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Abstract. The Randić index R(G) of a graph G is the sum of the weights (dudv)−
1
2 of all edges uv in G,

where du denotes the degree of vertex u. Du and Zhou [On Randić indices of trees, unicyclic graphs, and
bicyclic graphs, Int. J. Quantum Chem. 111 (2011), 2760–2770] determined the n-vertex trees with the third
for n ≥ 7, the fourth for n ≥ 10, the fifth and the sixth for n ≥ 11 maximum Randić indices. Recently, Li et al.
[The Randić indices of trees, unicyclic graphs and bicyclic graphs, Ars Comb. 127 (2016), 409–419] obtained
the n-vertex trees with the seventh, the eighth, the ninth and the tenth for n ≥ 11 maximum Randić indices.
In this paper, we correct the ordering for the Randić indices of trees obtained by Li et al., and characterize
the trees with from the seventh to the sixteenth maximum Randić indices. The obtained extremal trees are
molecular and thereby the obtained ordering also holds for molecular trees.

1. Introduction

Let G be a simple graph with vertex set V(G) and edge set E(G). The vertex degree of v ∈ V(G) is denoted
by dv. A vertex u in G is called pendant if du = 1. The set of all the neighbors of u ∈ V(G) is denoted by
NG(u). For more notations and terminologies not defined here, please refer to [12].

Molecular descriptors play a significant role in mathematical chemistry, especially in the quantitative
structure-property relationship and quantitative structure-activity relationship investigations. Among
them, special place is reserved for the so-called topological indices [3]. The Randić index is one of the most
well-known topological indices with a lot of applications in chemistry.

The Randić index [10] R(G) is defined as

R(G) =
∑

uv∈E(G)

1
√

dudv
.

An n-vertex connected graph is known as tree, unicyclic and bicyclic if it has n+c edges with c = −1, 0, 1,
respectively.
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Trees and unicyclic graphs with the maximum and the second maximum Randić indices, and bicyclic
graphs with the maximum Randić index have been determined by Caporossi et al. [2]. Trees with the third,
the fourth, the fifth and the sixth maximum Randić indices, unicyclic graphs with the third, the fourth and
the fifth maximum Randić indices, and bicyclic graphs with the second, the third, the fourth and the fifth
maximum Randić indices have been determined by Du and Zhou in [4].

Bollobás and Erdös [1] showed that the star Sn is the unique n-vertex connected graph, and thus the
unique n-vertex tree, with the minimum Randić index. Trees with the second, the third and the fourth
minimum Randić indices have been determined by Zhao and Li [13]. Unicyclic and bicyclic graphs with
the minimum Randić indices have been obtained in [6, 11], respectively. Trees with the fifth minimum
Randić index, unicyclic graphs with the second, the third and the fourth minimum Randić indices, bicyclic
graphs with the second minimum Randić index have been determined by Du and Zhou [4].

A connected graph with maximum degree at most four is called a chemical graph. Chemical trees and
chemical unicyclic graphs with extremal Randić indices have been discussed in [5, 7, 8].

Recently, Li et al. [9] determined the n-vertex trees with the seventh, the eighth, the ninth and the tenth
for n ≥ 11 maximum Randić indices. In this paper, we determine all the trees with from the seventh to the
sixteenth maximum Randić indices, and consequently correct the ordering reported by Li et al. [9].

2. Preliminaries

A pendant edge is an edge incident with a pendant vertex. A path u1u2 . . . ur in a graph G is said to be a
pendant path at u1 if du1 ≥ 3, dui = 2 for i = 2, . . . , r − 1 and dur = 1.

For an n-vertex connected graph G, it was shown in [2] that

R(G) =
n
2
−

1
2

f (G), (1)

where

f (G) =
∑

uv∈E(G)

(
1
√

du
−

1
√

dv

)2

.

Thus for fixed n, R(G) is decreasing on f (G). We will use this fact to determine the trees with large Randić
indices.

First of all, Caporossi et al. [2] determined the trees with the maximum and the second maximum Randić
indices.

Theorem A. [2] Among the n-vertex trees,

(i) for n ≥ 4, the path Pn is the unique tree with the maximum Randić index, which is equal to n−3
2 +

√
2,

(ii) for n ≥ 7, the trees with a single vertex of maximum degree three, adjacent to three vertices of degree two are
the unique trees with the second maximum Randić index, which is equal to n−7

2 + 3
√

6
+ 3
√

2
.

