
Filomat 32:10 (2018), 3623–3635
https://doi.org/10.2298/FIL1810623A

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. This paper is concerned with a numerical procedure for fractional Volterra integro-differential
equations with weakly singular kernels. The fractional derivative is in the Caputo sense. In this study,
Bernoulli polynomial of first kind is used and its matrix form is given. Then, the matrix form based on the
collocation points is constructed for each term of the problem. Hence, the proposed scheme simplifies the
problem to a system of algebraic equations. Error analysis is also investigated. Numerical examples are
announced to demonstrate the validity of the method.

1. Introduction

Fractional calculus is a fascinating topic in mathematics with diverse applications in science and technology
[11, 21, 22]. In this way, many mathematicians try to introduce instrumental techniques for solving the
differential and integro-differential equations of fractional order. For the existence and uniqueness of
the fractional differential equations solution, we refer to [13, 35]. Also, the outcomes of local and global
existence and uniqueness for the solution of fractional integro-differential equations have been taken in
[30, 31], respectively.

Practically, there is a great concentration on finding the solution of fractional integro-differential
equations of Volterra, Fredholm and Volterra-Fredholm types. In fact, one can see a huge number of
works on the solutions of fractional integro-differential equations in the literature. For example, see [2, 4–
6, 9, 14–16, 19, 20, 23, 26–29, 32, 36, 37, 39, 40, 47]. In these references, the kernel of integral parts is
non-singular.

In this paper, we consider the following fractional Volterra integro-differential equation with weakly
singular kernel

Dα
∗ y(x) = p(x)y(x) + λ

∫ x

0

y(t)
(x − t)ν

dt + 1(x), x ∈ [0 1], (1)

under the initial condition

y(0) = c, (2)
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where y(x) is unknown, p(x) and 1(x) are known, λ and c are real values. Also, Dα
∗ denotes the Caputo

fractional derivative of order α, 0 < α ≤ 1 and 0 < ν < 1. It is notable for α = 0 and p(x) = 0, (1) reduces to
Abel’s integral equation. Fractional integro-differential equations with weakly singular kernel have many
usages in radiative equilibrium [17], heat conduction problem [41], elasticity and fracture mechanics [46].
Due to the complicated behaviour of equation (1), finding the exact solution of it is not easy. Thereby,
numerical methods are required more and more. However, researchers have paid less attention to solving
weakly singular Volterra integro-differential equations of fractional order. For solving (1) numerically, Zhao
et al. analyzed piecewise polynomial collocation [43]. The continuation of this work, Nemati et al. applied
second kind Chebyshev polynomials [33]. Furthermore, Yi et al. used CAS wavelet method [44] and Sahu
et al. inspected Sinc-Galerkin (SG) method [38] for solving fractional Volterra-Fredholm integro-differential
equation with a weakly singular kernel.

Recently, Bhrawy et al. derived Bernoulli polynomials successfully for the numerical solution of
Fredholm integro-differential equations [8]. Bazm solved the Volterra-Fredholm-Hammerstein integral
equations [7] using operational matrices of Bernoulli polynomials. Also, Tohidi et al. used Bernoulli
polynomials expansion for solving fractional Volterra integro-differential equations with non-singular
kernel [42]. It should be noted that Mashayekhi et al. accounted the advantages of Bernoulli polynomials
over orthogonal polynomials for approximating a real function in [24, 25].

Throughout this paper, by using Bernoulli polynomials, new matrix operations, the collocation method
and the Caputo fractional derivative, we intend to approximate the solution of (1) with the initial condition
(2) in the form

yN(x) =

N∑
n=0

anBn(x). (3)

Here, an,n = 0, 1, . . . ,N are the unknown Bernoulli coefficients; N is selected any positive integer; Bn(x) are
the Bernoulli polynomials of first kind defined by [3, 10]

Bn(x) =

n∑
i=0

(
n
i

)
bn−ixi, n ∈N, x ≥ 0,

in which bn,n = 0, 1, . . . ,N are bernoulli numbers. These numbers are computed using the following
identity

x
ex − 1

=

∞∑
i=0

bi
xi

i!
.

