo)metric spaces, that is properties, which can
be described by means of sequences. We mark out two, natural in our opinion, definitions of convergence
for sequences in fuzzy k-(pseudo)metric spaces: σ- and τ-convergence, and prove that with respect to
σ-convergence a fuzzy k-(pseudo)metric space is sequential. In Section 6 the property of completeness of a
fuzzy k-(pseudo)metric space is defined. A restricted version of the Baire Category Theorem for fuzzy k-
(pseudo)metric spaces is proved here. In the last, 7th Section, we make a brief analysis of the obtained results
and sketch out some directions in which we expect the development of the theory of fuzzy k-pseudometric
spaces.

2. Preliminaries

2.1. Fuzzy Metric Spaces

Let R+ = (0,∞), X be a set and ∗ : [0, 1] × [0, 1]→ [0, 1] be a continuous t-norm, see, e.g. [14, 21].

Definition 2.1. ([10, 11]) A fuzzy metric on a set X is a pair (m, ∗), where m : X×X×R+
→ (0, 1] is a mapping

satisfying the following conditions for all x, y, z ∈ X, s, t ∈ R+:
(1FM) m(x, y, t) > 0;
(2FM) m(x, y, t) = 1⇐⇒ x = y;
(3FM) m(x, y, t) = m(y, x, t);
(4FM) m(x, z, t + s) ≥ m(x, y, t) ∗m(y, z, s);
(5FM) m(x, y,−) : R+

→ (0, 1] is continuous.
The triple (X,m, ∗) is a called a fuzzy metric space. If axiom (2FM) is replaced by a weaker axiom

(2FPM) x = y =⇒ m(x, y, t) = 1
we get definitions of a fuzzy pseudometric and a fuzzy pseudometric space. In its turn, if axiom (4FM) is
replaced by axiom (4FSM)

(4FSM) m(x, z, t) ≥ m(x, y, t) ∗m(y, z, t),
then (m, ∗) is called a strong fuzzy metric.

We write just m and (X,m) if the t-norm ∗ is specified,.

2.2. k-(Pseudo)Metrics and k-(Pseudo)Metric Spaces

Let k ≥ 1 be a constant and X be a set.

Definition 2.2. ([3, 5, 6]) A k-metric on a set X is a mapping d : X × X→ R+
0 = [0,+∞) such that

(1Mk) d(x, y) = 0⇐⇒ x = y;
(2Mk) d(x, y) = d(y, x) ∀x, y ∈ X;
(3Mk) d(x, z) ≤ k · (d(x, y) + d(y, z)) ∀x, y, z ∈ X.

In case the axiom (1Mk) is replaced by a weaker axiom
(1′Mk) x = y =⇒ d(x, y) = 0;

we come to the concept of a k-pseudometric. The corresponding pair (X, d) is called a k-(pseudo)metric
space.

Obviously, we return to the definition of a metric if k = 1, while in case k< 1 the definition makes no
sense.



A. Šostak / Filomat 32:10 (2018), 3567–3580 3569

Remark 2.3. An essential difference between ordinary (pseudo)metric and its k-type version displays itself
when applying it in case of more than tree points. Indeed let (X, ρ) be a metric space and x, y, z,u ∈ X.
Then, applying the triangular inequality, we get ρ(x,u) ≤ ρ(x, y) + ρ(y, z) + ρ(z,u). On the other hand, in
case of a k-(pseudo)metric space (X, d), we get the inequality d(x,u) ≤ kd(x, y) + k2d(y, z) + k2d(z,u). Thus, as
different from an ordinary (pseudo)metric, a k-(pseudo)metric looses the “homogeneity” of the triangular
axiom and has to use also constants, different from the original constant k.

Example 2.4. A series of k-pseudometrics can be obtained from an ordinary pseudometric by the following
construction. Let k ≥ 1 be a fixed constant and let ϕ : R+

0 → R
+
0 be a continuous increasing mapping such

that ϕ(0) = 0 and ϕ(a + b) ≤ k · (ϕ(a) + ϕ(b)) for all a, b ∈ R+. Further, let ρ : X × X→ R+
0 be a pseudometric

on a set X, Then by setting
dρϕ(x, y) = (ϕ ◦ ρ)(x, y) x, y ∈ X

we get a k-pseudometric dρϕ on the set X. Indeed, the validity of axioms (1′Mk) and (2Mk) for dρϕ is
obvious. To verify axiom (3Mk) let x, y, z ∈ X. Then

dρϕ(x, y) = (ϕ ◦ ρ)(x, y) ≤ k · ((ϕ ◦ ρ)(x, z) + (ϕ ◦ ρ)(z, y) = k · (dρϕ(x, z) + dρϕ(z, y)).

Thus dρϕ : X × X → R+
0 is a k-pseudometric. In case ρ is a metric, dρϕ obviously satisfies (1Mk) and hence

is a k-metric.

In particular, one can take ϕ(x) = xp where p > 1. Moreover, as noticed in [20, Remark 1.6], since
(x+ y)p

≤
xp+yp

2 for a given pseudometric d : X×X→ R+
0 the function dp : X×X→ R+

0 is a 2p−1-pseudometric.

Example 2.5. Given Lebesgue measurable functions f , 1 : [a, b]→ R+ define

d( f , 1) =
∫ b

a | f (x) − 1(x) |2 dx.

In this way we get a 2-pseudometric on the set L([a, b]) of all Lebesgue measurable functions on [a, b]. This
2-pseudometric was mentioned in [13].

3. Fuzzy k-Pseudometric Spaces: Definitions and Examples

Let k ≥ 1 be a fixed constant. A fuzzy k-pseudometric on a set X is defined by taking the first three and
the last axioms as they are in Definition 2.1, but changing axiom (4FM) in order to reflect the role of the
constant k.

