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Abstract. Let (X, d) be a complete metric space and let f : X→ X satisfy inf{α(x, y)d( f m(x), f m(y)) : m ∈ J} ≤
Kd(x, y) for all x, y ∈ X and some K ∈ (0, 1) and α : X × X → [0,∞), where J is a set of positive integers. In
this paper, we prove fixed point theorems for this mapping f . We also discuss the connection with tiling
problems and give a titling proof of a fixed point theorem.

1. Introduction and preliminaries

The well-known Banach contraction principle states that every contraction from a complete metric space
into itself has a unique fixed point. It has played a fundamental role in various areas of pure and applied
sciences. During the last 50 years, it has been generalized and extended in many ways by a number of au-
thors. In [4], following interesting conjecture, connected with Banach’s fixed point theorem, was considered.

Conjecture I. Let (X, d) be a complete metric space and let f : X→ X satisfy the following condition:

(1) inf{d( f n(x), f n(y)) : n ∈ J} ≤ Kd(x, y)

for all x, y ∈ X and some K ∈ (0, 1), where J is a set of positive integers. Then f has a fixed point.

Remark

1. The condition (1) does not imply the continuity of f .

2. If J = {1} in the condition (1), then T is a contraction on X.

3. If f k is a contraction, then the condition (1) holds.

We also note that the case J = {1} corresponds to the Banach contraction principle and the case J = {k},
where k ∈ N, to a result in [3]. It was shown in [4, 8] that Conjecture I is not true when J = N, the set of
natural numbers.
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Example 1.1. [8] Let X = [0,∞) with the usual metric d(x, y) = |x − y| for all x, y ∈ X. Define a mapping
f : X→ X by

f (x) =
√

x2 + 1

for all x ∈ X. Then f n(x) =
√

x2 + n for all x ∈ X and, for all x, y ∈ X with x < y, we can find K ∈ (0, 1) such
that

inf{| f n(x) − f n(y)| : n ∈N} ≤ K|x − y|.

However, it is clear that f has no fixed points.

Let f : X → X be a mapping and α : X × X → [0,∞). We say that f is (1) α-admissible [7] if x, y ∈ X and
α(x, y) ≥ 1 implies α( f (x), f (y)) ≥ 1; (2) triangular α-admissible [5] if (a) α(x, y) ≥ 1 implies α( f (x) , f

(
y
)
) ≥ 1,

x, y ∈ X; (b)
{
α(x, y) ≥ 1
α(y, z) ≥ 1 implies α(x, z) ≥ 1, x, y, z ∈ X. Fixed point results for α-admissible mappings can

be found in [1, 2, 5–7].

In this paper, we consider the following generalization:

Conjecture II. Let (X, d) be a complete metric space and let f : X→ X satisfy the following condition:

(2) inf{α(x, y)d( f m(x), f m(y)) : m ∈ J} ≤ Kd(x, y)

for all x, y ∈ X and some K ∈ (0, 1) and α : X ×X→ [0,∞), where J is a set of positive integers. Then f has a
fixed point.

Example 1.2. Let X = R with the usual metric d(x, y) = |x − y| for all x, y ∈ X. Define a mapping f : X → X
by

f (x) =


√

x2 + 1 if x ≥ 0
2x otherwise,

and α : X × X→ [0,∞) by

α(x, y) =

1 if x, y ∈ [0,∞)
0 otherwise.

Then f n(x) =
√

x2 + n for x ∈ [0,∞) and f n(x) = 2nx otherwise. Note that for all x, y ∈ X, we can find
K ∈ (0, 1) such that

inf{α(x, y)| f n(x) − f n(y)| : n ∈N} ≤ K|x − y|.

So f satisfies (2). However, f does not satisfy (1). To see this, let x = −1 and y = 0, then

inf{| f n(−1) − f n(0)| : n ∈N} = inf{2n +
√

n : n ∈N} > K| − 1 − 0|

for all K ∈ [0, 1). It is clear that f has no fixed points.

