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Abstract. In this paper, we get the generating functions of the ¢g-Chebyshev polynomials using 7, op-
erator, which is 1, (f(z)) = f(qz) for any given function f(z). Also considering explicit formulas of the
g-Chebyshev polynomials, we give new generalizations of the g-Chebyshev polynomials called the incom-
plete g-Chebyshev polynomials of the first and second kind. We obtain recurrence relations and several
properties of these polynomials. We show that there are connections between the incomplete g-Chebyshev
polynomials and the some well-known polynomials.

1. Introduction

The Chebyshev polynomials are of great importance in many area of mathematics, particularly approx-
imation theory. The Chebyshev polynomials of the second kind can be expressed by the formula

Up(x) = 2xUp-1(x) = Up-—2(x) n=2

with initial conditions Uy = 1, Ui(x) = 2x and the Chebyshev polynomials of the first kind can be defined
as

Tu(x) = 2xTy-1(x) = Ty—2(x) n =2

with initial conditions To(x) = 1, T1(x) = x in [13].
The well-known Fibonacci and Lucas sequences are defined by the recurrence relations

Foi1=F,+F,.1 n>1

Lyygi=L,+L,.1 n>1

with initial conditions Fy = 0, F; = 1 and Ly = 2, L; = 1, respectively. In [10], Filipponi introduced a
generalization of the Fibonacci numbers. Accordingly, the incomplete Fibonacci and Lucas numbers are
determined by:

k .
Fn(k)=Z(n_]1,_]), 0<ks<|% (1)

j=0
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and

k .
L) =) —= (”_]) 0<k<|z], @

j=0

where n € IN. Note that Fn([%J) = F, and L,,({%J) = L,. In [16], the generating functions of incomplete
Fibonacci and Lucas polynomials were given by Pintér and Srivastava. For more results on the incomplete
Fibonacci numbers, the readers may refer to [6-9, 17, 20, 21].

We need g-integer and g-binomial coefficient. There are several equivalent definition and notation for
the g-binomial coefficients [2, 11,12, 15, 19]. Letg € Cwith 0 < |q| <1 as anindeterminate and nonnegative
integer n. The g-integer of the number 7 is defined by

1-4"
1-9g

with [0], = 0. The Gaussian or g—binomial coefficients are defined by

[n], =

<k<n

[ZL T @ q()qzzq o’

with [Z]q =0 for n < k, where (x; q), is the g—shifted factorial, that is, (x; g)o = 1,

n—

1
(cq), = 1 qx

z=0

The g-binomial coefficient satisfies the recurrence relations and properties:

", = L ®)
"V = Bl @
[J?%—n;k_ ) A R ©)
gl dq q q
qk[n[f_lllqc]q:n;k:q _ qk[n;k]q“an[n;l_{IlL- ©

The g-analogues of the Fibonacci polynomials are studied by Carlitz in [3]. Also, a new g-analogue of the
Fibonacci polynomials is defined by Cigler and obtain some of its properties in [5]. In [14], Pan study some
arithmetic properties of the g-Fibonacci numbers and the g-Pell numbers. Cigler defined the g-analogues of
the Chebyshev polynomials and study properties of these polynomials in [4].

In this paper, we derive generating functions of the g-Chebyshev polynomials of the first and second
kind. More generally, we define the incomplete g-Chebyshev polynomials of the first and second kind.
We get recurrence relations and several properties of these polynomials. We show that there are the
relationships between g-Chebyshev polynomials and the incomplete g-Chebyshev polynomials.

2. g-Chebyshev Polynomials
Definition 2.1. The g-Chebyshev polynomials of the second kind are defined by

Uy(x,s,9) = (1 +q")x Uy—1(x,s,9) + q”‘ls Uy—o(x,5,9) n=2 (7)
with initial conditions Up(x,s,q) = 1 and U1(x,s,q) = (1 + g)x in [4].
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Definition 2.2. The g-Chebyshev polynomials of the first kind are defined by
Tulx,s,q) =1+ q”‘l)x‘]'n_l(x, s,q) + q”_ls‘]'n_z(x, s,q) nx=2 (8)
with initial conditions To(x,s,q) = 1 and T1(x,s,q) = x in [4].