The first few Bernoulli numbers are

b0 = 1, b1 = −
1
2
, b2 =

1
6
, b4 = −

1
30
, . . . ,

and for i = 1, 2, . . ., b2i+1 = 0. Besides this, the Bernoulli polynomials for some small values of n are

B0(x) = 1, B1(x) = x −
1
2
, B2(x) = x2

− x +
1
6
, B3(x) = x3

−
3
2

x2 +
1
2

x, . . . .

Also, Bernoulli polynomials and Bernoulli numbers are related to each other by bi = Bi(0), i = 0, 1, 2, . . ..
The remainder of this paper proceeds as follows: In Section 2, basic definitions of fractional calculus

applied further in this research are reviewed. In Section 3, the matrix relations for the Caputo fractional
derivative and the weakly singular Volterra integral part are formed. Using these matrix operations and
collocation method, Section 4 suggests a procedure for solving (1) under condition (2). An error analysis is
investigated in Section 5. Section 6 confirms the impression of present method through several examples.
Lastly, a conclusion is drawn in Section 7.
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2. Preliminaries and Basic Concepts

For the convenience of the reader, we repeat the relevant materials of fractional calculus from [12, 35].

Definition 2.1. The Riemann-Liouville’s fractional order integration for the function h on L1[a, b] is defined as
follows

Jαh(x) =

 1
Γ(α)

∫ x

0 (x − s)α−1h(s)ds, α > 0,
h(x), α = 0.

The important properties of Jα are

• Jα1 Jα2 h(x) = Jα1+α2 h(x),

• Jα1 Jα2 h(x) = Jα2 Jα1 h(x),

• Jα1 xα2 =
Γ(α2+1)

Γ(α1+α2+1) x
α1+α2 .

Definition 2.2. The Caputo derivative of order α > 0 is defined as

Dα
∗ h(x) =

1
Γ(n − α)

∫ x

0
(x − s)n−α−1h(n)(s)ds, n − 1 < α < n,

where x > 0 and n is an integer.

The interesting features of Caputo derivative are listed in the following

• JαDα
∗ h(x) = h(x) −

∑n−1
i=0 h(i) (0+) xi

i! , n − 1 < α < n, n ∈N,

• Dα
∗ c = 0, (c is a constant),

• Dα1
∗ xα2 =

0, α2 ∈N0, α2 < dα1e,
Γ(α2+1)

Γ(α2+1−α1) x
α2−α1 , α2 ∈N0, α2 ≥ dα1e, or α2 <N, α2 > bα1c.

3. Fundamental Matrix Relations

Firstly, let us represent Bn(x) in the matrix form as follows

B(x) = X(x)DT, (4)

where

B(x) = [B0(x) B1(x) . . . BN(x)] , X(x) =
[
1 x . . . xN

]
,

and

D =



(0
0
)
b0 0 0 . . . 0 0(1

0
)
b1

(1
1
)
b0 0 . . . 0 0(2

0
)
b2

(2
1
)
b1

(2
2
)
b0 . . . 0 0

...
...

...
. . .

...
...(N−1

0
)
bN−1

(N−1
1

)
bN−2

(N−1
2

)
bN−3 . . .

(N−1
N−1

)
b0 0(N

0
)
bN

(N
1
)
bN−1

(N
2
)
bN−2 . . .

( N
N−1

)
b1

(N
N
)
b0


.
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For the sake of simplicity, we state (1) in the form

Dα
∗ y(x) = p(x)y(x) + λV(x) + 1(x), (5)

where

V(x) =

∫ x

0

y(t)
(x − t)ν

dt.

In what follows, we exhibit matrix relations for the Caputo fractional derivative of the solution, Dα
∗ y(x), and

the Volterra integral part V(x).