Taking α(x, y) = 1 for all x, y ∈ X, it follows that if Conjecture 1 holds then Conjecture 2 holds as well. We
note that Conjecture II is not true for infinite J. One is led to conjecture whether Conjectures I and II are true
if J is finite. In [8], Stein established that Conjecture I holds for the class of strongly continuous mappings
and J = {1, 2, . . ,n}. In [4], the authors showed that Conjecture I is true if J = {1, 2} without any additional
assumption on f . In this paper we show that Conjecture II is true for J = {1, 2}. We also give a titling proof
of our result.
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2. Main results

2.1. Fixed point theorems

Theorem 2.1. Let (X, d) be a metric space and let f : X→ X satisfy the following condition:

inf{α(x, y)d( f m(x), f m(y)) : m ∈N} ≤ Kd(x, y)

for all x, y ∈ X, some K ∈ (0, 1) and α : X × X→ [0,∞). Suppose that
(i) f is α−admissible;
(ii) there exist x0 ∈ X with α(x0, f (x0)) ≥ 1 and m ∈N such that f m(x0) = x0.
Then x0 is a fixed point of f .

Proof. Let x0 ∈ X with α(x0, f (x0)) ≥ 1 and f m(x0) = x0. Define the sequence {xi} in X by xi+1 = f (xi) for
i ∈N ∪ {0}. Then it follows from α−admissibility of f that α(x0, x1) ≥ 1⇒ α(x1, x2) = α( f (x0), f (x1)) ≥ 1 and
thus, by induction, α(xi, xi+1) ≥ 1 for all i. Choose L such that K < L < 1. Now for each i ∈ {0, 1, . . . ,m − 1},
there is mi ∈N such that

α(xi, xi+1)d( f mi (xi), f mi (xi+1)) ≤ Ld(xi, xi+1)

and so
d( f mi (xi), f mi (xi+1)) ≤ α(xi, xi+1)d( f mi (xi), f mi (xi+1)) ≤ Ld(xi, xi+1).

Since f m(x0) = x0, following arguments as in Lemma 1 of [4], we can find a sequence {ki} in {0, 1, . . . ,m − 1}
such that

d( f ki (x0), f ki+1(x0)) ≤ Ld(xki−1 , xki−1+1).

Since ki ∈ {0, 1, . . . ,m − 1}, we can find i and j inN such that ki+ j = ki. Thus

d( f ki (x0), f ki+1(x0)) = d( f ki+ j (x0), f ki+ j+1(x0))
≤ L jd(xki , xki+1 )
= L jd( f ki (x0), f ki+1(x0)).

Since L < 1, we have d( f ki (x0), f ki+1(x0)) = 0 and so f ki (x0) = f ki+1(x0) = f ( f ki (x0)). That is, f ki (x0) is a fixed
point of f . But m− ki > 0 and f m−ki ( f ki (x0)) = f ki (x0), that is, f ki (x0) is a fixed point of f m−ki . This implies that
f m(x0) = f ki (x0). But f m(x0) = x0. Therefore f m(x0) = f ki (x0) = x0. Hence x0 is a fixed point of f .

Theorem 2.2. Let (X, d) be a metric space and let f : X→ X satisfy the following condition:

min{α(x, y)d( f m(x), f m(y)) : m ∈ J} ≤ Kd(x, y)

for all x, y ∈ X and some K ∈ (0, 1) and α : X × X→ [0,∞), where J is a finite set of positive integers. Suppose that
(i) f is triangular α−admissible;
(ii) there exists x, z ∈ X such that α(x, f (x)) ≥ 1, α(z, f (z)) ≥ 1, α(z, x) ≥ 1 and for any ε > 0, there is an integer
N = N(ε) such that d(z, f i+N(x)) < ε for any i ∈ {0} ∪ J.
Then f has a fixed point.

Proof. Let ε > 0 and let δ = ε
1+K . Choose N = N(δ) as mentioned in the hypothesis such that d(z, f i+N(x)) < δ

for any i ∈ {0} ∪ J. By (i) and (ii), α(x, f N(x)) ≥ 1 and α(z, x) ≥ 1 and so α(z, f N(x)) ≥ 1. Also there exists m ∈ J
such that

α(z, f N(x))d( f m(z), f m( f N(x))) ≤ Kd(z, f N(x)).

and so

d( f m(z), f m( f N(x))) ≤ α(z, f N(x))d( f m(z), f m( f N(x)))
≤ Kd(z, f N(x)) < Kδ.
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As a result, we have

d(z, f m(z)) ≤ d(z, f m+N(x)) + d( f m+N(x), f m(z))
≤ δ + Kδ = ε.

