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Abstract. The object of the present paper is to study biharmonic Legendre curves, locally φ-symmetric
Legendre curves and slant curves in 3-dimensional Kenmotsu manifolds admitting semisymmetric metric
connection. Finally, we construct an example of a Legendre curve in a 3-dimensional Kenmotsu manifold.

1. Introduction

In the study of contact manifolds, Legendre curves play an important role, e.g., a diffeomorphism of
a contact manifold is a contact transformation if and only if it maps Legendre curves to Legendre curves.
Legendre curves on contact manifolds have been studied by C. Baikoussis and D.E. Blair [1].

The study of Legendre curves on S3 with pseudo-Hermitian connection has been initiated by J. T. Cho
[4]. Again C. Özgür and M.M. Tripathi [12] studied Legendre curves on α-Sasakian manifolds. Moreover
Legendre curves and slant curves have been studied by several authors such as Calin et al. [3] and
Welyczko ([21], [22]) and many others. The notion of Kenmotsu manifolds was introduced by K. Kenmotsu
[10]. Kenmotsu manifolds have been studied by several authors such as G. Pitis [18], U.C. De and G. Pathak
[5], J-B. Jun, U.C. De and G. Pathak [9], V.F. Kirichenko [11] and many others.

In the present paper, we are interested to study Legendre curves in 3-dimensional Kenmotsu manifolds.
The present paper is organized as follows: After preliminaries in section 3, we study biharmonic Legendre
curves with respect to semisymmetric metric connection in a 3-dimensional Kenmotsu manifold. In the next
section we consider locally φ-symmetric Legendre curves with respect to semisymmetric metric connection
in a 3-dimensional Kenmotsu manifold. Section 5 is devoted to study slant curves in 3-dimensional
Kenmotsu manifolds admitting semisymmetric metric connection. Finally, we construct an example of a
Legendre curve in a 3-dimensional Kenmotsu manifold.
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2. Preliminaries

Let M be a connected almost contact metric manifold with an almost contact metric structure (φ, ξ, η, 1),
that is, φ is an (1, 1) tensor field, ξ is a vector field, η is an 1-form and 1 is a compatible Riemannian metric
such that [2]

φ2(X) = −X + η(X)ξ, η(ξ) = 1, φξ = 0, η ◦ φ = 0, (1)

1(φX, φY) = 1(X,Y) − η(X)η(Y), (2)

1(X, ξ) = η(X), 1(φX,Y) = −1(X, φY), (3)

for all X,Y ∈ χ(M).
An almost contact manifold is called a Kenmotsu manifold if

(∇Xφ)Y = −1(X, φY) − η(Y)φX (4)

and

∇Xξ = X − η(X)ξ. (5)

In [5], De and Pathak studied 3-dimensional Kenmotsu manifolds and obtain the expression of the curvature
as follows:

R(X,Y)Z = (
r
2

+ 2)[1(Y,Z)X − 1(X,Z)Y] − 1(Y,Z)(
r
2

+ 3)η(X)ξ + 1(X,Z)(
r
2

+ 3)η(Y)ξ (6)

+(
r
2

+ 3)η(Y)η(Z)X − (
r
2

+ 3)η(X)η(Z)Y.

A linear connection ∇̃ on a Riemannian manifold is called symmetric if the torsion tensor of the connec-
tion is zero on the manifold. The connection is called semisymmetric [20] if the torsion τ̃t of ∇̃ satisfies

τ̃t(X,Y) = η(Y)X − η(X)Y, (7)

where η is a nonzero 1-form.
The connection ∇̃ is said to be a semisymmetric metric connection if

∇̃1 = 0.

The semisymmetric metric connection ∇̃ and the Levi-Civita connection ∇ on an almost contact metric
manifold are related by [17]

∇̃XY = ∇XY + η(Y)X − 1(X,Y)ξ, (8)

for all vector fields X,Y on M. Semisymmetric metric connections have been studied by several authors
such as U. C. De ([6]) and Özgür et al. ([13], [14], [15]) and many others.

A curve γ on M is called a Frenet curve with respect to the semisymmetric metric connection if

∇̃TT = κ̃N, (9)

∇̃TN = −κ̃T + τ̃B, (10)

∇̃TB = τ̃N, (11)

where κ̃ = |∇̃TT| and τ̃ are the curvature and torsion with respect to the semisymmetric metric connection,
T = γ̇,N,B is the Frenet frame along γ.

For the semisymmetric metric connection, we can also define the helix, circle and geodesic by using
the same method as in [4]. A helix is a curve where both its curvature and torsion with respect to the
semisymmetric metric connection are constants. In particular, curves with constant nonzero curvature and
zero torsion are called circles with respect to the semisymmetric metric connection. Note that the geodesics
are regarded as helices where both their curvature and torsion are zero.

