Filomat 32:10 (2018), 3709-3715
https://doi.org/10.2298/FIL1810709Y

Published by Faculty of Sciences and Mathematics,
University of Nis, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

An Application of Quasi-Monotone Sequences to
Absolute Matrix Summability

Sebnem Yildiz?

® Ahi Evran University, Department of Mathematics, Faculty of Arts and Sciences, Kirsehir, Turkey

Abstract. Recently, Bor [5] has obtained two main theorems dealing with |N, p,|x summability factors of
infinite series and Fourier series. In the present paper, we have generalized these theorems for |A, 0,k
summability method by using quasi-monotone sequences.

1. Introduction

A sequence (d,) is said to be d-quasi-monotone, if 4, — 0, d, > 0 ultimately, and Ad, > —0,, where
Ad, = d, — dy1 and 6=(5,) is a sequence of positive numbers (see [1]). For any sequence (A,) we write
that AA, = A, — A1, The sequence (A,) is said to be of bounded variation, denoted by (A,) € BYV, if
Yoe1 |AA,| < oo. Let Y. a, be a given infinite series with partial sums (s,). We denote by u¢ and ¢ the nth
Cesaro means of order a, with a > —1, of the sequences (s,) and (na,), respectively, that is (see [6]),

n n

a _ 1 a-1 a 1 a1l 1
u, = A_ﬁ ZAn—vSv and tn = Iq_z ZAVL—UU”U/ (tn = tn) (1)
v=0 v=1
where
1 2)....
Ac = (@+D)@a+2)..(a+n) _ Om®), A% =0 for n>0. o

n!
A series Y a,, is said to be summable | C, a |, k > 1, if (see [8], [10])
(o] (o] 1
k-1 k_ k
P IR D B T TS 3)
n=1 n=1

If we set a=1, then we have | C, 1 |, summability. Let (p,) be a sequence of positive numbers such that

P=Y pooco a5 now, (Pi=pi=0, iz1) @
v=0
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The sequence-to-sequence transformation

1 n
Wyp = P_n ; pvsv (5)

defines the sequence (w,) of the Riesz mean or simply the (N, p,) mean of the sequence (s,), generated by
the sequence of coefficients (p,,) (see [9]). The series Y a, is said to be summable |N, p,l, k > 1, if (see [2])

oo k-1
Py
Z (p_) |w, — wn—1|k < 09, (6)

n=1

In the special case when p,, = 1 for all values of n (respect. k = 1), then |N, p,|x summability is the same
as |C, 1|k (respect. [N, p,|) summability. We write X, = }.5_; 1’%/ then (X,) is a positive increasing sequence
tending to infinity with n. Let A = (a,,) be a normal matrix, i.e., a lower triangular matrix of nonzero
diagonal entries. Then A defines the sequence-to-sequence transformation, mapping the sequence s = (s;;)
to As = (A,(s)), where

n

Ay(s) = Zam,sv, n=0,1,.. (7)

v=0

Let (0,) be any sequence of positive real numbers. The series ) a, is said to be summable |A, 0,|;, k > 1, if
(see [11])

i [ ‘AA,,(S)'k < 00, 8)
n=1

where
AA,(8) = An(s) — An-1(9). )

A, pn|k summability (see [12]), and if we take
PVI
- P
| N, pu |, summability. Furthermore, if we take 0, = n, a,, = lp,—; and p, = 1 for all values of n, then |A, 0,

If we take 6,, = %, then |A, 0, summability, then we have

0, = n, then we have |A|; summability (see [13]). And also if we take 8,, = =* and a,, = %’ then we have

summability reduces to |C, 1|, summability (see [8]). Finally, if we take 0, = n and a,, = lp,—’n’, then we obtain
R, pn(k summability (see [3]).

2. Known Results
The following theorem is known dealing with |N, p,|x summability of infinite series (see [5]).
Theorem 2.1. Let A, — 0as n — oo and let (p,) be a sequence of positive numbers such that
P, =0O(np,) asn — oo. (10)

Suppose that there exists a sequence of numbers (A,) which is 6-quasi-monotone with ), nX,0, < oo, Y, A, X, is
convergent, and |AA,| < |Ay| for all n. If

P Il
Z P—”X”k_l = O(X,) as m— oo, 11)

n=1

satisfies, then the series Y, ay A, is summable N, pulx, k > 1.
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3. Main Results

The aim of this paper is to generalize Theorem 2.1 for |A, 0,|x summability factors of infinite series, and
is to apply this theorem to Fourier series.