3.1. Matrix relation for Dα
∗ y(x)

We first suppose the desired solution of (1) be in the form of truncated Bernoulli series (3). Accordingly,
y(x) can be written in the matrix form

y(x) = B(x)A; A = [a0 a1 . . . aN]T ,

or with the aid of (4)

y(x) = X(x)DTA. (6)

Now, by the Caputo fractional derivative and (6), enables one to see

Dα
∗ y(x) = X(α)(x)DTA, (7)

in which

X(α)(x) =
[
Dα
∗ 1 Dα

∗ x Dα
∗ x

2 . . . Dα
∗ x

N
]

=

[
0

Γ(2)x1−α

Γ(2 − α)
Γ(3)x2−α

Γ(3 − α)
· · ·

Γ(N + 1)xN−α

Γ(N + 1 − α)

]
.

3.2. Matrix relation for V(x)
Substituting (6) into V(x) results in

V(x) =

∫ x

0

X(t)DTA
(x − t)ν

dt =

(∫ x

0

X(t)
(x − t)ν

dt
)

DTA. (8)

In order to construct a matrix relation for V(x), we must gain an explicit formula for the integral

Ii,ν(x) =

∫ x

0

ti

(x − t)ν
dt,

so that i = 0, 1, . . . ,N. To achieve this aim, we change the variables by t = rx. Then dt = xdr, 0 ≤ r ≤ 1 and
one can write

Ii,ν(x) = xi+1−ν
∫ 1

0
(1 − r)−νridr = β(i + 1, 1 − ν)xi+1−ν, (9)

where β(., .) denotes the well-known Beta function. As we know, Beta and Gamma functions are connected
with each other by β(a, b) =

Γ(a)Γ(b)
Γ(a+b) .

Now, employing (8) and (9) entails

V(x) = Iν(x)DTA, (10)

where

Iν(x) =
[
β(1, 1 − ν)x1−ν β(2, 1 − ν)x2−ν . . . β(N + 1, 1 − ν)xN+1−ν

]
.
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4. Method of Solution

For the implementation of numerical method, we substitute (6), (7) and (10) into (5). Consequently,

X(α)(x)DTA = p(x)X(x)DTA + λIν(x)DTA + 1(x). (11)

Now, we collocate (11) at a set of collocation points. For x ∈ [0 1], one choice can be

xi =
i

N
, i = 0, 1, . . . ,N.

This implies that

X(α)(xi)DTA = p(xi)X(xi)DTA + λIν(xi)DTA + 1(xi), i = 0, . . . ,N.

Briefly, the main matrix equation is offered as{
X(α)DT

− PXDT
− λIνDT

}
A = G, (12)

in which

X(α) =


X(α)(x0)
X(α)(x1)

...
X(α)(xN)

 , P =


p(x0) 0 0 . . . 0

0 p(x1) 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . p(xN)

 , X =


X(x0)
X(x1)
...

X(xN)

 , Iν =


Iν(x0)
Iν(x1)
...

Iν(xN)

 , G =


1(x0)
1(x1)
...

1(xN)

 .
Except to A and G which are column vectors with N + 1 entries, all of the matrices dimension in (12) is
(N + 1) × (N + 1).

In the compact representation, (12) can be shown as

WA = G or [W; G], (13)

where

W = X(α)DT
− PXDT

− λIνDT.

Clearly, (13) is a linear system of algebraic equations with the unknown Bernoulli coefficients a0, a1, . . . , aN.
On the other hand, the matrix form corresponding to initial condition (2) can be written as

{B(0)}A = c or [B(0); c], (14)

so that

B(0) = [b0 b1 . . . bN],

and as we noted before, bi; i = 0, 1, . . . ,N are the Bernoulli numbers.
To determine the solution of (1) under condition (2), replacing the row vector (14) by the first row of

(13), the following new augmented matrix is established

[W̃; G̃] =



b0 b1 b2 . . . bN ; c
w10 w11 w12 . . . w1N ; 1(x1)
w20 w21 w22 . . . w2N ; 1(x2)
...

...
...

. . .
...

...
...

w(N−1)0 w(N−1)1 w(N−1)2 . . . w(N−1)N ; 1(xN−1)
wN0 wN1 wN2 . . . wNN ; 1(xN)


.

If rankW̃ = rank[W̃; G̃] = N + 1, one can deduce

A = W̃−1G̃.