Definition 3.1. ([20]) A fuzzy k-pseudometric on a set X is a pair (m, ∗) where ∗ is a t-norm and m :
X × X ×R+

→ (0, 1] is a mapping satisfying the following conditions for all x, y, z ∈ X, s, t ∈ R+:
(1FMk) m(x, y, t) > 0;
(2′FMk) m(x, y, t) = 1 =⇒ x = y;
(3FMk) m(x, y, t) = m(y, x, t);
(4FMk) m(x, z, k(t + s)) ≥ m(x, y, t) ∗m(y, z, s);
(5FMk) m(x, y,−) : R+

→ (0, 1] is continuous.
The triple (X,m, ∗) is a called a fuzzy k-pseudometric space. If axiom (2′FMk) is replaced by a stronger
axiom

(2FMk) x = y⇐⇒ m(x, y, t) = 1
we get definitions of a fuzzy k-metric, and a fuzzy k-metric space. If axiom (4FMk) is replaced by axiom
(4FSMk)

(4FSMk) m(x, z, kt) ≥ m(x, y, t) ∗m(y, z, t);
then m is called a strong fuzzy k-(pseudo)metric.
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Remark 3.2. As different from “ordinary” fuzzy (pseudo)metrics, fuzzy
k-(pseudo)metrics need not be non-decreasing on the third argument: we can show only that m(x, y, t) ≤
m(x, y, t′) whenever t′ ≥ kt. Indeed, by taking s = t′

k − t we have m(x, y, t) = m(x, y, t) ∗ m(y, y, s) ≤
m(x, y, k(t + s)) = m(x, y, t′).Note also that to get the inequality m(x, y, t) ≤ m(x, y, t′) in case of a strong fuzzy
k-pseudometric the condition t′ ≥ kt is not sufficient; instead we have to request t′ ≥ 2kt.

Remark 3.3. Let ∗1, ∗2 be continuous t-norms and α ∗1 β ≤ α ∗2 β for all α, β ∈ [0, 1]. If (m, ∗2) is a fuzzy
k-(pseudo)metric on a set X, then (m, ∗1) is a fuzzy k-(pseudo)metric on X, too. In particular, if (m,∧) is a
fuzzy k-(pseudo)metric, then (m, ∗) is a fuzzy k-(pseudo)metric for every continuous t-norm ∗.

We proceed with examples of fuzzy k-pseudometrics.

Example 3.4. Patterned after construction of the standard fuzzy pseudometric induced by a pseudometric
in [10], we present here an analogous construction of a fuzzy k-pseudometric from a k-pseudometric. Let
d : X×X→ R+

0 be a k-pseudometric. Then the mapping md : X×X×R+
→ (0, 1] defined by md(x, y, t) = t

t+d(x,y)
is a fuzzy k-pseudometric for the minimum t-norm and hence for any other continuous t-norm.

The validity of axioms (1FMk), (2′FMk), (3FMk) and (5FMk) is obvious. Hence, to prove this statement,
we have to verify (4FMk), that is to show that

t
t+d(x,y) ∧

s
s+d(y,z) ≤

k(t+s)
k(t+s)+d(x,z) ∀x, y, z ∈ X and ∀s, t > 0.

Since d is a k-pseudometric and hence d(x, z) ≤ k(d(x, y) + d(y, z)), we replace the inequality to be proved by
a stronger inequality

t
t+d(x,y) ∧

s
s+d(x,y) ≤

k(t+s)
k(t+s)+k(d(x,y)+d(y,z)) = t+s

(t+s)+(d(x,y)+d(y,z)) .

Without loss of generality we assume that t
t+d(x,y) ≤

s
s+d(y,z) , and therefore we have to show that

t
t+d(x,y) ≤

t+s
t+s+(d(x,y)+d(y,z))

We prove this inequality straightforward just by noticing that, as it follows from our assumption, t · (y, z) ≤
s · d(x, y).

In case ∗ is the product t-norm, md is also a strong k-metric. Indeed, the requested inequality md(x, y, t) ·
md(y, z, t) ≤ k ·md(x, z, t) follows from the inequality

t
t+a ·

t
t+b ≤ k · t

t+k(a+b)

which obviously holds for any k> 1, a, b ∈ [0,∞) and t > 0.

Example 3.5. Noticing that (s + t)n
≥ sn + tn for all positive integers n ∈N and all t, s > 0, we generalize the

previous example as follows (cf example 2.9 in [10]):
Let d : X × X→ [0,∞) be a k-metric and let α, β ∈ R+ and n ∈N. Then by setting

md(x, y, t) =
αtn

αtn + βd(x, y)
,

we obtain a fuzzy k-metric for the minimum t-norm and hence for any other continuous t-norm.

Example 3.6. Here we describe a scheme allowing to construct different fuzzy k-pseudometrics, in partic-
ular, fuzzy k-pseudometrics with certain prescribed properties.

In case ∗ is the product t-norm this example can be found in [20]
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Let ρ be a pseudometric and let a function ϕ : R+
0 → R

+
0 satisfy properties requested in Example 2.4

with some k > 1. We define a mapping mρϕ : X × X ×R+
→ (0, 1] by setting

mρϕ(x, y, t) =
t

t + (ϕ ◦ ρ)(x, y)
for all x, y ∈ X.

Referring to construction described in Example 2.4, we know that ϕ ◦ ρ is a k-pseudometric on the set X,
and further, referring to Example 3.4 we conclude that mρϕ : X ×X ×R+

→ (0, 1] is a fuzzy k-pseudometric
for the minimum t-norm and hence for any continuous t-norm. In case of the product t-norm, it is also a
strong fuzzy k-pseudometric.

To have a concrete example of a standard fuzzy k-pseudometric which fails to be a fuzzy pseudometric,
we can take any one of the k-pseudometrics dρϕ constructed on a pseudometric space (X, ρ) with the
appropriate choice of a function ϕ : R+

0 → R
+
0 and a constant k.