A Frenet curve γ in an almost contact metric manifold is said to be a Legendre curve if it is an integral
curve of the contact distribution D = kerη. Formally, it is also said that 1(γ̇, γ̇) = 1, η(γ̇) = 0.
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3. Biharmonic Legendre Curves with Respect to Semisymmetric Metric Connection

Definition 3.1. [8] A Legendre curve on a 3-dimensional Kenmotsu manifold will be called biharmonic with respect
to semisymmetric metric connection ∇̃ if it satisfies

∇̃
3
TT + ∇̃Tτ̃

t(∇̃TT,T) + R̃(∇̃TT,T)T = 0, (12)

where τ̃t is torsion of semisymmectric connection and T is tangent vector field of the curve.

Let us consider a Legendre curve γ. Let T be the tangent vector field of γ. We take {T, φT, ξ} be an
orthonormal right handed system when φT = −N, φN = T.

For a semisymmetric metric connection

∇̃Tτ̃
t(∇̃TT,T) = 0. (13)

Hence (12) reduces to

∇̃
3
TT + κ̃R̃(N,T)T = 0. (14)

Let R̃ and R be the Riemannian curvature tensor with respect to the semisymmetric metric connection and
Levi-Civita connection respectively. Then the relation between R̃ and R is given by [20]

R̃(X,Y)Z = R(X,Y)Z − L(Y,Z)X + L(X,Z)Y − 1(Y,Z)FX + 1(X,Z)FY, (15)

where L is a tensor field of type (0, 2) given by

L(Y,Z) = (∇Yη)Z − η(Y)η(Z) +
1
2
η(ξ)1(Y,Z) (16)

F is a tensor field of type (1, 1) given by 1(FY,Z) = L(Y,Z) for any vector field Y,Z on M.

Using (5) in (16), we have

L(Y,Z) =
3
2
1(Y,Z) − 2η(Y)η(Z). (17)

Considering 1(FY,Z) = L(Y,Z) in the above equation we obtain

FY =
3
2

Y − 2η(Y)ξ. (18)

Substituting (17) and (18) into (15) we get for a 3-dimensional Kenmotsu manifold [17]

R̃(X,Y)Z = R(X,Y)Z − 3[1(Y,Z)X − 1(X,Z)Y] + 2[1(Y,Z)η(X)ξ − 1(X,Z)η(Y)ξ] (19)
+2η(Z)[η(Y)X − η(X)Y].

For a Legendre curve η(T) = 0, η(N) = 0, because we have considered Frenet Frame as {T, φT, ξ} where
φT = −N. Using this facts in (19) and considering (6), we get

R̃(N,T)T = (
r
2
− 1)N. (20)

By Frenet formula (9),(10) and (11) we get

∇̃
3
TT = −3κ̃κ̃′T + (κ̃′′ − κ̃3

− κ̃τ̃3)N + (2τ̃κ̃′ + κ̃τ̃′)B, (21)

where N = −φT, B = ξ.
In view of (20) and (21) we obtain

∇̃
3
TT + κ̃R̃(N,T)T = −3κ̃κ̃′T + [(κ̃′′′ − κ̃3

− κ̃τ̃2) + κ̃(
r
2
− 1)N] + (2τ̃κ̃′ + κ̃τ̃′)B. (22)

By virtue of (14) and observing the component from right hand side of (22), we get k̃ and τ̃ e are constant
such that k̃2 + τ̃2 = 1 − 1

2 r. Hence we can state the following theorem:

Theorem 3.2. Letγ be a nongeodesic biharmonic Legendre curve with respect to the semisymmetric metric connection
on a 3-dimensional Kenmotsu manifold. Then it is a helix of the semisymmetric metric connection such that
k̃2 + τ̃2 = 1 − 1

2 r. The converse statement is true when the torsion tensor is constant along γ.
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4. Locally φ-Symmetric Legendre Curves

The notion of Locally φ-symmetric Legendre curves was introduced in the paper [19].

Definition 4.1. With respect to the semisymmetric metric connection a Legendre curve on a 3-dimensional Kenmotsu
manifold is called locally φ-symmetric if it satisfies

φ̃2(∇̃TR̃)(∇̃TT,T)T = 0. (23)

Let us consider a Legendre curve γ. Now proceeding in the same way as in the previous section, we get

R̃(∇̃TT,T)T = κ̃(
r
2
− 1)N. (24)

By definition of covariant differentiation of R̃ we get

(∇̃TR̃)(∇̃TT,T) = ∇̃TR̃(∇̃TT,T)T − R̃(∇̃2
TT,T)T − R̃(∇̃TT, ∇̃TT)T − R̃(∇̃TT,T)∇̃TT. (25)

Using Frenet formula, we get from the above relation

(∇̃TR̃)(∇̃TT,T) = ∇̃TR̃(∇̃TT,T)T − κ̃′R̃(N,T)T + κ̃2R̃(T,T)T − κ̃τ̃R̃(B,T)T − κ̃2R̃(N,N)T − κ̃2R̃(N,T)N. (26)

After some straight forward calculations we have

(∇̃TR̃)(∇̃TT,T) = κ̃′(
r
2
− 1)N + κ̃(

r
2
− 1)′N + κ̃(

r
2
− 1)(−κ̃T + τ̃B) (27)

−κ̃′(
r
2
− 1)N − κ̃τ̃(

r
2
− 1)B − κ̃2(1 −

r
2

)T,

where ′ denotes differentiation. From (27) we have

(∇̃TR̃)(∇̃TT,T) = κ̃(
r
2
− 1)′N. (28)

Applying φ2 in both sides of the above equation

φ2(∇̃TR̃)(∇̃TT,T) = −κ̃(
r
2
− 1)′N. (29)

By virtue of (4.1) in Definition 2 and the above relation we observe that: A necessary and sufficient condition
for a Legendre curve on a 3-dimensional Kenmotsu manifold to be locally φ-symmetric with respect to the
semisymmetric metric connection ∇̃ is either κ̃ = 0, or r=constant.