Before stating the main theorem, we must first introduce some further notations.

Given a normal matrix A = (a,,), we associate two lower semimatrices A = (d,,,) and A= (@) as follows:

n

Anp = 2 ayi, n,0=01,... Aay =a,— an-1p, 0-10= 0 (12)

i=v
and
doo = doo = Aoo, Apo = Ay, n=1,2,.. (13)

It may be noted that A and A are the well-known matrices of series-to-sequence and series-to-series trans-
formations, respectively. Then, we have

n n

Au(s) = Zanvsv = Z Aoy (14)
v=0 v=0
and
RAWS) = ) Aot (15)
v=0

Theorem 3.1. Let A, — 0as n — oo and let (p,) be a sequence of positive numbers satisfying the condition (10).
Suppose that there exists a sequence of numbers (Ay) which is 6-quasi-monotone with Y, nX,0, < o, Y, A, Xy is
convergent, and |AM,| < |A,| for all n. Let (0,a,,) be a non-increasing sequence. If A = (a,,) is a positive normal
matrix such that

a0=1n=0,1,.., (16)

Ap-1p 2 Ay, for n>v+1, (17)

ﬁn,v+1 = O(U|Aﬂnv|)r (18)

Z Qﬁ_la’fm% =0X,) as m— o, (19)
n=1 X”’

then the series ) a, A, is summable |A, Oy, k > 1.
We need the following lemma for the proof of Theorem 3.1.

Lemma 3.2. ([4]) Under the conditions of Theorem 2.1, we have that

[0 X = O(1) asn — oo, (20)
nXylA,l = O(1)asn — oo, (21)
Y nXulAA, < oo. (22)

n=1

4. Proof of Theorem 3.1
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Proof. Let (V,,) denotes the A-transform of the series )., ; a,A,. Then, by (14) and (15), we have
AV, =) dnetio.

v=1

Applying Abel’s transformation to this sum, we get that

n n—-1
- a a n+1
AV, E am,avA - E A== m ) E miAn 1 ( @ + Dty + Aup Ay ” £,
r=1 =
n—-1 n—-1
. v+1 R to n+1
= Ay t + § an 0+1AA + anv+1Av+1 + AunAntn n

I
—_

%

= Vn,l + Vn,2 + Vn,S + Vn,4'

1l
—_

(%

To complete the proof of Theorem 3.1, by Minkowski’s inequality, it is sufficient to show that

051V, F< oo, for r=1,2,34.

gk

n=1
It may be noted that, the following results can be seen by condition (16) and (17), we have
m+1

Z |Aanv| S aU'UI

n=v+1

n—1
Y 1Adu] <
v=1

3712

(23)

(24)

(25)

First, by applying Holder’s inequality with indices k and k', where k > 1 and % + kl = 1, and using conditions

(24) and (25) for the third sum, and since (0,4,,) is a non-increasing sequence, we have that

m+1 m+1 k
Zekllvnllk Zekl{z }
m+1 k-1 m+1
= O<1)Z ok 12 |Ado| ool % {Z |Aam,)} =0(1) ) oiak! {Z Ad,ollAo| |tz,|’<}
n=2
m+1
- O<1)Z|A FNAMEl Y (Ot ™ Aol = 1>Z(evaw>" b= el
v=1 n=v+1
T |t ¢ ol
k-1 k k—1 k
- O(1)ZA|A |Ze mIZG T
m—1 m—1
= 0(1) ) IAAIXy + O(DAnlXon = O1) Y AulX, + O AuIXon
v=1 v=1

=0(1) as m — oo,
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by virtue of the hypotheses of Theorem 3.1 and Lemma 3.2. Now, using Holder’s inequality we have that

m+1 m+1 n—1 v+1 m+1
Z; 05| Via [ ZZ 05! {Z e TR H |} o) Z 0! {Z Aol Al |}
n=. n=. =
m+1 n—-1 k=1 m+1 n—1
=0(1) Z Qk ! Z U|Av|)k|Aanv”tv|k X {Z |Aanv|} =0(1) Z Qﬁ_lal;;l Z(levl)klAanv|ltv|k
= = v=1

m+1

= O<1>Z(v|A @ADL Y (Ontn) ™ 1Ay = omz 0% 1ak Xi_l 1ol (01Aq)

n=v+1
= 0(1)2 NG 2 0k1q

+ O(LymlA| 2 o1k,

v=1

Xkl

Q!
H

3
-

o(1)