Example 3.7. Let (X, ‖ · ‖) be a Banach space. Then from the inequality ‖a + b‖2 ≤ 2 · (‖a‖2 + ‖b‖2) we conclude
that by setting d(x, y) = ‖x − y‖2 a 2-metric is obtained that fails to be a metric. We define the mapping
m
‖‖

2 : X × X ×R+
→ [0, 1] by setting

m‖‖(x, y, t) = e
(
−
‖x−y‖2

t

)
∀x, y ∈ X, t > 0

and show that it is a fuzzy 2-metric for the product t-norm ∗ = · and hence also for every weaker t-norm, in
particular, for the Łukasiewicz t-norm.

The validity of axioms (1FMk), (2FMk), (3FMk) and (5FMk) is obvious. Hence, to prove this statement,
we have to verify (4FMk). From the obvious inequality

‖x − z‖2 ≤ 2 ·
(

t+s
t

)
‖x − y‖2 + 2 ·

(
t+s

s

)
‖y − z‖2∀x, y, z ∈ X, s, t > 0,

we obtain
‖x−z‖2
2(t+s) ≤

‖x−y‖2

t +
‖y−z‖2

s ∀x, y, z ∈ X, s, t > 0.

From this inequality we get e−
‖x−z‖2
2(t+s) ≥ e−

‖x−y‖2

t · e−
‖y−z‖2

s and hence

m
‖·‖

2 (x, z, 2(t + s)) ≥ m
‖·‖

2 (x, y, t) ·m
‖·‖

2 (y, z, t).

Example 3.8. Applying the construction from Example 3.4 to the 2-pseudometric defined in Example 2.9
we get a fuzzy k-pseudometric on the set of all Lebesgue measurable functions on the interval [a, b]:

md( f , 1) =
t

t +
∫ b

a ( f (x) − 1(x))2dx

Example 3.9. Here we present a construction allowing to obtain a new strong fuzzy k-metrics from a given
one (cf similar example in case of strong fuzzy metrics, [19]).

Let m : X × X × R+
→ (0, 1] be a strong fuzzy k-metric for the product t-norm. Then the mapping

n : X × X ×R+
→ [0, 1] defined by

n(x, y, t) =
t + m(x, y, t)

t + 1
∀x, y ∈ X, ∀t > 0

is a strong fuzzy k-metric, too. Since the validity of axioms (1FMk), (2FMk), (3FMk), and (5FMk), for
n : X×X→ [0, 1] are ensured by the corresponding axioms for m : X×X×R+

→ (0, 1], we have to establish
only axiom (4FMk), that is the inequality

t + m(x, y, t)
t + 1

·
t + m(y, z, t)

t + 1
≤

kt + m(x, z, kt)
kt + 1

.
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It will follow from the stronger inequality

t + m(x, y, t)
t + 1

·
t + m(y, z, t)

t + 1
≤

t + m(x, y, kt)
t + 1

,

which in its turn can be reduced to the inequality

t ·m(x, y, t) + t ·m(y, z, t) + m(x, y, t) ·m(y, z, t) ≤ t + t ·m(x, z, kt) + m(x, z, kt).

The last inequality can be easily established recalling that m(x, y, t) ·m(y, z, t) ≤ m(x, z, kt) by axiom (4FSMk)
and noticing that m(x, y, t) + m(y, z, t) ≤ 1 + m(x, y, t) ·m(y, z, t).

4. Topological Structure of a Fuzzy k-Pseudometric Space

4.1. Topological Structures Induced by a k-Pseudometric

Although we are mainly interested in the topological structure in fuzzy k-pseudometric spaces, we start
with consideration of topological structure induced by ordinary k-pseudometrics. Actually, the properties
of topologies of fuzzy k-pseudometric spaces and the topologies of ordinary k-pseudometric spaces have
much in common. In particular, the topology of a k-pseudometric space (X, d) and the topology of the
standard fuzzy k-pseudometric space (X,md) coincide. Recall a similar situation in case of a pseudometric
and the corresponding standard fuzzy pseudometric.

Let (X, d) be a k-pseudometric space. In accordance with the standard terminology in the theory of metric
spaces we define the open ball with center a ∈ X and radius r > 0 in (X, d) by Bd(a, ε) = {x ∈ X : d(a, x) < ε}.
Let Bd = {Bd(a, ε) : a ∈ X, ε > 0} be the family of all non-empty balls in (X, d). Taking open balls as the basis
for topological considerations, we have the following two “natural” options.

1. Supratopology Sd

Let Sd be the family of all unions of open balls, that is

Sd = {U ⊆ X : ∃Bd(ai, εi), i ∈ I such that U =
⋃

i∈I
Bd(ai, εi)}.

The family Sd is obviously a suprartopology (see e.g. [17]), that is ∅ ∈ Sd (as the union of an empty
family of balls), X ∈ Sd and the union of any sets fromSd remains inSd. We callSd the supratopology
induced by the k-pseudometric d on X. Sd need not be a topology, since the intersection of even two
elements U1,U2 ∈ Sd need not be in Sd. The problem is that, as the example below shows, given a
ball Bd(a, r) and a point x ∈ Bd(a, r), we cannot guarantee that there exists a ball with the center x and
with a radius ε > 0 such that Bd(x, ε) ⊆ Bd(a, r).

