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Abstract. In this paper, we get the generating functions of the q-Chebyshev polynomials using ηz op-
erator, which is ηz

(
f (z)

)
= f (qz) for any given function f (z). Also considering explicit formulas of the

q-Chebyshev polynomials, we give new generalizations of the q-Chebyshev polynomials called the incom-
plete q-Chebyshev polynomials of the first and second kind. We obtain recurrence relations and several
properties of these polynomials. We show that there are connections between the incomplete q-Chebyshev
polynomials and the some well-known polynomials.

1. Introduction

The Chebyshev polynomials are of great importance in many area of mathematics, particularly approx-
imation theory. The Chebyshev polynomials of the second kind can be expressed by the formula

Un(x) = 2xUn−1(x) −Un−2(x) n ≥ 2

with initial conditions U0 = 1, U1(x) = 2x and the Chebyshev polynomials of the first kind can be defined
as

Tn(x) = 2xTn−1(x) − Tn−2(x) n ≥ 2

with initial conditions T0(x) = 1, T1(x) = x in [13].
The well-known Fibonacci and Lucas sequences are defined by the recurrence relations

Fn+1 = Fn + Fn−1 n ≥ 1

Ln+1 = Ln + Ln−1 n ≥ 1

with initial conditions F0 = 0, F1 = 1 and L0 = 2, L1 = 1, respectively. In [10], Filipponi introduced a
generalization of the Fibonacci numbers. Accordingly, the incomplete Fibonacci and Lucas numbers are
determined by:

Fn(k) =

k∑
j=0

(
n − 1 − j

j

)
, 0 ≤ k ≤

⌊
n−1

2

⌋
(1)
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and

Ln(k) =

k∑
j=0

n
n − j

(
n − j

j

)
, 0 ≤ k ≤

⌊
n
2

⌋
, (2)

where n ∈ N. Note that Fn(
⌊

n−1
2

⌋
) = Fn and Ln(

⌊
n
2

⌋
) = Ln. In [16], the generating functions of incomplete

Fibonacci and Lucas polynomials were given by Pintér and Srivastava. For more results on the incomplete
Fibonacci numbers, the readers may refer to [6–9, 17, 20, 21].

We need q-integer and q-binomial coefficient. There are several equivalent definition and notation for
the q-binomial coefficients [2, 11, 12, 15, 19]. Let q ∈ Cwith 0 <

∣∣∣q∣∣∣ < 1 as an indeterminate and nonnegative
integer n. The q-integer of the number n is defined by

[n]q :=
1 − qn

1 − q

with [0]q = 0. The Gaussian or q−binomial coefficients are defined by[n
k

]
q

:=
(q; q)n

(q; q)n−k(q; q)k
, 0 ≤ k ≤ n

with
[n

k
]

q = 0 for n < k, where (x; q)n is the q−shifted factorial, that is, (x; q)0 = 1,

(
x; q

)
n =

n−1∏
i=0

(
1 − qix

)
.

The q-binomial coefficient satisfies the recurrence relations and properties:[n + 1
k

]
q

= qk
[n

k

]
q

+
[ n
k − 1

]
q

(3)[n + 1
k

]
q

=
[n

k

]
q

+ qn−k+1
[ n
k − 1

]
q

(4)

[n]q

[n − k]q

[n − k
k

]
q

= qk
[n − k

k

]
q

+
[n − k − 1

k − 1

]
q

(5)

qk
[n]q

[n − k]q

[n − k
k

]
q

= qk
[n − k

k

]
q

+ qn
[n − k − 1

k − 1

]
q
. (6)

The q-analogues of the Fibonacci polynomials are studied by Carlitz in [3]. Also, a new q-analogue of the
Fibonacci polynomials is defined by Cigler and obtain some of its properties in [5]. In [14], Pan study some
arithmetic properties of the q-Fibonacci numbers and the q-Pell numbers. Cigler defined the q-analogues of
the Chebyshev polynomials and study properties of these polynomials in [4].

In this paper, we derive generating functions of the q-Chebyshev polynomials of the first and second
kind. More generally, we define the incomplete q-Chebyshev polynomials of the first and second kind.
We get recurrence relations and several properties of these polynomials. We show that there are the
relationships between q-Chebyshev polynomials and the incomplete q-Chebyshev polynomials.