Itis clear that U,(x,-1,1) = U,(x) and 7,(x, —1,1) = T,,(x). The g-Chebyshev polynomials of the second
kind is determined as the combinatorial sum

L]

2 1’1—] ( q,9 )n] n—2i
Uux,5,9)=) | /| ———s"%, n>0 &)
];4 [ j ] (=a:9)

and the g-Chebyshev polynomials of the first kind is determined as

[SIES

L5] :
2 [n]q [n—]] ( q’q)” j-1 ] n—2j n>0 (10)
q

Tulx,8,9) = ) ¢ . .
i U | L ~4:9);

with To(x,s,q) = 1in [4].

2.1. Generating Functions of q-Chebyshev Polynomials

Andrews [1] obtain the generating function for Schur’s polynomials, which is defined by S,(g) =
Su-1(9) —q"2Su-2(q) for n > 1 with intial conditions So(g) = 0 and S;(g) = 1. The generating funtions of S,(q)
is

Zs O = e 1D

where is 1), is an operator on functions of z defined by 1. (f(z)) = f(gz) in [1]. We give the following theorems
for generating functions of g-Chebyshev polynomials of the second and first kind with an operator 7..

Theorem 2.3. The generating function of the q-Chebyshev polynomials of the second kind is

1

Glz) = 1—zx— (xqz +sqz2)n,

(12)

Proof. Let G(z) = Y ey Uuz". Thus we write

(o)

(1 —xz— (xqz +sqz G(z) = Z U,z" - xz U,z"" - xi U,g™2" — Z U, "2

n=0

:ﬂo-l— (LI1Z—X(1 +q) 7,[024-2(7,[” _x(1+qn) (L(n—l _SrL(n_zqn—l)Zn

n=2

Therefore we have from Eq. (7) and Uy =1, U; = (1 + g)x, we get

(1—xz—(xqz+sqz) ) G(z) = 1.

Theorem 2.4. The generating function of the q-Chebyshev polynomials of the first kind is

1-xz
—xz—(xz—sqz2)n,

S(z) = : (13)
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Proof. Let S(z) = Yo Tuz". Then
(1 - xz - (xz - sqz2) nz) S(z) = i Tuz" —x i Tuo12" —x i T -1 q”’lz” -5 i T2 q”’l "
n=2

—7“0+‘T12—2x7'oz+2 =X 1+q ) nl—sq”lTnz)
n=2

using Eq. (8) and 79 = 1 ve 77 = x, we conclude that
5(z) — xz5(z) — xz21,5(z) — sqz2 N.5(z) =1 -xz,
finally we obtain

1—xz (14)

5@ = 1—xz—(xz—sg22)n,

3. Incomplete g-Chebyshev Polynomials

In this section, we define the incomplete g-Chebyshev polynomials of the first and second kind. We give
several properties for these polynomials.

Definition 3.1. For n is a nonnegative integer, the incomplete g-Chebyshev polynomials of the second kind are defined
as

k
a[n—j1 (=4 Pn-j
Un(x,s,9) = f[n.]]— s 0<k<|2]. 15

e ]-;‘q il e 3] (15

When k = [%J in (15), ‘LI’,; (x,5,9) = Uy(x,s,q), we get the g-Chebyshev polynomials of the second kind
in [4].
Definition 3.2. For n is a nonnegative integer, the incomplete g-Chebyshev polynomials of the first kind are defined

by
k
2 [1’1] n-— ] ( q; q)n 1
Tr,s,q) =) ¢ —— [ , ]—]1"27 0<k<|Z]. (16)
! ,Z_:;q [n=jl,L 7 g =ga9); 3]
Theorem 3.3. The incomplete g-Chebyshev Polynomials of the second kind satisfy
Uy = A+ g x UL + 4" s U, (17)

-1
for0<k<*-.