Example 4.1. Let s > 0 be a fixed constant and let X = {a}∪ [b, c] where a is a point and [b, c] is a closed
interval of length s. Further, given t ∈ (0, s), let dt be a point in [b, c] such that dt − b = t (and hence
c − dt = s − t). We introduce a 2-metric d on the set X as follows. The distance on the set [b, c] is the
usual Euclidean metric. We define the distance between a and other points as d(a, b) = s, d(a, c) = 2s,
d(a, dt) = 2s − t. The mapping d : X × X→ [0,∞) thus defined is a 2-metric. Indeed,

• d(a, b) = s < d(a, dt) + d(dt, b) = 2s;

• d(b, dt) ≤ d(b, a) + d(a, dt);

• d(a, dt) = 2s − t ≤ 2(d(dt, b) + d(b, a)) = 2(s + t);

• d(a, c) = 2s ≤ 2(d(a, dt) + d(dt, c)) = 2(2s − t + s − t) = 2(3s − 2t);

• d(dt, c) ≤ d(a, c) + d(a, dt);

• d(a, c) = 2s ≤ 2(d(b, c) + d(a, b)) = 2s;

• d(a, b) ≤ d(a, c) + d(c, b); d(c, b) ≤ d(a, b) + d(c, a).
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Now, let ε > 0, ε < s
2 . Then Bd(a, s + ε) = {a, b} ∪ (ds−ε, c}while for any δ > 0 Bd(b, δ) = (b, dδ) ⊂ [b, c] and

hence Bd(b, δ) * Bd(a, s + ε).

2. Topology Td

We call a set U ⊆ X Td-open if for every x ∈ X there exists ε > 0 such that B(a, ε) ⊆ U. One can easily
notice that U1,U2 ∈ Td =⇒ U1 ∩ U2 ∈ Td and the union of any family of Td-open sets is Td-open.
Thus Td is indeed a topology on X. Obviously each U ∈ Td can be expressed as a union of some open
balls and for this reason it belongs to Sd. Thus, Td ⊆ Sd.On the other hand not every open ball B(a, ε)
needs to be Td-open (see Example 4.1) and hence generally Sd , Td.

Theorem 4.2. Let ρ : X×X→ R+
0 be a pseudometric and ϕ : [0,∞)→ [0,∞) be a function satisfying conditions in

Example 2.4. and let dρϕ = ϕ ◦ ρ : X × X→ R+
0 . Then the families of balls Bρ and Bdρϕ generated by pseudometric

ρ and k-pseudometric dρϕ coincide.

The proof follows from the next series of implications:
x ∈ Bρ(a, r)⇔ ρ(a, x) < r⇔ (ϕ ◦ ρ)(a, x) < ϕ(r)⇔ x ∈ Bdρϕ (a, ϕ(r));
x ∈ Bdρϕ (a, ϕ(r))⇔ dρϕ(a, x) < ϕ(r)⇔ (ϕ ◦ ρ)(a, x) < ϕ(r)⇔ x ∈ Bρ(a, r).

Corollary 4.3. Let ρ be a pseudometric on a set X and dρϕ be the k-pseudometric constructed from ρ as above. Then
Tρ = Tdρϕ = Sdρϕ = Sρ.

Remark 4.4. In case of a general k-pseudometric d on a set X we can prove only that if y ∈ Bd(a, r) and
d(a, y) < r

k , then there exists ε > 0 for which Bd(y, ε) ⊆ Bd(a, r). One of the obstacles preventing to extend
such statements for points which are “further” than r

k from the point a is non-transitivity of the triangle
equality for k-pseudometrics, see Remark 2.3.

4.2. Topological Structures Induced by a Fuzzy k-Pseudometric.
Let (X,m, ∗) be a fuzzy k-pseudometric space. Patterned after the definition of an open ball in a fuzzy

metric space [10, 11], we define an open ball with the center at a point a ∈ X, radius r > 0 and at the level
t > 0 as

B(a, r, t) = {x ∈ X : m(a, x, t) > 1 − r}.

LetBm = {B(a, r, t) : a ∈ X, r ∈ (0, 1), t ∈ R+
} be the family of all open balls. As in case of k-pseudometrics, we

can use the family Bm to define two topological structures on the set X:

1. Supratopology Sm

Let Sm be the family of all unions of open balls, that is

Sm = {U ⊆ X : ∃Bm(ai, ri, ti), i ∈ I such that U =
⋃

i∈I
Bm(ai, ri, ti)}.

The family Sm is obviously a suprartopology. As in the case of Sd, it may fail to be a topology. We
refer to the elements of Sm as Sm-open sets in the fuzzy k-pseudometric space (X,m).

A Digression: Some Remarks on Supratopologies
Since the concept of a supratopology is important for our research, we shall give here a brief infor-
mation about supratopologies. As far as we know, this concept for the first time is considered in the
paper [17] and it was originally provoked by the need to study the families of generalized (in Levin’s
sense [16]) closed and open sets in a topological space. In a supertopological space, one naturally
defines closed sets as complements of open, the closure clA of a set A as the intersection of all closed
sets containing it, its interior A0 as the union of all its open subsets, and all other topological concepts
are verbatim transfered to the case of supratopology. However, one must be cautious: while some
of the properties are equivalent to their topological prototypes, others can essentially differ. For us
it will be important also that a supratopology of a space X can be defined by the closure operator
cl : 2X

→ 2X satisfying the following properties:
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(s1) cl∅ = ∅;
(s2) A ⊂ clA for every A ⊆ X
(s3) cl(A) ∪ cl(B) ⊆ cl(A ∪ B) for all A,B ∈ 2X.
In case (s3) is replaced by a stronger axiom
(s3′) cl(A) ∪ cl(B) ⊆ cl(A ∪ B) for all A,B ∈ 2X

we come to the notion of a pretopological space. In such spaces a certain “rudiment” of the finite
intersection axiom can be perceived. Finally, if we add idempotency axiom to the list (s1) - (s3) (in
this case the axioms (s3) and (s3′) are equivalent)
(s4) (cl(cl(A)) = A for every A ⊆ X.
we come to the classical concept of a topology. The fuzzy counterpart of supratopology first appeared,
as far as we know, in [1].