2. q-Chebyshev Polynomials

Definition 2.1. The q-Chebyshev polynomials of the second kind are defined by

Un(x, s, q) = (1 + qn)xUn−1(x, s, q) + qn−1sUn−2(x, s, q) n ≥ 2 (7)

with initial conditionsU0(x, s, q) = 1 andU1(x, s, q) = (1 + q)x in [4].
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Definition 2.2. The q-Chebyshev polynomials of the first kind are defined by

Tn(x, s, q) = (1 + qn−1)xTn−1(x, s, q) + qn−1sTn−2(x, s, q) n ≥ 2 (8)

with initial conditions T0(x, s, q) = 1 and T1(x, s, q) = x in [4].

It is clear that Un(x,−1, 1) = Un(x) and Tn(x,−1, 1) = Tn(x). The q-Chebyshev polynomials of the second
kind is determined as the combinatorial sum

Un(x, s, q) =

b
n
2 c∑

j=0

q j2
[n − j

j

]
q

(−q; q)n− j

(−q; q) j
s jxn−2 j, n ≥ 0 (9)

and the q-Chebyshev polynomials of the first kind is determined as

Tn(x, s, q) =

b
n
2 c∑

j=0

q j2
[n]q[

n − j
]

q

[n − j
j

]
q

(−q; q)n− j−1

(−q; q) j
s jxn−2 j, n > 0 (10)

with T0(x, s, q) = 1 in [4].

2.1. Generating Functions of q-Chebyshev Polynomials
Andrews [1] obtain the generating function for Schur’s polynomials, which is defined by Sn(q) =

Sn−1(q)− qn−2Sn−2(q) for n > 1 with intial conditions S0(q) = 0 and S1(q) = 1. The generating funtions of Sn(q)
is

∞∑
n=0

Sn(q)xn =
x

1 − x − x2 ηz
(11)

where is ηz is an operator on functions of z defined by ηz
(

f (z)
)

= f (qz) in [1]. We give the following theorems
for generating functions of q-Chebyshev polynomials of the second and first kind with an operator ηz.

Theorem 2.3. The generating function of the q-Chebyshev polynomials of the second kind is

G(z) =
1

1 − zx − (xqz + sqz2) ηz
. (12)

Proof. Let G(z) =
∑
∞

n=0 Unzn. Thus we write

(
1 − xz −

(
xqz + sqz2

)
ηz

)
G(z) =

∞∑
n=0

Unzn
− x

∞∑
n=0

Unzn+1
− x

∞∑
n=0

Unqn+1zn+1
− s

∞∑
n=0

Unqn+1zn+2

=U0 + U1z − x
(
1 + q

)
U0z +

∞∑
n=2

(
Un − x

(
1 + qn)

Un−1 − sUn−2qn−1
)

zn.

Therefore we have from Eq. (7) and U0 = 1, U1 = (1 + q)x, we get(
1 − xz −

(
xqz + sqz2

)
ηz

)
G(z) = 1.

Theorem 2.4. The generating function of the q-Chebyshev polynomials of the first kind is

S(z) =
1 − xz

1 − xz − (xz − sqz2) ηz
. (13)
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Proof. Let S(z) =
∑
∞

n=0 Tnzn. Then(
1 − xz −

(
xz − sqz2

)
ηz

)
S(z) =

∞∑
n=0

Tnzn
− x

∞∑
n=1

Tn−1zn
− x

∞∑
n=1

Tn−1 qn−1zn
− s

∞∑
n=2

Tn−2 qn−1zn

= T0 + T1z − 2xT0 z +

∞∑
n=2

(
Tn − x

(
1 + qn−1

)
Tn−1 − sqn−1

Tn−2

)
zn,

using Eq. (8) and T0 = 1 ve T1 = x, we conclude that

S(z) − xzS(z) − xz ηzS(z) − sqz2 ηzS(z) = 1 − xz,

finally we obtain

S(z) =
1 − xz

1 − xz − (xz − sqz2) ηz
. (14)

3. Incomplete q-Chebyshev Polynomials

In this section, we define the incomplete q-Chebyshev polynomials of the first and second kind. We give
several properties for these polynomials.

