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An Application of Quasi-Monotone Sequences to
Absolute Matrix Summability

Şebnem Yıldıza

aAhi Evran University, Department of Mathematics, Faculty of Arts and Sciences, Kırşehir, Turkey

Abstract. Recently, Bor [5] has obtained two main theorems dealing with |N̄, pn|k summability factors of
infinite series and Fourier series. In the present paper, we have generalized these theorems for |A, θn|k

summability method by using quasi-monotone sequences.

1. Introduction

A sequence (dn) is said to be δ-quasi-monotone, if dn → 0, dn > 0 ultimately, and ∆dn ≥ −δn, where
∆dn = dn − dn+1 and δ=(δn) is a sequence of positive numbers (see [1]). For any sequence (λn) we write
that ∆λn = λn − λn+1. The sequence (λn) is said to be of bounded variation, denoted by (λn) ∈ BV, if∑
∞

n=1 |∆λn| < ∞. Let
∑

an be a given infinite series with partial sums (sn). We denote by uαn and tαn the nth
Cesàro means of order α, with α > −1, of the sequences (sn) and (nan), respectively, that is (see [6]),

uαn =
1

Aα
n

n∑
v=0

Aα−1
n−vsv and tαn =

1
Aα

n

n∑
v=1

Aα−1
n−vvav, (tn

1 = tn) (1)

where

Aα
n =

(α + 1)(α + 2)....(α + n)
n!

= O(nα), Aα
−n = 0 for n > 0. (2)

A series
∑

an is said to be summable | C, α |k, k ≥ 1, if (see [8], [10])

∞∑
n=1

nk−1
| uαn − uαn−1 |

k=

∞∑
n=1

1
n
| tαn |

k< ∞. (3)

If we set α=1, then we have | C, 1 |k summability. Let (pn) be a sequence of positive numbers such that

Pn =

∞∑
v=0

pv →∞ as n→∞, (P−i = p−i = 0, i ≥ 1). (4)
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The sequence-to-sequence transformation

wn =
1

Pn

n∑
v=0

pvsv (5)

defines the sequence (wn) of the Riesz mean or simply the
(
N̄, pn

)
mean of the sequence (sn), generated by

the sequence of coefficients (pn) (see [9]). The series
∑

an is said to be summable |N̄, pn|k, k ≥ 1, if (see [2])

∞∑
n=1

(
Pn

pn

)k−1

|wn − wn−1|
k < ∞. (6)

In the special case when pn = 1 for all values of n (respect. k = 1), then |N̄, pn|k summability is the same
as |C, 1|k (respect. |N̄, pn|) summability. We write Xn =

∑n
v=1

pv

Pv
, then (Xn) is a positive increasing sequence

tending to infinity with n. Let A = (anv) be a normal matrix, i.e., a lower triangular matrix of nonzero
diagonal entries. Then A defines the sequence-to-sequence transformation, mapping the sequence s = (sn)
to As = (An(s)), where

An(s) =

n∑
v=0

anvsv, n = 0, 1, ... (7)

Let (θn) be any sequence of positive real numbers. The series
∑

an is said to be summable |A, θn|k, k ≥ 1, if
(see [11])

∞∑
n=1

θk−1
n

∣∣∣∆̄An(s)
∣∣∣k < ∞, (8)

where

∆̄An(s) = An(s) − An−1(s). (9)

If we take θn = Pn
pn

, then |A, θn|k summability, then we have
∣∣∣A, pn

∣∣∣
k summability (see [12]), and if we take

θn = n, then we have |A|k summability (see [13]). And also if we take θn = Pn
pn

and anv =
pv

Pn
, then we have

| N̄, pn |k summability. Furthermore, if we take θn = n, anv =
pv

Pn
and pn = 1 for all values of n, then |A, θn|k

summability reduces to |C, 1|k summability (see [8]). Finally, if we take θn = n and anv =
pv

Pn
, then we obtain∣∣∣R, pn

∣∣∣
k summability (see [3]).