Herewith, a0, a1, . . . , aN are identified uniquely and (1) with the initial condition (2) has a unique solution.
This solution is in the form of (3).
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5. Error analysis

Let {B0(x), B1(x), . . . , BN(x)} ⊂ L2[0 1] be the set of Bernoulli polynomials and

Y = span {B0(x), B1(x), . . . , BN(x)} .

Assume that h ∈ L2[0 1] be an arbitrary element. Since Y is a finite dimensional vector space, h has the
unique best approximation belongs to Y such as ĥ ∈ Y. This means for every z ∈ Y

‖h − ĥ‖ ≤ ‖h − z‖.

Since ĥ ∈ Y, there exists the unique coefficients h0, h1, . . . , hN such that

h ≈ ĥ =

N∑
n=0

hnBn(x) = B(x)H,

where

B(x) = [B0(x), B1(x), . . . , BN(x)] , H = [h0, h1, . . . , hN]T .

Theorem 5.1. [1] Suppose h(x) be an enough smooth function on [0 1] and PN[h](x) is the approximate polynomial
of h(x) in terms of Bernoulli Polynomials and RN[h](x) is the remainder term. Then, the associated formula are stated
as follows

h(x) = PN[h](x) + RN[h](x), x ∈ [0 1],

PN[h](x) =

∫ 1

0
h(x)dx +

N∑
j=1

B j(x)
j!

(
h( j−1)(1) − h( j−1)(0)

)
,

RN[h](x) = −
1

N!

∫ 1

0
B∗N(x − t)h(N)(t)dt,

where B∗N(x) = BN(x − [x]).

Corollary 5.2. If h(x) ∈ C∞[0 1] and PN[h](x) is the approximate polynomial using Bernoulli polynomials, then the
following error bound may be obtained

‖error(h(x))‖∞ ≤
2µ

(2π)N ,

in which µ is the maximum value of
∣∣∣h(N)(x)

∣∣∣ on [0 1].

Proof. With the aid of Theorem 5.1, it is obvious that

‖error(h(x))‖∞ ≤
ΘN

N!
µ,

where ΘN and µ are the maximum value of |BN(x)| and
∣∣∣h(N)(x)

∣∣∣ on [0 1], respectively.
In [18], Lehmer proved

−
2N!

(2π)N ≤ BN(x) ≤
2N!

(2π)N ,

for every 0 ≤ x ≤ 1. Hence, ΘN = 2N!
(2π)N and the result is satisfied.
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Lemma 5.3. Let h : [0 1]→ R and Jα(.) denotes the Riemann-Liouville’s fractional integration operator. Then,

‖Jα(h(x))‖∞ ≤
1

Γ(α + 1)
‖h(x)‖∞. (15)

Proof. We have

|Jα(h(x))| =
1

Γ(α)

∣∣∣∣∣∫ x

0
(x − s)α−1h(s)ds

∣∣∣∣∣ ≤ 1
Γ(α)

∫ x

0
(x − s)α−1

|h(s)| ds

≤
1

Γ(α)

(∫ x

0
(x − s)α−1ds

)
sup

0≤x≤1
|h(x)| ≤

1
Γ(α + 1)

‖h(x)‖∞.

Ultimately,

‖Jα(h(x))‖∞ = sup
0≤x≤1

|Jα(h(x))| ≤
1

Γ(α + 1)
‖h(x)‖∞ .

Theorem 5.4. Let y(x) and yN(x) be the exact and approximate solutions of (1) under condition (2). Also, assume

• There exist ρ1, ρ2 ∈ R+ such that
∥∥∥y(x)

∥∥∥
∞
≤ ρ1,

∥∥∥p(x)
∥∥∥
∞
≤ ρ2, ∀x ∈ [0 1].

• (1 − ν)Γ(α + 1) − (1 − ν)ρ2 − (1 − ν)E(p) , λ.

Then, ∥∥∥y(x) − yN(x)
∥∥∥
∞
≤

(1 − ν)Γ(α + 1)E( f ) + (1 − ν)ρ1E(p)
(1 − ν)Γ(α + 1) − (1 − ν)ρ2 − (1 − ν)E(p) − λ

,

where

E(p) =
∥∥∥error(p(x))

∥∥∥
∞

=
∥∥∥p(x) − pN(x)

∥∥∥
∞
,

E( f ) =
∥∥∥error( f (x))

∥∥∥
∞

=
∥∥∥ f (x) − fN(x)

∥∥∥
∞
, f (x) = y(0) + Jα1(x).