Definition 3.1. For n is a nonnegative integer, the incomplete q-Chebyshev polynomials of the second kind are defined
as

U
k
n(x, s, q) =

k∑
j=0

q j2
[n − j

j

]
q

(−q; q)n− j

(−q; q) j
s jxn−2 j 0 ≤ k ≤

⌊
n
2

⌋
. (15)

When k =
⌊

n
2

⌋
in (15), Uk

n(x, s, q) = Un(x, s, q), we get the q-Chebyshev polynomials of the second kind
in [4].

Definition 3.2. For n is a nonnegative integer, the incomplete q-Chebyshev polynomials of the first kind are defined
by

T
k
n (x, s, q) =

k∑
j=0

q j2
[n]q[

n − j
]

q

[n − j
j

]
q

(−q; q)n− j−1

(−q; q) j
s jxn−2 j 0 ≤ k ≤

⌊
n
2

⌋
. (16)

Theorem 3.3. The incomplete q-Chebyshev Polynomials of the second kind satisfy

U
k+1
n+2 = (1 + qn+2)xUk+1

n+1 + qn+1sUk
n (17)

for 0 ≤ k ≤ n−1
2 .

Proof. From Eq. (15), we can write

(1 + qn+2)xUk+1
n+1 + qn+1sUk

n = (1 + qn+2)x
k+1∑
j=0

q j2
[n − j + 1

j

]
q

(−q; q)n− j+1

(−q; q) j
s jxn+1−2 j

+ qn+1s
k∑

j=0

q j2
[n − j

j

]
q

(−q; q)n− j

(−q; q) j
s jxn−2 j

=

k+1∑
j=0

q j2
{([n − j + 1

j

]
q

+ qn−2 j+2
[n − j + 1

j − 1

]
q

)

+qn− j+2

(
q j
[n − j + 1

j

]
q

+
[n − j + 1

j − 1

]
j − 1q

)}
(−q; q)n− j+1

(−q; q) j
s jxn−2 j+2.
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Thus using Eq. (3) and Eq. (4), we get

(1 + qn+2)xUk+1
n+1 + qn+1sUk

n =

k+1∑
j=0

q j2
[n − j + 2

j

]
q

(−q; q)n− j+2

(−q; q) j
s jxn−2 j+2

=Uk+1
n+2.

Corollary 3.4. The incomplete q-Chebyshev Polynomials of the second kind satisfy the non-homogeneous recurrence
relation

U
k
n+2 = (1 + qn+2)xUk

n+1 + qn+1sUk
n − qn+1+k2

[n − k
k

]
q

(−q; q)n−k

(−q; q)k
sk+1xn−2k. (18)

Theorem 3.5. For 0 ≤ k ≤ n+1
2 , the following equality give a relationships between the incomplete q-Chebyshev

polynomials of the first and second kind

T
k
n+2 = xUk

n+1 + qn+1sUk−1
n . (19)

Proof. Using Eq. (15), Eq. (4) and Eq. (6) we obtain

U
k
n+1 + qn+1sUk−1

n = x
k∑

j=0

q j2
[n − j + 1

j

]
q

(−q; q)n− j+1

(−q; q) j
s jxn+1−2 j + qn+1s

k−1∑
j=0

q j2
[n − j

j

]
q

(−q; q)n− j

(−q; q) j
s jxn−2 j

=

k∑
j=0

q j2
[n + 2]q[

n − j + 2
]

q

[n − j + 2
j

]
q

(−q; q)n− j+1

(−q; q) j
s jxn−2 j+2

= T k
n+2.

Theorem 3.6. The incomplete q-Chebyshev polynomials of the first kind satisfy

T
k+1
n+2 = (1 + qn+1)xT k+1

n+1 + qn+1sT k
n (20)

for 0 ≤ k ≤ n−1
2 .