Subsequently, Du and Zhou [4] extended the ordering of Randić indices of trees to the first six maximum.

Theorem B. [4] Among the n-vertex trees,

(i) for n ≥ 7, the trees with a single vertex of maximum degree three, adjacent to one vertex of degree one and
two vertices of degree two are the unique trees with the third maximum Randić index, which is equal to
n−6

2 + 2
√

6
+ 1
√

3
+
√

2,

(ii) for n ≥ 10, the trees with exactly two adjacent vertices of maximum degree three, each adjacent to two vertices
of degree two are the unique trees with the fourth maximum Randić index, which is equal to n−10

2 + 4
√

6
+ 4
√

2
+ 1

3 ,

(iii) for n ≥ 11, the trees with exactly two nonadjacent vertices of maximum degree three, each adjacent to three
vertices of degree two are the unique trees with the fifth maximum Randić index, which is equal to n−11

2 + 4
√

2
+
√

6,
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(iv) for n ≥ 11, the tree with a single vertex of maximum degree three, adjacent to two vertices of degree one
and one vertex of degree two is the unique tree with the sixth maximum Randić index, which is equal to
n−5

2 + 1
√

6
+ 2
√

3
+ 1
√

2
.

Recently, Li et al. [9] reported the trees with the seventh, the eighth, the ninth and the tenth maximum
Randić indices.

Theorem C. [9] Among the n-vertex trees,
(i) for n ≥ 11, the trees with exactly two adjacent vertices of maximum degree three, one is adjacent to two vertices

of degree two and the other is adjacent to one vertex of degree two and one vertex of degree one are the unique
trees with the seventh maximum Randić index, which is equal to n−9

2 + 3
√

6
+ 1
√

3
+ 3
√

2
+ 1

3 ,
(ii) for n ≥ 11, the trees with no vertex of degree three and exactly one vertex of maximum degree four, which is

adjacent to four vertices of degree two are the unique trees with the eighth maximum Randić index, which is
equal to n−9

2 + 6
√

2
,

(iii) for n ≥ 11, the trees with exactly two nonadjacent vertices of maximum degree three, one is adjacent to three
vertices of degree two and the other is adjacent to two vertices of degree two and one vertex of degree one are the
unique trees with the ninth maximum Randić index, which is equal to n−10

2 + 5
√

6
+ 1
√

3
+ 3
√

2
,

(iv) for n ≥ 11, the trees with exactly two adjacent vertices of maximum degree three, one is adjacent to two vertices
of degree two and the other is adjacent to two vertices of degree one are the unique trees with the tenth maximum
Randić index, which is equal to n−8

2 + 2
√

6
+ 2
√

3
+ 2
√

2
+ 1

3 .

3. Main results

3.1. Corrected version of Theorem C
In the following, we will present two classes of trees for which the ordering of Theorem C do not work,

i.e., Theorem C by Li et al. [9] is not true.
Let G be an n-vertex tree with n ≥ 14. Suppose that there are exactly three vertices of maximum degree

3 in G.
If there are exactly two pairs of adjacent vertices both of maximum degree three in G, and every pendant

path of G is of length at least two, then

R(G) =
n − 13

2
+

5
√

6
+

5
√

2
+

2
3
.

It is easy to check that this Randić index lies between the seventh maximum and the eighth maximum
Randić indices as claimed in Theorem C, i.e.,

n − 9
2

+
3
√

6
+

1
√

3
+

3
√

2
+

1
3
>

n − 13
2

+
5
√

6
+

5
√

2
+

2
3
>

n − 9
2

+
6
√

2
.

If there is exactly one pair of adjacent vertices both of maximum degree three in G, and every pendant
path of G is of length at least two, then

R(G) =
n − 14

2
+

7
√

6
+

5
√

2
+

1
3
.

It is easy to check that this Randić index lies between the ninth maximum and the tenth maximum Randić
indices as claimed in Theorem C, i.e.,

n − 10
2

+
5
√

6
+

1
√

3
+

3
√

2
>

n − 14
2

+
7
√

6
+

5
√

2
+

1
3
>

n − 8
2

+
2
√

6
+

2
√

3
+

2
√

2
+

1
3
.