Since J is finite, there exists m ∈ J such that f m(z) = z. By Theorem 2.1, z is a fixed point of f .

Theorem 2.3. Let (X, d) be a complete metric space and let f : X→ X be a continuous mapping satisfying

inf{α(x, y)d( f m(x), f m(y)) : m ∈N} ≤ Kd(x, y)

for all x, y ∈ X and some K ∈ (0, 1) and α : X × X→ [0,∞). Suppose that
(i) f is α−admissible;
(ii) there exist x0 ∈ X with α(x0, f (x0)) ≥ 1 and an increasing sequence {ki} of integers such that
(a) for all i ∈N, d( f ki (x0), f ki−1 (x0)) ≤ CLki−1 for some 0 < L < 1 and C > 0;
(b) there is a positive integer m such that ki − ki−1 = m for infinitely many i.
Then f has a fixed point.

Proof. It follows from (a) that the sequence { f ki (x0)} is Cauchy and so converges to x (say) by the completeness
of X. The continuity of f further implies that the limit limi→∞ f m( f ki (x0)) exists. By virtue of (b), there is a
cofinal subsequence {in} such that f m( f kin (x0)) = f kin+1 (x0). Thus { f m( f ki (x0))} and { f ki (x0))} have a common
cofinal subsequence and so have the same limits. As a result, we have

f m(x) = f m(lim
i→∞

f ki (x0)) = lim
i→∞

f m( f ki (x0)) = lim
i→∞

f ki (x0) = x.

Hence f has a periodic point and the result now follows from Theorem 2.1.

2.2. On a tiling problem and tiling proof of a fixed point theorem

Let (X, d) be a complete metric space, let x0 ∈ X, and let f : X → X be triangular α-admissible with
α(x0, f (x0)) ≥ 1 and satisfy the following condition:

min{α(x, y)d( f n(x), f n(y)) : n ∈ J} ≤ Kd(x, y)

for all x, y ∈ X and some K ∈ (0, 1), where J = {1, 2, ...,N}.
Let T(q, q + k) denote a tile of length k that starts from q. Our aim is to have a usable bound for the

term d( f q(x0), f q+k(x0)), which implies the sequence of iterates is Cauchy and its limit is the fixed point. The
idea here is to able to tile that segment of the line that goes from q to q + k with T(q, q + l), a tile that starts
from q and is of length l. In order to obtain a collection of titles whose metric analog is a Cauchy sequence,
following [4] we have the following notion. A set of tiles E is called a good collection of titles if there exist
C > 0 and 0 < L < 1 such that for all titles T(q, q + k) in E,

d( f q(x0), f q+k(x0)) ≤ CLq.

Our titling problem affects fixed point theorems and consists of an initial good collection of titles, set of
rules which enable us to enlarge the collection, and a goal showing that the good collection can be enlarged
according to rules such that it includes a pre-determined sub-collection of titles. For instance, our objective
is to enlarge the original good collection such that it contains all but finitely many adjacent titles of the
same length. If a tile of length of 4 starts from 5 and covers 5 – 6, 6 – 7, 7 – 8, 8 – 9, then the next adjacent
titles of length 4 starts at 9 and covers 9 – 10, 10 – 11, 11 – 12, 12 – 13. Suppose that the good collection
of titles consists of adjacent titles of length 4, starting at 5, which cover all but a finite portion of the real
line corresponds to showing that the sequence { f 5(x0), f 9(x0), f 13(x0), ...} Cauchy and thus converges. If f
satisfies assumption of results of previous section, then f has a periodic point and thus has a fixed point.
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We present some rules defined in [4] which lead to tiling proof of our fixed point theorem.

Rule 1. Suppose that we have a good collection E of tiles. Then there is a good collection E′ with E ⊂ E′ having the
following property: If T(q, q + k) lies in E′, then at least one of the tiles T(q + 1, q + k + 1), T(q + 2, q + k + 2), ..., T(q +
N, q + k + N) lies in E′.