Proof. From Eq. (15), we can write

k+1
(1+qn+2)x(L{k +qn+1sﬂk (1+qn+2)xiq] [7’1 ]+1] (= - —j+1 iy 12
o = il Caa);
(= Pn-
+ " ][n’]] J;nZ]
! Z‘q jo g (=q:9);

k+1

S (R B )

i An— 1 n—j+17. ( ‘%q)n j+1
+n]+2(][ ].+ ]+[ ] _1)}—]n2]+2
7o A O RS O ) ey
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Thus using Eq. (3) and Eq. (4), we get

k+1

n n ]+2 ( q’q)" —J*2 i n-2j+2
1 +q")x U + g™ s Uk = / [ : ] g/
q +1 q ]_ZO q ] g ( q/ q)]
= U

|
Corollary 3.4. The incomplete q-Chebyshev Polynomials of the second kind satisfy the non-homogeneous recurrence

relation

n+2

(1 + qn+2)x (L{k L+ 6]”+1S ﬂk qn+1+k2 n- k] (_q; Q)n—k gh+l,n=2k (18)
" kg (=q;9)k

Theorem 3.5. For 0 < k < ™1, the following equality give a relationships between the incomplete q-Chebyshev
polynomials of the first and second kind

n+2 =X 7/Ik+1 + qn+1 (le ! (19)
Proof. Using Eq. (15), Eq. (4) and Eq. (6) we obtain

k ‘ k-1
(le 1+q”+1s'uk 1_35217‘[ —]+1] (= Pn- ]+1ijn+1—2j+qn+1szq [n ’]] (=4 Dn—j §iy2i

= (=4;9); =L Ca;
iq 2], [n ].+2] T Dot oo
[n=j+2L,Lj ly (g9);
‘T,ﬁz
O
Theorem 3.6. The incomplete q-Chebyshev polynomials of the first kind satisfy
Ttz = (L+ g™ T+ g™ s Ty (20)
for0 <k <2t
Proof. By using Eq. (17) and Eq. (19), we get
Tz =x UL +q" s Uy
=1+ g™ U + 'sx U+ g™ s(L+ ") UK + g*'s* U
=(1+ g™ xTH + " s TR
|

Corollary 3.7. The incomplete q-Chebyshev polynomials of the first kind satisfy the non-homogeneous recurrence
relation

(nl; n—k] (=4 @)ns
1+ g™ O)g* 4 gntlggk _ n+1+k> q [ ] A7kl et -2k 71
n+2 ( q ) n+1 q n q [7’1 _ k]q q, Q)k ( )
Theorem 3.8. For0 <k < "T”, then
Tonva = X Uy (X, 4%, q) + s Uy~ (x, 4%, 9) (22)

holds.
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Proof. We obtain from Eq. (15) and (3), we have

k .
— i2 i - 1 (q/q)n+1]
x Uk, (x,q°s,q9) + gs U (x, 4%, q) = ]{2][11 I ]+1 [n’]+ ]}—]’“22]
w1 (0 0°5,9) + 4 (x,q°s,q) Zq q i 1+4q) ic1 L G

Z _Eﬂ_[ﬂ+ﬂLMhu]mm
7 n+2

=l (=4; )
Trl1(+2
0
Theorem 3.9. We have
L+ ") TF = U, + s U, 0<k<|t] (23)
Proof. From Eq. (17) and Eq. (15), we get
k )
Uy +q" s U = Zqiz{[”_],+ 1] + g2 (] 1)[ ]”] }% o+ 2-2j
]',0 ] q q q’
7 [n—1+1] b2 J)[ JH] }—( 9 90ne1- j nia-aj
ZO‘ { ) =t L) 49);
We get the following result from Eq. (4) and Eq. (6)
(uk+2 + s U = Trﬁz qn+27';f+2
|
Lemma 3.10. We have
L5]
dUu, 4 Rl [ —]] T Dn-j
=nx U, —2x . L iyl 24
dx ,ZO‘M il g, @)
and
AT, . _Zx_lf‘ a [n], [ —]] (= Dn-j1 Sig2 (25)
dx " T TR W B A TP ‘