So in the following, we would ignore the ordering as described in Theorem C, and determine from the
seventh to the sixteenth maximum Randić indices, which not only extends the orderings in Theorems B
and C, but also corrects the ordering in Theorem C.
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3.2. Results on extremum Randić indices

We now present our main theorem.

Theorem 3.1. Among the set of n-vertex trees,

(i) for n ≥ 11, the trees with exactly two adjacent vertices of maximum degree three, one is adjacent to two vertices
of degree two, and the other is adjacent to one vertex of degree two and one vertex of degree one, are the unique
trees with the seventh maximum Randić index, which is equal to n−9

2 + 3
√

6
+ 1
√

3
+ 3
√

2
+ 1

3 ,

(ii) for n ≥ 13, the trees with exactly three vertices of maximum degree three, say u, v,w, where both u and v, and
v and w are adjacent, each of u,w is adjacent to two vertices of degree two, and v is adjacent to one vertex of
degree two, are the unique trees with the eighth maximum Randić index, which is equal to n−13

2 + 5
√

6
+ 5
√

2
+ 2

3 ,

(iii) for n ≥ 13, the trees with a single vertex of maximum degree four, adjacent to four vertices of degree two, and
without vertices of degree three, are the unique trees with the ninth maximum Randić index, which is equal to
n−9

2 + 6
√

2
,

(iv) for n ≥ 13, the trees with exactly two nonadjacent vertices of maximum degree three, one is adjacent to three
vertices of degree two, and the other is adjacent to two vertices of degree two and one vertex of degree one, are
the unique trees with the tenth maximum Randić index, which is equal to n−10

2 + 5
√

6
+ 1
√

3
+ 3
√

2
,

(v) for n ≥ 14, the trees with exactly three vertices of maximum degree three, say u, v,w, where u and v are not
adjacent, u and w are not adjacent, and v and w are adjacent, u is adjacent to three vertices of degree two, each
of v,w is adjacent to two vertices of degree two, are the unique trees with the eleventh Randić index, which is
equal to n−14

2 + 7
√

6
+ 5
√

2
+ 1

3 ,

(vi) for n ≥ 14, the trees with exactly two adjacent vertices of maximum degree three, each adjacent to one vertex
of degree two and one vertex of degree one, or one is adjacent to two vertices of degree two, and the other is
adjacent to two vertices of degree one, are the unique trees with the twelfth maximum Randić index, which is
equal to n−8

2 + 2
√

6
+ 2
√

3
+ 2
√

2
+ 1

3 ,

(vii) for n ≥ 15, the trees with exactly three vertices of maximum degree three, say u, v,w, where u, v,w are pairwise
nonadjacent, and each of u, v,w is adjacent to three vertices of degree two, are the unique trees with the thirteenth
maximum Randić index, which is equal to n−15

2 + 9
√

6
+ 5
√

2
,

(viii) for n ≥ 15, the trees with exactly three vertices of maximum degree three, say u, v,w, where both u and v, and
v and w are adjacent, each of u,w is adjacent to two vertices of degree two, and v is adjacent to one vertex of
degree one, or one of u,w is adjacent to two vertices of degree two, the other is adjacent to one vertex of degree
two and one vertex of degree one, and v is adjacent to one vertex of degree two, are the unique trees with the
fourteenth maximum Randić index, which is equal to n−12

2 + 4
√

6
+ 1
√

3
+ 4
√

2
+ 2

3 ,

(ix) for n ≥ 15, the trees with exactly two nonadjacent vertices of maximum degree three, each adjacent to two
vertices of degree two and one vertex of degree one, or one is adjacent to three vertices of degree two, and the
other is adjacent to one vertex of degree two and two vertices of degree one, are the unique trees with the fifteenth
maximum Randić index, which is equal to n−9

2 + 4
√

6
+ 2
√

3
+ 2
√

2
,

(x) for n ≥ 15, the trees with a single vertex u of degree three and a single vertex v of maximum degree four, where
u and v are adjacent, u is adjacent to two vertices of degree two, and v is adjacent to three vertices of degree two,
are the unique trees with the sixteenth maximum Randić index, which is equal to n−12

2 + 2
√

6
+ 1

2
√

3
+ 13

2
√

2
.