If T(q, q + k) lies in E, then d( f q(x0), f q+k(x0)) ≤ CLq. Since α(x0, f (x0)) ≥ 1, f is triangular α-admissible,
α( f (x0) , f 2 (x0)) ≥ 1, and so α(x0, f 2 (x0)) ≥ 1. By induction, we have α(x0, f k (x0)) ≥ 1 for all k ∈ N. Since
f is α-admissible, we have, by induction, α( f q(x0), f q+k(x0)) ≥ 1. By the assumption on f , there exists
j1 ∈ {1, ...,N} such that

α( f q(x0), f q+k(x0))d( f q+ j1 (x0), f q+k+ j1 (x0)) ≤ Kd( f q(x0), f q+k(x0))

and so

d( f q+ j1 (x0), f q+k+ j1 (x0)) ≤ α( f q(x0), f q+k(x0))d( f q+ j1 (x0), f q+k+ j1 (x0))

≤ Kd( f q(x0), f q+k(x0)) ≤ KCLq.

Continuing in this way, we can find a sequence { jn : n = 1, 2, 3, ...} such that d( f q+ j1 (x0), f q+k+ j1 (x0)) ≤ KnCLq

and 1 ≤ jn+1 − jn ≤ N. Thus n ≤ jn ≤ nN which implies n ≥ jn
N and Kn

≤ K
jn
N . So d( f q+ jn (x0), f q+k+ jn (x0)) ≤

CRq+ jn , where R = max{K
1
N ,L}. Consequently, the collection E′ is obtained from E by adjoining all tiles of

the from T(q + in, q + in + k) with constants of the collections E′, C > 0 and 0 < R < 1.

Rule 2. Suppose that we have a good collection E of tiles. Then there is a good collection E′ with E ⊂ E′ having the
following property: If T1 and T2 are adjacent tiles in E with T1 preceding T2, then E′ contains the tile that begins at
the start of T1 and ends at the end of T2.

If T(q, q + k) lies in E, then d( f q(x0), f q+k(x0)) ≤ CLq. Suppose that i < n < p and that T1 = T(i, i + n) and
T2 = T(i + n, i + n + p). Then

d( f i(x0), f i+n+p(x0)) ≤ d( f i(x0), f i+n(x0)) + d( f i+n(x0), f i+n+p(x0))
≤ CLi + CLi+n = C(1 + Ln)Li

≤ 2CLi.

The collection E′ is obtained from E by adjoining all sum of two adjacent tiles in E with constants of the
collections E′, 2C > 0 and 0 < L < 1.

Rule 3. Suppose that we have a good collection E of tiles and that q ∈ N is fixed. Then there is a good collec-
tion E′ with E ⊂ E′ having the following property: If E contains two tiles which either begin or end at the same
point, then the longer tile is of length less than or equal to q, thenE′ contains the difference of the shorter and longer tiles.

Suppose i < n < p. We consider two cases. Case 1: If the titles T(i, i + p) and T(i, i + n) belong to E, then

d( f i+n(x0), f i+p(x0)) ≤ d( f i+n(x0), f i(x0)) + d( f i(x0), f i+p(x0))

≤ CLi + CLi = 2CLi =
2C
Ln−i Ln

≤
2C
Lq Ln.

Here we assume that the longer tile is of length less than or equal to q.
Case 2: If the tiles T(i, i + p) and T(i + n, i + p) belong to E, then

d( f i(x0), f i+n(x0)) ≤ d( f i(x0), f i+p(x0)) + d( f i+p(x0), f i+n(x0))

≤ CLi + CLi+n = C(1 + Ln)Li
≤

2C
L

i

≤
2C
Lq Li.
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The collection E′ is obtained from E by adjoining all differences of tiles of length less than or equal to q in E
which begin or end at the same point with constants of the collections E′, 2C

Lq > 0 and 0 < L < 1.

Applying the above rules, we are able to prove the following fixed point theorem. Note that any finite
collection of tiles is a good collection for any constant L < 1, by choosing the constant C sufficiently large.