Proof. By using Eq. (9), we have

KT -
R

_ —; Pn-j
=nx 17/171 [ ] ] ~ Ry ] n—2j— 1
Z ] (=9:9);

=0

Similarly, from Eq. (10), we get Eq. (25). O
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Using Lemma 3.10 , we can prove the following theorem.

Theorem 3.11. We have

St -((3]- 3oy

Proof. From Eq. (15), we have

= (1) o ] ot ) )

(—7
(q[] q;Z y [ 11L%5xn_z+,_,+qm[ Lﬂ%uw J)
=(3)+1)

ol g (21l )
3l

e[l o) )

L3
n 2| 1 — ] ( q'q)"] 2
_ - Y|
(5]+1) ]Z;]q il G,
Then by using Lemma 3.10, we get

. E_E xd U,
k_orun_(M 2 ) 2 dx

L5]

k=0

L5]

Theorem 3.12. We have

S22 34

Proof. We have from Eq. (16) and Lemma 3.10

L5]

. (4P, (@ D1, [nly n-17 g @u-2
kzorr"‘(q[ | o) Zomn w1 | e
NEARGL )= (nly (n=11 P2,
+( [ ] T +q[n—1]q[ 1 ] oo
ot [n] [n—L J] CEDn1411 4y oty
[n—L J] 131 1 (@

SX"T2) 4 -

4+ ...

- (EJ ”)Tn —;W%V}j]q% S
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In this section, we display the graphs of the g-Chebyshev polynomials and the incomplete g-Chebyshev

polynomials.

In Figures 1, 2 the graphs of the g-Chebyshev polynomials of first and second kind for s = -1, g =
-0.5, 0.5, 0.9999,n =0,1,2,3,4,5 and —1 < x < 1 are shown.

0.5+ 5 %
1 5 0.5 1 e
-05 -0.
— T3(r s, q)
— r4<; 5q)
_1 — T5(x
qg=-05 g =0.9999
Figure 1: Graphs of 75(x,s,q) for s = -1,9 = -0.5,0.5,0.9999, n =0,1,2,3,4,5
\6; \ =t J %
—/  Nd 7 IR
-1 0.5 -1 -0. ; 1 -1 1 Uy(x,s,q)
_05 —V..
4 -1 - — Up(x5,0)
— Uz(x,5,9)
— Uy q)
— Us(x,s,q
g=-05 g=05 g = 0.9999
Figure 2: Graphs of U, (x,s,q) fors =-1,4=-0.5,0.5,0.9999, n=0,1,2,3,4,5
[
1 4,000 /
0.5 /' 2,000 //
1/ 05 0.5 1 / 1 05 05 5 s
/ -0.5 / ~2,000 — Ulwsq
[ — "L{g(x,s‘,q)
-1 / ~4,000 — Mot
| — 'ng(x,s,q)

Figure 3: Graphs of ‘L{’g‘(x, s,q) for s=-1, 4=-09, =05, 09,k=0,1,2,3,4
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q:
k=

-10

Figure 4: Graphs of ‘7'5"(5,5, q)for s=1,4=-09, =05, 09, k=0,1,2

In Figure 3 the graphs of the incomplete g-Chebyshev polynomials of second kind U(x, s, q) fors = -1,
-0.9,-0.5,09, k=0,1,2,3,4 are shown.

In Figure 4 the graphs of the incomplete Lucas polynomials 7'5"(§,s, g) fors =1,9g =-09, =05, 0.9,
0,1,2 are shown.
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