Proof. Let G be an n-vertex tree different from the trees mentioned in Theorems A and B with the first six
maximum Randić indices, where n ≥ 11.

Obviously, there are at least four pendant paths in G. Otherwise, G is the path if G has no pendant path
(i.e., the graph described in Theorem A (i)), and G is a graph of the forms described in Theorem A (ii),
Theorem B (i) or (iv) if G has exactly three pendant paths.

Denote by k the number of pendant paths of length one in G.
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Note that every pendant path of length one contributes to f (G) is at least
(
1 − 1

√
3

)2
, while every pendant

path of length at least two contributes to f (G) is at least
(
1 − 1

√
2

)2
+

(
1
√

2
−

1
√

3

)2
. From(

1 −
1
√

3

)2

>

(
1 −

1
√

2

)2

+

(
1
√

2
−

1
√

3

)2

,

we may conclude that every pendant path contributes to f (G) is at least
(
1 − 1

√
2

)2
+

(
1
√

2
−

1
√

3

)2
.

If there are at least six pendant paths in G, then

f (G) ≥ 6

(1 − 1
√

2

)2

+

(
1
√

2
−

1
√

3

)2 > 12 −
4
√

6
−

1
√

3
−

13
√

2
.

Case 1. Suppose that there are exactly four pendant paths in G. Then we consider two subcases.
Subcase 1.1. There are exactly two vertices of maximum degree three in G, and all other vertices are of

degrees one or two.
Subcase 1.2. There is a single vertex of maximum degree four in G, and all other vertices are of degrees

one or two.
Suppose that Subcase 1.1 holds. Denote by u and v the two vertices of maximum degree three in G.
Note that G must have at least one pendant path of length one, otherwise, G would be a tree of the forms

described in Theorem B (ii) or (iii).
First suppose that there is exactly one pendant path of length one in G. If u and v are adjacent in G, then

we have

f (G) = 3

(1 − 1
√

2

)2

+

(
1
√

2
−

1
√

3

)2 +

(
1 −

1
√

3

)2

.

If u and v are nonadjacent in G, then we have

f (G) = 3

(1 − 1
√

2

)2

+

(
1
√

2
−

1
√

3

)2 +

(
1 −

1
√

3

)2

+ 2
(

1
√

2
−

1
√

3

)2

.

Next suppose that there are exactly two pendant paths of length one in G. If u and v are adjacent in G,
then we have

f (G) = 2

(1 − 1
√

2

)2

+

(
1
√

2
−

1
√

3

)2 + 2
(
1 −

1
√

3

)2

.

If u and v are nonadjacent in G, then we have

f (G) = 2

(1 − 1
√

2

)2

+

(
1
√

2
−

1
√

3

)2 + 2
(
1 −

1
√

3

)2

+ 2
(

1
√

2
−

1
√

3

)2

.

If there are exactly three or four pendant paths of length one in G, i.e., k = 3, 4, then

f (G) ≥ (4 − k)

(1 − 1
√

2

)2

+

(
1
√

2
−

1
√

3

)2 + k
(
1 −

1
√

3

)2

=

(
2
√

6
−

2
√

3
+

2
√

2
− 1

)
k +

28
3
−

8
√

6
−

8
√

2

≥

(
2
√

6
−

2
√

3
+

2
√

2
− 1

)
· 3 +

28
3
−

8
√

6
−

8
√

2

> 12 −
4
√

6
−

1
√

3
−

13
√

2
.
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Now suppose that Subcase 1.2 holds. If k = 0, then

f (G) = 4

(1 − 1
√

2

)2

+

(
1
√

2
−

1
√

4

)2 .
If k ≥ 1, then

f (G) = (4 − k)

(1 − 1
√

2

)2

+

(
1
√

2
−

1
√

4

)2 + k
(
1 −

1
√

4

)2

=

(
3
√

2
− 2

)
k + 9 −

12
√

2

≥

(
3
√

2
− 2

)
· 1 + 9 −

12
√

2

> 12 −
4
√

6
−

1
√

3
−

13
√

2
.