Proof. By using Eq. (17) and Eq. (19), we get

T
k+1
n+2 = xUk+1

n+1 + qn+1sUk
n

= (1 + qn+1)x2
U

k+1
n + qnsxUk

n−1 + qn+1s(1 + qn)xUk
n−1 + q2ns2

U
k−1
n−2

=(1 + qn+1)xT k+1
n+1 + qn+1sT k

n .

Corollary 3.7. The incomplete q-Chebyshev polynomials of the first kind satisfy the non-homogeneous recurrence
relation

T
k
n+2 = (1 + qn+1)T k

n+1 + qn+1sT k
n − qn+1+k2 [n]q

[n − k]q

[n − k
k

]
q

(−q; q)n−k−1

(−q; q)k
sk+1xn−2k. (21)

Theorem 3.8. For 0 ≤ k ≤ n+1
2 , then

T
k
n+2 = xUk

n+1(x, q2s, q) + qsUk−1
n (x, q2s, q) (22)

holds.
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Proof. We obtain from Eq. (15) and (3), we have

xUk
n+1(x, q2s, q) + qsUk−1

n (x, q2s, q) =

k∑
j=0

q j2
{

q2 j
[n − j + 1

j

]
q

+ (1 + q j)
[n − j + 1

j − 1

]
q

}
(−q; q)n+1− j

(−q; q) j
s jxn+2−2 j

=

k∑
j=0

q j2
[n + 2]q[

n + 2 − j
]

q

[n − j + 2
j

]
q

(−q; q)n+1− j

(−q; q) j
s jxn+2−2 j

= T k
n+2.

Theorem 3.9. We have

(1 + qn+2)T k
n+2 = Uk

n+2 + q2n+3sUk−1
n , 0 ≤ k ≤

⌊
n
2

⌋
. (23)

Proof. From Eq. (17) and Eq. (15), we get

U
k
n+2 + q2n+3sUk−1

n =

k∑
j=0

q j2
{[n − j + 1

j

]
q

+ qn+1−2 j+1(1 + q j)
[n − j + 1

j − 1

]
q

}
(−q; q)n+1− j

(−q; q) j
s jxn+2−2 j

+ qn+2
k∑

j=0

q j2
{[n − j + 1

j

]
q

+ qn+1−2 j+1(1 + q j)
[n − j + 1

j − 1

]
q

}
(−q; q)n+1− j

(−q; q) j
s jxn+2−2 j

We get the following result from Eq. (4) and Eq. (6)

U
k
n+2 + q2n+3sUk−1

n = T k
n+2 + qn+2

T
k
n+2.

Lemma 3.10. We have

d Un

dx
= nx−1

Un − 2x−1
b

n
2 c∑

j=0

jq j2
[n − j

j

]
q

(−q; q)n− j

(−q; q) j
s jxn−2 j (24)

and

dTn

dx
= nx−1

Tn − 2x−1
b

n
2 c∑

j=0

jq j2
[n]q[

n − j
]

q

[n − j
j

]
q

(−q; q)n− j−1

(−q; q) j
s jxn−2 j. (25)

Proof. By using Eq. (9), we have

d Un

dx
=

d
dx

{b n
2 c∑

j=0

q j2
[n − j

j

]
q

(−q; q)n− j

(−q; q) j
s jxn−2 j

}

=nx−1
Un − 2

b
n
2 c∑

j=0

jq j2
[n − j

j

]
q

(−q; q)n− j

(−q; q) j
s jxn−2 j−1.

Similarly, from Eq. (10), we get Eq. (25).
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Using Lemma 3.10 , we can prove the following theorem.

Theorem 3.11. We have

b
n
2 c∑

k=0

U
k
n =

(⌊n
2

⌋
−

n
2

+ 1
)
Un +

x
2

dUn

dx
. (26)