2. TopologyTm We call a set U ⊆ X Tm-open, if for every x ∈ U there exist r, t > 0 such that Bm(x, r, t) ⊆ U.
One can easily notice that the intersection of twoTm-open sets isTm-open and the union of any family
of Tm-open sets is open and hence Tm is indeed a topology.
By the same arguments as in Subsection 2 we see that Tm ⊆ Sm, but generally Tm , Sm.

Remark 4.5. In [20] the author assumes that every ”open” ball in a (fuzzy) k-metric space is open and hence
the family of all open balls make a base for a topology. However, as we have seen, it is not always the
case. This is the reason why we distinguish between the supratopology and topology induced by (fuzzy)
k-pseudometrics and consequently, our results ”argue” with the corresponding results in [20].

The counterpart of the following result for (ordinary) fuzzy pseudometric spaces is well-known [10,
Remark 3.6].

Proposition 4.6. Let d : X × X→ R+
0 be a k-pseudometric and let md : X × X ×R+

→ (0, 1] be the standard fuzzy
k-pseudometric induced by d, see Example 3.6. Then the families of balls in the k-pseudometric space (X, d) and the
fuzzy k-pseudometric space (X,md) coincide: Bd = Bmd .

Proof. Let Bmd (a, r, t) be an open ball with center a ∈ X, radius r > 0 at the level t ∈ (0,∞). Then x ∈
Bmd (a, r, t)⇐⇒ md(a, x, t) > 1 − r⇐⇒ t

t+d(a,x) ⇐⇒⇐⇒ d(a, x) < tr
1−r =de f ε⇐⇒ x ∈ Bd(a, ε). Thus, every open

ball Bmd (a, r, t) in a fuzzy k-pseudometric space (X,md) is also an open ball Bd(a, ε) in the k-pseudometric
space (X, d). Conversely, from the above series of implications it follows that each open ball Bd(a, ε) coincides
with the open ball Bmd (a, r, t) where r = ε

ε+t . However, this means that Bd = Bmd and hence Td = Tmd .

Corollary 4.7. Corresponding supratopologies and topologies induced by d and md, respectively, coincide: Sd = Smd ;
Td = Tmd .

Theorem 4.8. Supratopology Sm induced by a fuzzy k-metric m is Hausdorff.

Let m : X × X × R+
→ (0, 1] be a fuzzy k-metric, x, y ∈ X, x , y and m(x, y, t) = r. Take some r0 ∈ (r, 1),

and referring to continuity of the t-norm ∗, take s ∈ [r0, 1] such that s ∗ s = r0. To complete the proof we show
that

Bm

(
x, 1 − s, t

2k

)⋂
Bm

(
y, 1 − s, t

2k

)
= ∅.

Indeed, assume that z ∈ Bm

(
x, 1 − s, t

2k

)
∩ Bm

(
y, 1 − s, t

2k

)
. Then m

(
x, z, t

2k

)
> s, m

(
y, z, t

2k

)
> s and hence

m
(
x, z, t

2k

)
∗m

(
z, y, t

2k

)
≥ s ∗ s = r0 > r. On the other hand, from axiom (4FMk), we have

m
(
x, z, t

2k

)
∗m

(
z, y, t

2k

)
≤ m

(
x, y, k

(
t

2k + t
2k

))
= m(x, y, t) = r.

The obtained contradiction completes the proof.
Obviously, supratopologies induced by arbitrary fuzzy k-pseudometrics need not be Hausdorff.

Remark 4.9. The topology Tm induced by a fuzzy k-metric need not be Hausdorff: one cannot guarantee
that for any two points x1 , x2 there exist balls B(x1, r1, t1), B(x2, r2, t2) such that B(x1, r1, t1)∩ B(x2, r2, t2) = ∅.

The above considerations were partly inspired by the preprint [4]



A. Šostak / Filomat 32:10 (2018), 3567–3580 3575

4.3. Subsets of a Fuzzy k-Pseudometric Space
In this section, (X,m) is a k-pseudometric space and (X,Sm) and (X,Tm) the corresponding supratopolog-

ical and topological spaces. We discuss and compare properties of compactness, boundedness and density
in these spaces.

4.3.1. Compactness
Although the structuresSm andTm are constructed from the same ”bricks” - open balls, the compactness

in the both structures may differ, since in the case of Sm all open balls may be used to constitute a cover,
while in Tm there should be only those open balls whose unions form open sets. Hence the compactness
of a set A ⊆ X in Sm guarantees its compactness in Tm. However, we do not know whether the converse is
true.

4.3.2. Boundedness
As different from compactness, boundedness is a metric-type property, so its definition does not depend

upon in which one of the structures Sm or Tm we are working.

Definition 4.10. A set A ⊆ X is called D-bounded if there exist t > 0 and r ∈ (0, 1) such that m(x, y, t) > 1− r
for all x, y ∈ A. A set A ⊆ X is called D-bounded on a level t or Dt-bounded if there exists r ∈ (0, 1) such that
m(x, y, t) > 1 − r for all x, y ∈ A. A set A ⊆ X is called strongly D-bounded if it is D-bounded on every level
t > 0.

Theorem 4.11. An Sm-compact subset of a k-pseudometric space is strongly D-bounded.

Proof. Let A be an Sm-compact subset of a fuzzy k-pseudometric space (X,m). Fix some t > 0, r ∈ (0, 1) and
consider a cover {Bm(z, r, t) : z ∈ A} of the set A. By compactness of A we can find a finite family of points
Z = {z1, . . . , zn} ⊆ A such that A ⊆

⋃n
i=1 Bm(zi, r, t). Let

l = min{m(zi, z j, t) : zi, z j ∈ Z}

Take any x, y ∈ X. Then there exist zp, zq ∈ Z such that x ∈ Bm(zp, r, t) and y ∈ Bm(zq, r, t). Then m(zp, zq, t) ≥ l
and hence

m(x, zp, t) ∗m(zp, zq, t) ∗m(zq, y, t) ≥ (1 − r) ∗ l ∗ (1 − r).