Case 2. Suppose that there are exactly five pendant paths in G. Then we consider three subcases.
Subcase 2.1. There are exactly three vertices of maximum degree three, and all other vertices are of

degrees one or two.
Subcase 2.2. There is exactly one vertex of degree three, one vertex of maximum degree four, and all

other vertices are of degrees one or two.
Subcase 2.3. There is a single vertex of maximum degree five in G, and all other vertices are of degrees

one or two.
Suppose that Subcase 2.1 holds. Note that there are at most two pairs of adjacent vertices both of

maximum degree three.
First suppose that there are exactly two pairs of adjacent vertices both of maximum degree three. If

k = 0, i.e., the five pendant paths of G are all of length at least two, then

f (G) = 5

(1 − 1
√

2

)2

+

(
1
√

2
−

1
√

3

)2 .
If k = 1, i.e., there is exactly one pendant path of length one in G, then

f (G) = 4

(1 − 1
√

2

)2

+

(
1
√

2
−

1
√

3

)2 +

(
1 −

1
√

3

)2

.

If k ≥ 2, then

f (G) = (5 − k)

(1 − 1
√

2

)2

+

(
1
√

2
−

1
√

3

)2 + k
(
1 −

1
√

3

)2

=

(
2
√

6
−

2
√

3
+

2
√

2
− 1

)
k +

35
3
−

10
√

6
−

10
√

2

≥

(
2
√

6
−

2
√

3
+

2
√

2
− 1

)
· 2 +

35
3
−

10
√

6
−

10
√

2

> 12 −
4
√

6
−

1
√

3
−

13
√

2
.

Next suppose that there is exactly one pair of adjacent vertices both of maximum degree three. If k = 0,
i.e., the five pendant paths of G are all of length at least two, then

f (G) = 5

(1 − 1
√

2

)2

+

(
1
√

2
−

1
√

3

)2 + 2
(

1
√

2
−

1
√

3

)2

.
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If k ≥ 1, then

f (G) = (5 − k)

(1 − 1
√

2

)2

+

(
1
√

2
−

1
√

3

)2 + k
(
1 −

1
√

3

)2

+2
(

1
√

2
−

1
√

3

)2

=

(
2
√

6
−

2
√

3
+

2
√

2
− 1

)
k +

40
3
−

14
√

6
−

10
√

2

≥

(
2
√

6
−

2
√

3
+

2
√

2
− 1

)
· 1 +

40
3
−

14
√

6
−

10
√

2

> 12 −
4
√

6
−

1
√

3
−

13
√

2
.

Now suppose that any two vertices of maximum degree three are not adjacent. If k = 0, i.e., the five
pendant paths in G are all of length at least two, then

f (G) = 5

(1 − 1
√

2

)2

+

(
1
√

2
−

1
√

3

)2 + 4
(

1
√

2
−

1
√

3

)2

.

If k ≥ 1, then

f (G) = (5 − k)

(1 − 1
√

2

)2

+

(
1
√

2
−

1
√

3

)2 + k
(
1 −

1
√

3

)2

+4
(

1
√

2
−

1
√

3

)2

=

(
2
√

6
−

2
√

3
+

2
√

2
− 1

)
k + 15 −

18
√

6
−

10
√

2

≥

(
2
√

6
−

2
√

3
+

2
√

2
− 1

)
· 1 + 15 −

18
√

6
−

10
√

2

> 12 −
4
√

6
−

1
√

3
−

13
√

2
.

Suppose that Subcase 2.2 holds. Denote by u the unique vertex in G of degree three, and k1 the number
of pendant paths of length one attached to u, and denote by v the unique vertex in G of degree four, and k2
the number of pendant paths of length one attached to v. Clearly, 0 ≤ k1 ≤ 2 and 0 ≤ k2 ≤ 3.

Suppose that k1 = k2 = 0, i.e., the five pendant paths in G are all of length at least two. If u and v are
adjacent, then

f (G) = 2

(1 − 1
√

2

)2

+

(
1
√

2
−

1
√

3

)2 + 3

(1 − 1
√

2

)2

+

(
1
√

2
−

1
√

4

)2
+

(
1
√

3
−

1
√

4

)2

.
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If u and v are nonadjacent, then

f (G) = 2

(1 − 1
√

2

)2

+

(
1
√

2
−

1
√

3

)2 + 3

(1 − 1
√

2

)2

+

(
1
√

2
−

1
√

4

)2
+

(
1
√

2
−

1
√

3

)2

+

(
1
√

2
−

1
√

4

)2

> 12 −
4
√

6
−

1
√

3
−

13
√

2
.