Proof. From Eq. (15), we have

b
n
2 c∑

k=0

U
k
n =

(
q0

[n
0

]
q

(−q; q)n

(−q; q)0
xn

)
+

(
q0

[n
0

]
q

(−q; q)n

(−q; q)0
xn + q

[n − 1
1

]
q

(−q; q)n−1

(−q; q)1
sxn−2

)
+ · · ·

+
(
q0

[n
0

]
q

(−q; q)n

(−q; q)0
xn + q

[n − 1
1

]
q

(−q; q)n−1

(−q; q)1
sxn−2 + · · · + qb

n
2 c

[n − b n
2 c

b
n
2 c

]
q

(−q; q)n−b n
2 c

(−q; q)b n
2 c

sb
n
2 cxn−2b n

2 c

)
=

(⌊n
2

⌋
+ 1

) (
q0

[n
0

]
q

(−q; q)n

(−q; q)0
xn

)
+

(⌊n
2

⌋
+ 1 − 1

) (
q
[n − 1

1

]
q

(−q; q)n−1

(−q; q)1
sxn−2

)
+ · · ·

+
(⌊n

2

⌋
+ 1 −

⌊n
2

⌋) (
qb

n
2 c

[n − b n
2 c

b
n
2 c

]
q

(−q; q)n−b n
2 c

(−q; q)b n
2 c

sb
n
2 cxn−2b n

2 c

)

=
(⌊n

2

⌋
+ 1

)
Un −

b
n
2 c∑

j=0

jq j2
[n − j

j

]
q

(−q; q)n− j

(−q; q) j
s jxn−2 j.

Then by using Lemma 3.10, we get

b
n
2 c∑

k=0

U
k
n =

(⌊n
2

⌋
−

n
2

+ 1
)
Un +

x
2

d Un

dx
.

Theorem 3.12. We have

[ n
2 ]∑

k=0

T
k
n =

(⌊n
2

⌋
−

n
2

+ 1
)
Tn +

x
2

dTn

dx
. (27)

Proof. We have from Eq. (16) and Lemma 3.10

b
n
2 c∑

k=0

T
k
n = (q0

[n
0

]
q

(−q; q)n−1

(−q; q)0
xn) + (q0

[n
0

]
q

(−q; q)n−1

(−q; q)0
xn + q

[n]q

[n − 1]q

[n − 1
1

]
q

(−q; q)n−2

(−q; q)1
sxn−2) + · · ·

+

(
q0

[n
0

]
q

(−q; q)n−1

(−q; q)0
xn + q

[n]q

[n − 1]q

[n − 1
1

]
q

(−q; q)n−2

(−q; q)1
sxn−2 + · · ·

+q
b

n
2 c

2 [n]q[
n − b n

2 c
]

q

[n − b n
2 c

b
n
2 c

]
q

(−q; q)n−b n
2 c−1

(−q; q)b n
2 c

sb
n
2 cxn−2b n

2 c


=

(⌊n
2

⌋
+ 1

)
Tn −

b
n
2 c∑

j=0

jq j2
[n]q[

n − j
]

q

[n − j
j

]
q

(−q; q)n− j−1

(−q; q) j
s jxn−2 j

=
(⌊n

2

⌋
−

n
2

+ 1
)
Tn +

x
2

dTn

dx
.
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4. Graphs of The Incomplete q-Chebyshev polynomials

In this section, we display the graphs of the q-Chebyshev polynomials and the incomplete q-Chebyshev
polynomials.

In Figures 1, 2 the graphs of the q-Chebyshev polynomials of first and second kind for s = −1, q =
−0.5, 0.5, 0.9999, n = 0, 1, 2, 3, 4, 5 and −1 ≤ x ≤ 1 are shown.
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Figure 1: Graphs of Tn(x, s, q) for s = −1, q = −0.5, 0.5, 0.9999, n = 0, 1, 2, 3, 4, 5
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Figure 2: Graphs of Un(x, s, q) for s = −1, q = −0.5, 0.5, 0.9999, n = 0, 1, 2, 3, 4, 5
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In Figure 3 the graphs of the incomplete q-Chebyshev polynomials of second kind Uk
9(x, s, q) for s = −1,

q = −0.9,−0.5, 0.9, k = 0, 1, 2, 3, 4 are shown.
In Figure 4 the graphs of the incomplete Lucas polynomials T k

5 ( x
2 , s, q) for s = 1, q = −0.9, −0.5, 0.9,

k = 0, 1, 2 are shown.
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[7] G.B. Djordjević, Generating functions of the incomplete generalized Fibonacci and generalized Lucas numbers, Fibonacci Quart.,

42(2) (2004) 106-113.
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