Since (1 − r) ∗ l ∗ (1 − r) < 1, we can choose s ∈ (0, 1) such that (1 − r) ∗ l ∗ (1 − r) > 1 − s and hence
m(x, zp, t) ∗m(zp, zq, t) ∗m(zq, y, t) > 1 − s. On the other hand,

m(x, zp, t) ∗m(zp, zq, t) ∗m(zq, y, t) ≤ m(x, zq, 2kt) ∗m(zq, y, t) ≤ m(x, y, k(2k + 1)t).

Thus m(x, y, k(2k + 1)t) > 1− s and hence A is k(2k+1)t bounded. Since t ∈ (0,∞) can be chosen arbitrary, we
conclude that A is strongly D-bounded.

Remark 4.12. We considered two types of boundedness for subsets of fuzzy metric spaces in [22]. Patterned
after [22], we call a set A in a fuzzy k-metric space (X,m) Bt-bounded if there exist a ∈ X, r ∈ (0, 1) such
that A ⊆ Bm(a, r, t). A set A ⊆ X is called B-bounded if there exist a ∈ X, r ∈ (0, 1) and t > 0 such that A is
Bt-bounded. A set A ⊆ X is called strongly B-bounded if it is Bt-bounded on every level t.

A Dt-bounded set is Bt-bounded. Indeed, let A ⊆ X be Dt-bounded, then there exists r > 0 such that
m(x, y, t) > 1 − r for all x, y ∈ X. Let x0 ∈ A, then m(x0, x, t) > 1 − r for every x ∈ A, that is A ⊆ Bm(x0, r, t).

Conversely, a Bt-bounded set is D2kt-bounded. Indeed, let A be Bt bounded, then A ⊆ Bm(x0, r, t) for
some x0 ∈ A and r > 0. Then m(x0, x, t) > 1 − r for every x ∈ A. Given two points x, y ∈ A, we have

m(x, y, 2kt) ≥ m(x0, x, t) ∗m(x0, y, t) ≥ (1 − r) ∗ (1 − r) =de f 1 − s.

and hence A is D2kt-bounded.
We can summarize the obtained results as follows:

Prefix D comes as an abbreviation for diameter-type
The prefix B comes as the abbreviation of Ball-type
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Corollary 4.13. A set A in a fuzzy k-pseudometric space is B-bounded if and only if it is D-bounded. A set A in a
fuzzy k-pseudometric space is strongly B-bounded if and only if it is strongly D-bounded.

4.3.3. Dense subsets
Concerning density, we again have to distinguish two cases.

Definition 4.14. A subset A of a fuzzy k-pseudometric space (X,m) is called Sm-dense or dense in Sm if
each open ball B(a,r,t) has a nonempty intersection with A:

A ∩ B(a, r, t) , ∅ ∀a ∈ X,∀r ∈ (0, 1), ∀t > 0.

A subset A is called τ-dense if it is dense in topology Tm

From a well-known fact of general topology we conclude that the union of two subsets is Tm-dense if
and only if at least one of them is Tm-dense. Obviously, the union of two Sm-dense subsets is Sm-dense.
However, it is not clear, whether the union of two non-σ-dense subsets can become σ-dense.

5. Sequences in Fuzzy k-Metric Spaces

5.1. Two Types of Convergence in Fuzzy k-Pseudometric Spaces
A certain similarity in the definitions of a fuzzy pseudometric and a fuzzy k-pseudometric space arises

interest in the role of sequences in the context of fuzzy k-pseudometric spaces. In this section we will touch
this problem.

Let (X,m) be a fuzzy k-pseudometrics space. Given a sequence (xn)n∈N and a point x0 ∈ X, we say that
(xn)n∈N σ-converges to x0 and write limσ

n→∞xn = x0 if (xn)n∈N converges in the supratopology Sm: that is for
every open ball B(x0, r, t) there exists n0 ∈ N such that xn ∈ B(x0, r, t) for all n ≥ n0. We say that x0 ∈ X is a
σ-accumulation point of a sequence (xn)n∈N if it is its accumulation point in Sm: that is if each ball B(x0, r, t)
contains infinitely many members of this sequence.

Given a sequence (xn)n∈N and a point x0 ∈ X, we say that (xn)n∈N τ-converges to x0 and write limτ
n→∞xn =

x0 if it converges in Tm: that is for every open set U containing x0 there exists n0 ∈ N such that xn ∈ U for
all n ≥ n0. We say that x0 ∈ X is a τ-accumulation point of a sequence (xn)n∈N if it is accumulation point in
Tm: that is each open neighborhood U of x0 contains infinitely many members of this sequence.

From the definitions one can easily get the following

Theorem 5.1. If limσ
n→∞xn = x0, then limτ

n→∞xn = x0:

Remark 5.2. Similar, as in case of topological structures induced by (fuzzy)-k-pseudometrics, see 4.5, we
have to distinguish between two different types of convergence of sequences. And this is the reason why
some of our results argue with the analogous statements in [20]

Theorem 5.3. If x0 is a σ-accumulation point of a sequence (xn)n∈N, then it is also its τ-accumulation point.

Theorem 5.4. Let (X,m) be a fuzzy k-pseudometric space and let (xn)n∈N be a sequence in this space. Then
limσ

n→∞xn = a if and only if limn→∞m(a, xn, t) = 1 for each t ∈ (0,∞).