Suppose that k1 ≥ 1 or k2 ≥ 1. Then

f (G) > (2 − k1)

(1 − 1
√

2

)2

+

(
1
√

2
−

1
√

3

)2 + k1

(
1 −

1
√

3

)2

+(3 − k2)

(1 − 1
√

2

)2

+

(
1
√

2
−

1
√

4

)2 + k2

(
1 −

1
√

4

)2

=

[(
2
√

6
−

2
√

3
+

2
√

2
− 1

)
k1 +

14
3
−

4
√

6
−

4
√

2

]
+

[(
3
√

2
− 2

)
k2 +

27
4
−

9
√

2

]
.

In particular, when k1 ≥ 1, we have

f (G) >

[(
2
√

6
−

2
√

3
+

2
√

2
− 1

)
· 1 +

14
3
−

4
√

6
−

4
√

2

]
+

(
27
4
−

9
√

2

)
> 12 −

4
√

6
−

1
√

3
−

13
√

2
,

and when k2 ≥ 1, we have

f (G) >

(
14
3
−

4
√

6
−

4
√

2

)
+

[(
3
√

2
− 2

)
· 1 +

27
4
−

9
√

2

]
> 12 −

4
√

6
−

1
√

3
−

13
√

2
.

Suppose that Subcase 2.3 holds. Then

f (G) = (5 − k)

(1 − 1
√

2

)2

+

(
1
√

2
−

1
√

5

)2 + k
(
1 −

1
√

5

)2

=

(
2
√

10
−

2
√

5
+

2
√

2
− 1

)
k + 11 −

10
√

10
−

10
√

2

≥ 11 −
10
√

10
−

10
√

2

> 12 −
4
√

6
−

1
√

3
−

13
√

2
.
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Finally, it is easy to check that

3

(1 − 1
√

2

)2

+

(
1
√

2
−

1
√

3

)2 +

(
1 −

1
√

3

)2

< 5

(1 − 1
√

2

)2

+

(
1
√

2
−

1
√

3

)2
< 4

(1 − 1
√

2

)2

+

(
1
√

2
−

1
√

4

)2
< 3

(1 − 1
√

2

)2

+

(
1
√

2
−

1
√

3

)2 +

(
1 −

1
√

3

)2

+ 2
(

1
√

2
−

1
√

3

)2

< 5

(1 − 1
√

2

)2

+

(
1
√

2
−

1
√

3

)2 + 2
(

1
√

2
−

1
√

3

)2

< 2

(1 − 1
√

2

)2

+

(
1
√

2
−

1
√

3

)2 + 2
(
1 −

1
√

3

)2

< 5

(1 − 1
√

2

)2

+

(
1
√

2
−

1
√

3

)2 + 4
(

1
√

2
−

1
√

3

)2

< 4

(1 − 1
√

2

)2

+

(
1
√

2
−

1
√

3

)2 +

(
1 −

1
√

3

)2

< 2

(1 − 1
√

2

)2

+

(
1
√

2
−

1
√

3

)2 + 2
(
1 −

1
√

3

)2

+ 2
(

1
√

2
−

1
√

3

)2

< 2

(1 − 1
√

2

)2

+

(
1
√

2
−

1
√

3

)2 + 3

(1 − 1
√

2

)2

+

(
1
√

2
−

1
√

4

)2
+

(
1
√

3
−

1
√

4

)2

= 12 −
4
√

6
−

1
√

3
−

13
√

2
.

From the above arguments, if f (G) is not equal to one of the above ten values, then

f (G) > 12 −
4
√

6
−

1
√

3
−

13
√

2
.

Now the result follows from Eq. (1) easily.

4. Conclusions

In this paper, we extend the existing ordering for the Randić indices of trees, and determine all the
trees with from the seventh to the sixteen maximum Randić indices. In particular, in our proof, we mainly
investigate the Randić indices of trees with exactly four or five pendant paths.
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