If r =constant, the original manifold is locally φ-symmetric and hence the curve is trivially locally
φ-symmetric. If r is a non-zero constant, then the curve will be locally φ-symmetric if and only if κ̃ = 0. So,
we can state the following:

Theorem 4.2. There exists no non-geodesic locally φ-symmetric Lengendre curves on a three dimensional Kenmotsu
manifolds with respect to the semisymmetric metric connection.

5. Slant curves in 3-dimensional Kenmotsu manifolds admitting semisymmetric metric connection

Definition 5.1. [4] A Frenet curve is called a slant curve if it makes a constant angle with the Reeb vector field ξ.

Hence a curve γ on an almost contact metric manifold is a slant curve if η(γ̇) = cosθ and 1(γ̇, γ̇) = 1,
where θ is a constant, called the slant angle. In particular, if the angle is π/2, the curve becomes a Legendre
curve. Slant curves in trans Sasakian manifolds have been studied by S. Güvenç and C. Özgür [7]. They
have given examples of Slant curves.



W. Tang et al. / Filomat 32:10 (2018), 3651–3656 3655

In this section, we are interested to study slant curves on 3-dimensional Kenmotsu manifolds with
respect to semisymmetric metric connection. Let us consider a slant curve γ on a Kenmotsu manifold with
respect to the semisymmetric metric connection. Here γ′(s) = T(s) is given by

cosθ(s) = η(γ′(s))
= 1(T(s), ξ), (30)

where θ is a constant slant angle. Since ∇̃ is semi-symmetric metric connection, ∇̃1 = 0. So,

∇̃T1(T, ξ) − 1(∇̃TT, ξ) − 1(T, ∇̃Tξ) = 0. (31)

Now 1(T, ξ) = cosθ(s). Hence ∇̃T1(T, ξ) = − sinθ(s)θ′(s).
Again from the relation between ∇̃ and ∇, we get

∇̃Tξ = ∇Tξ − T − cosθξ.

Using the above results and (2.9) in (5.2), we get

− sinθ(s)θ′(s) = κ̃η(N) − 2 cos2 θ.

For θ=constant, the above equation reduces to

κ̃η(N) = 2 cos2 θ. (32)

Consider θ , π/2, from (5.3), we get κ̃ , 0.
Thus we can state the following:

Theorem 5.2. A non-Legendre slant curve on a three-dimensional Kenmotsu manifold with respect to the semisym-
metric metric connection is never a geodesic.

6. Example of a Legendre Curve in a 3-Dimensional Kenmotsu Manifold

Let us consider the 3-dimensional manifold M = {(x, y, z) ∈ R3 : (x, y, z) , (0, 0, 0)}, where (x, y, z) are the
standard coordinates in R3. The vector fields

e1 = e−z ∂
∂x
, e2 = e−z ∂

∂y
, e3 =

∂
∂z
,

are linear independent at each point of M. Let 1 be the metric defined by

1(ei, e j) = 1, f or i = j,
= 0, f or i , j.

Here i and j runs from 1 to 3.
Let η be the 1-form defined by η(Z) = 1(Z, e3), for any vector field Z tangent to M. Let φ be the (1, 1)

tensor field defined by

φe1 = −e2, φe2 = e1, φe3 = 0.

Then we have

[e1, e2] = 0, [e1, e3] = e1, [e2, e3] = e2.

From Koszul’s formula, the Riemannian connection we have

∇e1 e1 = −e3, ∇e1 e3 = e1,
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∇e2 e1 = 0, ∇e2 e2 = −e3, ∇e2 e3 = e2,

∇e3 e1 = 0, ∇e3 e2 = 0, ∇e3 e3 = 0.

∇Xξ = X − η(X)ξ is satisfied for ξ = e3. Hence the manifold is a Kenmotsu manifold.

Consider the curve γ : I −→M = R3 by γ(s) = (
√

2
3 s,
√

1
3 s, 1).

Thus

1(γ̇, e3) = η(γ̇)

= 1(

√
2

3
e1 +

√
1
3

e2, e3)

= 0,

and

1(γ̇, γ̇) = 1(

√
2

3
e1 +

√
1
3

e2,

√
2

3
e1 +

√
1
3

e2)

= 1.

Therefore the curve γ is a Legendre curve.
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[13] Özgür, C. and Sular, S., Generalized Sasakian space forms with semi-symmetric metric connections, An. Stiint. Univ. Al. I. Cuza

Iasi. Mat. (N.S.) 60(2014) 145-156.
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