M

|A@IANIX, + O(1)m|Ap| X

E’TT
LA

o(1) |(U+ DAIA| = |Ao[1Xo + O)m|Ap| Xin

<
—_

m—1
= 0(1)2 0X,|AA,| + O(l)Z |AolXo + O(1)m| Al X

=0(l) as m — oo,

m+1 m+1

by virtue of the hypotheses of Theorem 3.1 and Lemma 3.2. Again, as in V,,; we have that
Zekllvn3|k Zekl

m+1 n—1 |t | k
k—1 v
<) 0, |8n,0411[A 01| — 5
m+1

n— k n—1 k-1
=0 ), 65" {Z |Aam,|mv+1utv|} =0(1) ) 67 Y IAaldon Ikl {Z |Aam,|}
n=2 v=1 v=1

n=2 v=1
m+1 n-1 m m+1
= O<1>Z o5 laly! Z (Aol Ao It = O<1>Z Mostlltel Y (Oun) " 1Ayl
n=v+1

= omz 051k It I [ | = omE 05 a onlltol

Xkl

=0(1) as m— oo,

by virtue of the hypotheses of Theorem 3.1 and Lemma 3.2. Finally, as in V1, we have that
m
Y 05Vl = 0(1) 2 05 ks A It = O(1) Z Ok Il Al
n=1
= omz 0 a mmnum" =0(1) as m— oo,

by virtue of hypotheses of the Theorem 3.1 and Lemma 3.2. This completes the proof of Theorem 3.1. [
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4. Applications

4.1. An Application to Trigonometric Fourier Series

Let f be a periodic function with period 27t and integrable (L) over (-, 7). We may assume that the
constant term in the Fourier series of f(t) is zero, so that

fﬁ f(Hdt =0
nd

a

0o

f) ~ Z(ancosnt + bysinnt) = Z Cu(t), (26)

n=1 n=1

where

ag = %IZ fat, a, = %I: f(t)cos(nt)dt, b, = %j:: f(t)sin(nt)dt.
We write
ol0) = 3 f(x + 1)+ fr= D), @)
t
6:0= 3 [G-wrpwan, (@>0), 28)

It is well known that if ¢(t) € BV(0, ), then t,(x) = O(1), where t,(x) is the (C, 1) mean of the sequence
(nCp(x)) (see [7]).
Using this fact, the following theorem has been proved.

Theorem 4.1. ([5]) If p1(t) € BV(0, n), and the sequences (A,), (Ay), and (X,,) satisfy the conditions of Theorem
2.1, then the series Y, Cy(x)Ay, is summable |N, pyl, k > 1.

We have generalized Theorem 4.1 for |A, 6,y summability method in the following form.

Theorem 4.2. Let A be a normal matrix as in Theorem 3.1. If P1(t) € BV(0, n), and the sequences (A,), (Ay), and
(Xy,) satisfy the conditions of Theorem 3.1, then the series ), C,,(x)A,, is summable |A, Oyli , k > 1.

In this paper, the concept of absolute matrix summability is investigated. In this investigation, we
prove an interesting theorem related to |A, 6,|,. We also obtain applications to Fourier series. We can apply
Theorem 3.1 and Theorem 4.2 to weighted mean A = (a,,) is defined as a,, = lp,—” when 0 < v < n, where
P, =po+p1 + ... + p,. We have that,

P, — P, P
Ay = "P—Ul and dn,v+1 = Pp’;) Ul .
n ntn—

The following results can be easily verified.

1. If we take 6,, = % in Theorem 3.1 and Theorem 4.2, then we have a result dealing with ‘A, P
summability.

2. If we take 6,, = nin Theorem 3.1 and Theorem 4.2, then we have a result dealing with |A|; summability.

3. If we take 0,, = 5—: and a,,, = ;;—': in Theorem 3.1 and Theorem 4.2, then we have Theorem 2.1 and
Theorem 4.1, respectively.

4. If we take 0,, = n, a,, = ;—Z and p, = 1 for all values of n in Theorem 3.1 and Theorem 4.2, then we
have a new result concerning |C, 1|, summability.

5. If we take 0,, = nand a,, = g—: in Theorem 3.1 and Theorem 4.2, then we have

|

R, P”|k summability.
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