Proof. Assume that limσ
n→∞xn = a and take an open ball B(a, r, t)l. Then we can choose n0 ∈ N such that

xn ∈ B(a, r, t) for all n ≥ n0, and hence m(a, xn, t) > 1 − r for all n ≥ n0. Since r and t were taken arbitrary, we
conclude that limn→∞m(a, xn, t) = 1 for every t > 0

Assume now that limσ
n→∞xn , a. Then there exists a ball B(a, r, t) such that xn < B(a, r, t) for infinitely

many n ∈ N. However, this means that m(a, xn, t) ≤ 1 − r for infinitely many n ∈ N, and hence either
limn→∞m(a, xn, t) , 1, or limn→∞m(a, xn, t) does not exist.

From here and applying Theorem 5.1 we get

Corollary 5.5. Let (xn)n∈N be a sequence in a fuzzy k-metric space (X,m). If limn→∞m(a, xn, t) = 1 for a point
a ∈ X, then limσ

n→∞xn = limτ
n→∞xn = a.
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5.2. Sequentiality Properties of Fuzzy k-Metric Spaces

Recall that a topological space (X,T) is called sequential if its subset A is closed whenever it contains
the limits of all convergent sequence in this subset, see [7], [8], [9],. It is well-known and easy to prove,
that each metric space is sequential. In a natural way we extend the concept of sequentially to the case of
supratopological spaces.

Theorem 5.6. Let (X,m) be a fuzzy k-pseudometric space. Then the induced supratopology Sm is sequential.

Proof. Assume that A is a subset of the space (X,m) which is not closed. Then its complement is not open
and hence there exists a point a ∈ X \A such that for every t > 0 and every r ∈ (0, 1) it holds B(a, r, t)∩A , ∅.
We fix t and for every n ∈ N choose a point xn ∈ B(a, 1

n , t) ∩ A. From the construction it is clear that
{xn : n ∈N} ⊆ A and limσ

n→∞xn = a < A.

We guess that the topology Tm need not be sequential. Unfortunately, at present we do not have
corresponding examples.

5.3. Closed Balls and Diffusion of Limits of Convergent Sequences

By a closed ball with center a ∈ X, radius r ∈ (0, 1) at the level t ∈ (0,∞) we call the set B̄(a, r, t) = {x :
m(a, x, t) ≥ 1 − r}. The proof of the following proposition is obvious:

Proposition 5.7. Let (X,m) be a fuzzy k-pseudometric space, a ∈ X and 0 < r′ < r < 1. Then for every t > 0 it holds
B̄(a, r′, t) ⊆ B(a, r, t).

Unfortunately, a closed ball need not be closed neither in supratopology Sm nor in topology Tm. We can
prove only the following related to closedness property of a closed ball:

Proposition 5.8. Let B̄(a, r, t) be a closed ball in a fuzzy k-pseudometric space. Then for every b < B(a, r, t) there
exists ε > 0 such that

B̄
(
a, r,

t
2k

)
∩ B̄

(
b, ε,

t
2k

)
= ∅.

Proof. Let b < B(a, r, t), then m(a, b, t) = s < 1 − r. Since the t-norm ∗ is continuous, there exists ε > 0
such that s < (1 − r) ∗ (1 − ε). We claim that B̄

(
a, r, t

2k

)
∩ B̄

(
a, ε, t

2k

)
= ∅.. Indeed, assume that there exists

x ∈ B̄
(
a, r, t

2k

)
∩ B̄

(
a, ε, t

2k

)
. Then m

(
a, x, t

2k

)
≥ 1 − r and m

(
b, x, t

2k

)
≥ 1 − ε. From here we get

m(a, b, t) ≥ m
(
a, x, t

2k

)
∗m

(
b, x, t

2k

)
≥ (1 − r) ∗ (1 − ε) > s.

The obtained contradiction completes the proof.

Theorem 5.9. Let (X,m) be a fuzzy k-pseudometric space and B̄(a, r, t) be a closed ball. Further, let (xn)n∈N ⊂ B̄(a, r, t)
be aσ-convergence sequence. Then limσ

n→∞xn ∈ B̄(a, r, 2kt). In other words, closed ball B̄(a, r, 2kt) contains theσ-limits
of all σ-convergent sequences from the ball B̄(a, r, t)

Proof. Take any σ-convergent sequence (xn)n∈N contained in B̄(a, r, t) and assume that limσ
n→∞xn = b <

B̄(a, r, 2kt). Then from Proposition 5.8 it follows that there exists ε > 0 such that B̄ (a, r, t)∩ B̄ (a, ε, t) = ∅. Since
limσ

n→∞xn = b, we can find n0 such that xn ∈ B̄(b, ε, t) for all n ≥ n0. However this contradicts the assumption
that (xn)n∈N is contained in B̄(a, r, t).
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6. Completeness of Fuzzy k-Pseudometric Spaces

6.1. Cauchy Sequences in Fuzzy k-Pseudometric Spaces
Definition 6.1. A sequence (xn)n∈N in a fuzzy k-pseudometric space (X,m) is called Cauchy if for each ε > 0
and each t > 0 there exists n0 ∈N such that m(xn, xk, t) > 1 − ε for all n, k ≥ n0.

Proposition 6.2. If a sequence (xn)n∈N in a fuzzy k-pseudometric space (X,m) σ-converges, then it is Cauchy.

Proof. Take t > 0 and ε > 0. Let t′ = t
2k and, by continuity of the t-norm, find δ > 0 such that (1−δ) ∗ (1−δ) ≥

1− ε. Now, let a sequence (xn)n∈N be σ-convergent and let limn→+∞ = a. Applying Theorem 5.4, we can find
n0 ∈N such that m(a, xn, t′) > 1 − δ for all n ≥ n0. In the result, we have

m(xn, xp, t) ≥ m(a, xn, t′) ∗m(a, xp, t′) ≥ (1 − δ) ∗ (1 − δ) > 1 − ε,

and hence the sequence (xn)n∈N is Cauchy.