Theorem 2.4. Let (X, d) be a complete metric space and let f : X→ X satisfy the following condition:

min{α(x, y)d( f m(x), f m(y)) : m = 1, 2} ≤ Kd(x, y)

for all x, y ∈ X and some K ∈ (0, 1) and α : X × X→ [0,∞). Suppose that
(i) f is continuous and triangular α−admissible;
(ii) there exist x0 ∈ X with α(x0, f (x0)) ≥ 1.
Then the sequence { f q(x0)} is Cauchy and f has a fixed point (which is the limit of the sequence).

Proof. We follow [4]. Let E0 be the good collection consisting of tiles T(0, 1) and T(0, 2). Applying Rule 1 to
E0 to get a good collection E1. Observe that if T(q, q + 1), with q ≥ 1, does not lie in E1, then both T(q − 1, q)
and T(q + 1, q + 2) lie in E1. Similarly, if T(q, q + 2), with q ≥ 1, does not lie in E1, then both T(q− 1, q + 1) and
T(q + 1, q + 3) lie in E1. Since all tiles in E1 are of length less than or equal to 2, we obtain a good collection
E2 by applying Rule 3 to E1. We claim that E2 includes the tile T(q, q + 1) for q ≥ 2. If T(q, q + 1) lies in E1,
then we are done since E1 ⊂ E2. If T(q, q + 1) does not lie in E1, then both T(q − 1, q) and T(q + 1, q + 2) lie
in E1. If T(q − 1, q + 1) lies in E1, then applying Rule 3 to tiles T(q − 1, q + 1) and T(q − 1, q) both belonging
to E1 to get the tile T(q, q + 1) lies in E2. If T(q − 1, q + 1) does not lie in E1, then applying Rule 3 to tiles
T(q, q + 2) and T(q + 1, q + 2) both belonging to E1 to get the tile T(q, q + 2) lies in E1 and T(q, q + 1) lies in E2.
This implies that d( f q(x0), f q+1(x0)) ≤ CLq for q ≥ 2. Suppose p = q + k for k ≥ 1. Then

d( f q(x0), f p(x0)) ≤ d( f q(x0), f q+1(x0)) + d( f q+1(x0), f q+2(x0)) +

... + d( f n+k−1(x0), f n+k(x0))

≤ CLq + CLq+1 + ... + CLq+k

≤

∞∑
n=q

CLn.

Since 0 < L < 1, the sequence { f q(x0)} is Cauchy and so converges to x ∈ X. Since f is continuous, { f q+1(x0)}
converges to f (x). Since d(x, f (x)) = limn→∞ d( f q(x0), f q+1(x0)) = 0, this implies that x is a fixed point of f .

Taking α(x, y) = 1 for all x, y ∈ X, we get the following corollary. Note that in this case we do not require
the continuity of f instead we apply Theorem 2.2. Indeed, { f q(x0)} is a Cauchy sequence as above and so
converges to x ∈ X. Thus for any ε > 0, there is an integer N = N(ε) such that d( f i+N(x0), z) < ε for all
i ∈ {0} ∪ J. So, by Theorem 2.2, f has a fixed point. For uniqueness, choose L such that K < L < 1. If
x = f (x) and y = f (y) with x , y. Then there exist m ∈ {1, 2} such that d( f m(x), f n(y)) ≤ Ld(x, y). This implies
d(x, y) ≤ Ld(x, y). This is a contradiction since L < 1.

Corollary 2.5. [4] Let (X, d) be a complete metric space and let f : X→ X satisfy the following condition:

min{d( f m(x), f m(y)) : m = 1, 2} ≤ Kd(x, y)

for all x, y ∈ X and some K ∈ (0, 1). Then f has a unique fixed point.

We end the paper with the following problem.



D. Abuzaid / Filomat 32:10 (2018), 3689–3695 3695

Problem Let (X, d) be a complete metric space, let x0 ∈ X, and let f : X → X be an α-admissible with
α(x0, f (x0)) ≥ 1 and satisfy the following condition:

min{α(x, y)d( f n(x), f n(y)) : n ∈ J} ≤ Kd(x, y)

for all x, y ∈ X and some K ∈ (0, 1), where J = {1, 2, ...,N}. Does f have a fixed point?
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