Proof. Fractional integrating from both sides of (1) and imposing the intial condition yield

y(x) = f (x) + Jα(p(x)y(x)) + λJα
(∫ x

0

y(t)
(x − t)ν

dt
)
,

in which f (x) = y(0) + Jα1(x).
Now, consider that f (x) and p(x) are expanded in terms of Bernoulli polynomials, then the obtained

solution is an approximated polynomial; yN(x). Our aim is to seek an upper bound for the associated
error between the exact solution y(x) and the approximated solution yN(x) for (1) with the mentioned
assumptions. Subsequently,

‖y(x) − yN(x)‖∞ =

∥∥∥∥∥∥ f (x) − fN(x) + Jα
(
p(x)y(x) − pN(x)yN(x)

)
+ λJα

(∫ x

0

y(t) − yN(t)
(x − t)ν

dt
)∥∥∥∥∥∥
∞

≤

∥∥∥ f (x) − fN(x)
∥∥∥
∞

+
∥∥∥Jα

(
p(x)y(x) − pN(x)yN(x)

)∥∥∥
∞

+ λ

∥∥∥∥∥∥Jα
(∫ x

0

y(t) − yN(t)
(x − t)ν

dt
)∥∥∥∥∥∥
∞

(16)

On the other hand,∥∥∥Jα
(
p(x)y(x) − pN(x)yN(x)

)∥∥∥
∞

=
∥∥∥Jα

(
p(x)

(
y(x) − yN(x)

)
+

(
p(x) − pN(x)

) (
yN(x) − y(x) + y(x)

))∥∥∥
∞

≤

∥∥∥Jα
(
p(x)

(
y(x) − yN(x)

))∥∥∥
∞

+
∥∥∥Jα

((
p(x) − pN(x)

) (
y(x) − yN(x)

))∥∥∥
∞

+
∥∥∥Jα

((
p(x) − pN(x)

) (
y(x)

))∥∥∥
∞
.
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By using (15), it follows∥∥∥Jα
(
p(x)y(x) − pN(x)yN(x)

)∥∥∥
∞
≤

1
Γ(α + 1)

∥∥∥p(x)
∥∥∥
∞

∥∥∥y(x) − yN(x)
∥∥∥
∞

+
1

Γ(α + 1)

∥∥∥p(x) − pN(x)
∥∥∥
∞

∥∥∥y(x)
∥∥∥
∞

+
1

Γ(α + 1)

∥∥∥p(x) − pN(x)
∥∥∥
∞

∥∥∥y(x) − yN(x)
∥∥∥
∞
.

Since
∥∥∥y(x)

∥∥∥
∞
≤ ρ1 and

∥∥∥p(x)
∥∥∥
∞
≤ ρ2, we write∥∥∥Jα

(
p(x)y(x) − pN(x)yN(x)

)∥∥∥
∞
≤

1
Γ(α + 1)

ρ2

∥∥∥y(x) − yN(x)
∥∥∥
∞

+
1

Γ(α + 1)
ρ1E(p)

+
1

Γ(α + 1)
E(p)

∥∥∥y(x) − yN(x)
∥∥∥
∞
.

(17)

Moreover, for x ∈ [0 1], we imply∣∣∣∣∣∫ x

0

y(t) − yN(t)
(x − t)ν

dt
∣∣∣∣∣ ≤ (∫ x

0

dt
(x − t)ν

) ∥∥∥y(x) − yN(x)
∥∥∥
∞
≤

1
1 − ν

∥∥∥y(x) − yN(x)
∥∥∥
∞
.