Definition 6.3. A fuzzy k-pseudometric space is called complete if each its Cauchy sequence σ-converges.

6.2. Fuzzy k-Pseudometric Version of a Baire Theorem
Impossibility to use the intersection axiom for open sets in case of the supratopology Sm on one hand,

and the probable “non-openness” of open balls in case of topology Tm make it doubtful to get a full-bodied
version of the Baire Category theory neither in Sm nor Tm. To overcome this obstacle, we introduce the
concept of a valuably open set and with its help get a certain restricted version of Baire category theorem.

Definition 6.4. Given a fuzzy k-pseudometric space (X,m), an open set U of the space (X,Sm) will be
called valuably open if for every ball B(x0, r, t) having non-empty intersection with U there exists a ball
B(x1, r1, t1) ⊆ B(x0, r, t) ∩U for some x1 ∈ B(x0, r, t), r1 ∈ (0, 1) and t1 > 0.

Theorem 6.5. [Baire theorem for fuzzy k-pseudometrics] Let (X,m) be a complete fuzzy k-pseudometric space.
Then the intersection of a countable family of σ-dense valuably open sets in the corresponding supratopological space
(X,Sm) is open.

Proof Let (X,m) be a complete fuzzy k-pseudometric space and D1 ⊇ D2 ⊇ D3 ⊇ . . .Dn . . . be a sequence
of valuably open σ-dense subsets of this space. Further, let U ⊆ X be an open subset of X. We have to
prove that U ∩ (

⋂
n Dn) , ∅. Referring to Proposition 5.7 we can choose an open ball B0 = B(x0, r0, t0) such

that B̄(x0, r0, t0) ⊆ U. Without loss of generality we may assume that r0 ≤ 1, t0 ≤ 1. Let t′0 = t0
2k and let

B′0 = B(x0, r0, t′0).
Since the set D1 is σ-dense, D1 ∩ B′0 , ∅, and since D1 is valuably open, we can find B(x1, r1, t1) =de f B1

such that B̄(x1, r1, t1) ⊆ D1 ∩ B0. Without loss of generality we assume that r1 ≤
1
2 , t1 ≤

1
2 . Let now t′1 = t1

k
and B′1 = B(x1, r1, t′1)

Since the set D2 is σ-dense, D2 ∩ B′1 , ∅, and D2 is valuably open, we can find B(x2, r2, t2) =de f B2 such
that B̄(x2, r2, t2) ⊆ D2 ∩ B′1. Without loss of generality we assume that r2 ≤

1
3 , t2 ≤

1
3 . Let now t′2 = t2

2k and
B′2 = B(x2, r2, t′2)

We continue such procedure by induction and in the result obtain a sequence of points x0, x1, x2, . . . , xn, . . .
and two sequences of open balls

B0(x0, r0, t0) ⊇ B1(x1, r1, t1) ⊇ B2(x2, r2, t2) ⊇ . . . ⊇ Bn(xn, rn, tn) . . . ,

B0(x0, r0, t′0) ⊇ B1(x1, r1, t′1) ⊇ B2(x2, r2, t′2) ⊇ . . . ⊇ Bn(xn, rn, t′n) . . . ,

where rn ≤
1

n+1 , tn ≤
1

n+1 .
We claim that the constructed sequence x0, x1, x2, . . . , xn, . . . is Cauchy. Indeed let t > 0 and ε > 0 be

given. First, by continuity of the t-norm, find δ ∈ (0, 1) such that (1− δ) ∗ (1− δ) ≥ 1− ε. Further, find n0 ∈N
such that 1

n0
< t′ and 1

n0
< δ. Then for n, k ≥ n0 we have

m(xn, xk, t) ≥ m(xn0 , xn, t) ∗m(xn0 , xk, t) ≥ (1 − δ) ∗ (1 − δ) ≥ 1 − ε ∀n, k ≥ n0.
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Thus the sequence x0, x1, x2, . . . , xn, . . . is Cauchy. Since the fuzzy k-pseudometric space (X,m) is complete
this sequence σ-coverges.

Let limσ
n→∞xn = a. Take some n ∈ N+. Since all elements xk of this sequence for k ≥ n are contained

in the closed ball B̄n = B̄(xn, rn, t′n), referring to Theorem 5.9, we conclude that the limit is contained in
B̄(xn−1, rn−1, tn−1) ∩Dn−1 for all n ≥ 1. Hence U ∩ (

⋂
n Dn) , ∅, that is

⋂
n Dn is σ-dense in X. �

7. Conclusion

In this paper, we considered some topological and sequential properties of k-pseudometric and fuzzy k-
pseudometric spaces. Two structures in such spaces were defined: a supratopology Sm and a topology Tm.
As our results show, the supratopology Sm and the corresponding σ-convergence much better reflect the
properties of the fuzzy k-pseudometric m than the topology Tm and τ-convergence, see e.g. theorems 4.8,
5.4, 5.6, 6.2. So we assume that in future research when dealing with topological and sequential structure of
a fuzzy k-metric space, one should work in the framework of the supratopology and σ-convergence. Below
we indicate some directions where in our opinion, the work should be done.

1. A chalenging problem for the future research is to find sone necessary and/or sufficient conditions
for (fuzzy) k-pseudometrics for which the ”open” balls are indeed open and hence the supratopology
and the topology coincide.

2. As an interesting and important direction for the further research, we anticipate the study of fuzzy
k-pseudometric spaces and its continuous mappings as a category. Are there non-trivial relations
between the category of fuzzy k-pseudometric spaces on one side and the categories of fuzzy metric
saces and of k-pseudometric spaces on the other?

3. It would be interesting to find a criteria for a supratopology or topology, which can be generated by
a (fuzzy) k-pseudometric.

4. We expect the study of fixed point property for mappings of fuzzy k-pseudometric spaces in future.
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