Equivalently,∥∥∥∥∥∫ x

0

y(t) − yN(t)
(x − t)ν

dt
∥∥∥∥∥
∞

≤
1

1 − ν

∥∥∥y(x) − yN(x)
∥∥∥
∞
. (18)

By applying (15) and (18), we conclude∥∥∥∥∥∥Jα
(∫ x

0

y(t) − yN(t)
(x − t)ν

dt
)∥∥∥∥∥∥
∞

≤
1

Γ(α + 1)

∥∥∥∥∥∫ x

0

y(t) − yN(t)
(x − t)ν

dt
∥∥∥∥∥
∞

≤
1

(1 − ν)Γ(α + 1)

∥∥∥y(x) − yN(x)
∥∥∥
∞
. (19)

Eventually, combination of (16), (17) and (19) yields∥∥∥y(x) − yN(x)
∥∥∥
∞
≤

(1 − ν)Γ(α + 1)E( f ) + (1 − ν)ρ1E(p)
(1 − ν)Γ(α + 1) − (1 − ν)ρ2 − (1 − ν)E(p) − λ

.

6. Numerical examples

In this section, three examples are dedicated to evaluate the efficiency of the proposed method. All of
them are performed by MATLAB R2015a software on a 64-bit PC with 2.20 GHz processor and 8 GB memory.
We report the results of applying our method through several tables and figures. In these examples, we
utilize the following notations

|eN(x)| = |y(x) − yN(x)|, ‖eN‖∞ = max
x∈[0 1]

|eN(x)|,

in which y(x) and yN(x) allude to the exact and approximate solutions, respectively.

Example 6.1. Let (1) be as follows

Dα
∗ y(x) = p(x)y(x) +

∫ x

0

y(t)

(x − t)
1
2

dt + 1(x), (20)

where

p(x) = −
16
15

x
1
2 , 1(x) = 2x,

with the initial condition y(0) = 0. The exact solution of (16) when α = 1 is y(x) = x2.
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Suppose N = 2 and α = 1. After computation of relevant matrices and considering the initial value, the
final augmented matrix is acquired as follows

[W̃; G̃] =

 1 −1/2 1/6 ; 0
−394/597 713/577 −111/7064 ; 1
−14/15 6/5 10/9 ; 2

 .
Accordingly, the Bernoulli coefficients a0, a1 and a2 are

a0 = 1/3, a1 = 1, a2 = 1.

Therefore, the solution of (20) for N = 2, y(0) = 0 and α = 1 is calculated as

y2(x) = a0B0(x) + a1B1(x) + a2B2(x)

=
(1

3

)
(1) + (1)

(
x −

1
2

)
+ (1)

(
x2
− x +

1
6

)
= x2.

This problem has been solved in [33] with α = 1, approximately. The important point to mention is that
the present method concludes the exact solution. Also, Figure 1 portrays the treatment of solution for N = 2
and various amounts of α. We realize that when α tends to 1, approximate solutions are close to the exact
solution for α = 1.

x
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y 2
(x

)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

α=0.55
α=0.65
α=0.75
α=0.85
α=0.95
α=1.00

Figure 1: Solution of Example 6.1 for N = 2 and different α

Example 6.2. We consider the following Abel’s integral equation

y(x) =
1

√
x + 1

+
π
8
−

1
4

arcsin
(1 − x

1 + x

)
−

1
4

∫ x

0

y(t)

(x − t)
1
2

dt,

with the exact solution y(x) = 1
√

x+1
.
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Notice that α = 0. Applying the proposed scheme for N = 4 and N = 8, we specify

y4(x) = 0.05055244x4
− 0.1859123x3 + 0.3386473x2

− 0.4961732x + 1.0,

and

y8(x) = 0.007695764x8
− 0.04292183x7 + 0.1122915x6

− 0.1915496x5

+ 0.256009x4
− 0.3090655x3 + 0.3746316x2

− 0.4999841x + 1.0 .

Table 1 compares the numerical solutions of our method with those of Block-Pulse functions method [34]
and Legendre wavelets method [45]. Obviously, the present method is in better agreement with exact
solution. Figure 2 is devoted to L∞ error of this problem for 1 ≤ N ≤ 10. It is clear that when N is increased
sufficiently, the error decreases.

Table 1: Comparison of present method with BPFs [34] and LWs [45] methods for Example 6.2

x BPFs method [34] LWs [45] Present method Exact solutionk = 16 k = 32 k = 64 k = 1,M = 5 N = 4 N = 8
0.0 0.997340 0.999123 0.999993 0.999432 1.000000 1.000000 1.000000
0.2 0.911748 0.912305 0.912873 0.912320 0.912905 0.912871 0.912871
0.4 0.848041 0.845156 0.845154 0.845321 0.845110 0.845154 0.845154
0.6 0.788293 0.790527 0.790562 0.790539 0.790604 0.790569 0.790569
0.8 0.746027 0.745361 0.745316 0.745342 0.745315 0.745356 0.745356
1.0 0.704230 0.707120 0.707103 0.707163 0.707114 0.707107 0.707107

N
1 2 3 4 5 6 7 8 9 10

||e
N

|| ∞

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

Figure 2: L∞ error of Example 6.2 for N = 1, . . . , 10

Example 6.3. Consider (1) in the following

D
1
3
∗ y(x) = p(x)y(x) +

∫ x

0

y(t)

(x − t)
1
2

dt + 1(x), (21)
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where

p(x) = −
32
35

x
1
2 , 1(x) =

6x
8
3

Γ
(

11
3

) +

32
35

+
Γ
(

1
2

)
Γ
(

7
3

)
Γ
(

17
6

)  x
11
6 + Γ

(7
3

)
x,

with initial value y(0) = 0. The exact solution of (21) is y(x) = x3 + x
4
3 .

We apply the present method for solving (21) with the aforesaid initial condition. Figure 3 indicates L∞ error
for 1 ≤ N ≤ 15. It yields that for large enough N, the infinity norm of error decreases. Table 2 summarizes
the results of present method for N = 3, 7, 10, 15. It also exposes that in comparison with Sinc-Galerkin (SG)
method [38] for N = 30, our method provides more accurate solutions for (21) by smaller number of basis
functions.

N
2 4 6 8 10 12 14

||e
N

|| ∞

10-4

10-3

10-2

10-1

100

101

Figure 3: L∞ error of Example 6.3 for N = 1, . . . , 15

Table 2: |eN(x)| of SG method [38] and our method for Example 6.3

x SG, N = 30 [38] Present method
N = 3 N = 7 N = 10 N = 15

0.1 1.76957e-3 1.15359e-2 1.39847e-3 4.50863e-4 1.40173e-4
0.2 1.60604e-4 1.14446e-2 8.10077e-4 3.29955e-4 1.18347e-4
0.3 5.18220e-3 9.43810e-3 8.00536e-4 3.23756e-4 1.15312e-4
0.4 2.79194e-3 7.72486e-3 8.30684e-4 3.28951e-4 1.18204e-4
0.5 3.69227e-4 7.00071e-3 8.46847e-4 3.42813e-4 1.23729e-4
0.6 5.05652e-3 7.32665e-3 8.97221e-4 3.59210e-4 1.30666e-4
0.7 5.53609e-4 8.42791e-3 9.52796e-4 3.77599e-4 1.38411e-4
0.8 3.04882e-3 9.82763e-3 9.89910e-4 3.94238e-4 1.46628e-4
0.9 2.94377e-3 1.09167e-2 1.07960e-3 4.10377e-4 1.54998e-4
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7. Conclusion

The fractional Volterra integro-differential equation involving weakly singular kernel is an applied
equation and solving it exactly is usually difficult. Unlike the equations with non-singular kernels, there
are a few articles in the literature related to the solution of this special type of integro-differential equations.
This paper proposed a convenient scheme by means of Bernoulli polynomials, matrix operations and
collocation method for solving the mentioned problem.

One of the profitable characteristics of the suggested method was that all of the calculations were
displayed in the matrix form. This manner causes simplicity in the computer programming. Furthermore,
if the problem has an exact solution in the polynomial form, one can find it by using small number of
collocation nodes. To get the best approximate solution of the equation, the truncation limit N must be
chosen large enough. The comparison between the numerical results of our method with exact solution
and other existing methods revealed that our method generates noticeable approximations.

We also think that the discussed approach can be developed to a system of fractional singular Volterra
integro-differential equations, which will be suitable matter for future study.
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