2. Known Results

The following theorem is known dealing with |N̄, pn|k summability of infinite series (see [5]).

Theorem 2.1. Let λn → 0 as n→∞ and let (pn) be a sequence of positive numbers such that

Pn = O(npn) as n→∞. (10)

Suppose that there exists a sequence of numbers (An) which is δ-quasi-monotone with
∑

nXnδn < ∞,
∑

AnXn is
convergent, and |∆λn| ≤ |An| for all n. If

m∑
n=1

pn

Pn

|tn|
k

Xn
k−1

= O(Xm) as m→∞, (11)

satisfies, then the series
∑

anλn is summable |N̄, pn|k, k ≥ 1.
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3. Main Results

The aim of this paper is to generalize Theorem 2.1 for |A, θn|k summability factors of infinite series, and
is to apply this theorem to Fourier series.

Before stating the main theorem, we must first introduce some further notations.
Given a normal matrix A = (anv), we associate two lower semimatrices Ā = (ānv) and Â = (ânv) as follows:

ānv =

n∑
i=v

ani, n, v = 0, 1, ... ∆̄anv = anv − an−1,v, a−1,0 = 0 (12)

and

â00 = ā00 = a00, ânv = ∆̄ānv, n = 1, 2, ... (13)

It may be noted that Ā and Â are the well-known matrices of series-to-sequence and series-to-series trans-
formations, respectively. Then, we have

An(s) =

n∑
v=0

anvsv =

n∑
v=0

ānvav (14)

and

∆̄An(s) =

n∑
v=0

ânvav. (15)

Theorem 3.1. Let λn → 0 as n → ∞ and let (pn) be a sequence of positive numbers satisfying the condition (10).
Suppose that there exists a sequence of numbers (An) which is δ-quasi-monotone with

∑
nXnδn < ∞,

∑
AnXn is

convergent, and |∆λn| ≤ |An| for all n. Let (θnann) be a non-increasing sequence. If A = (anv) is a positive normal
matrix such that

an0 = 1, n = 0, 1, ..., (16)
an−1,v ≥ anv, for n ≥ v + 1, (17)
ân,v+1 = O(v|∆̄anv|), (18)

∞∑
n=1

θk−1
n ak

nn
|tn|

k

Xn
k−1

= O(Xm) as m→∞, (19)

then the series
∑

anλn is summable |A, θn|k, k ≥ 1.

We need the following lemma for the proof of Theorem 3.1.

Lemma 3.2. ([4]) Under the conditions of Theorem 2.1, we have that

|λn|Xn = O(1) as n→∞, (20)
nXn|An| = O(1) as n→∞, (21)

∞∑
n=1

nXn|∆An| < ∞. (22)

4. Proof of Theorem 3.1
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Proof. Let (Vn) denotes the A-transform of the series
∑
∞

n=1 anλn. Then, by (14) and (15), we have

∆̄Vn =

n∑
v=1

ânvavλv.

Applying Abel’s transformation to this sum, we get that

∆̄Vn =

n∑
v=1

ânvavλv
v
v

=

n−1∑
v=1

∆̄(
anvλv

v
)

v∑
r=1

rar +
ânnλn

n

n∑
r=1

rar =

n−1∑
v=1

∆̄(
anvλv

v
)(v + 1)tv + ânnλn

n + 1
n

tn

=

n−1∑
v=1

∆̄anvλvtv
v + 1

v
+

n−1∑
v=1

ân,v+1∆λvtv
v + 1

v
+

n−1∑
v=1

ân,v+1λv+1
tv

v
+ annλntn

n + 1
n

= Vn,1 + Vn,2 + Vn,3 + Vn,4.

To complete the proof of Theorem 3.1, by Minkowski’s inequality, it is sufficient to show that

∞∑
n=1

θk−1
n | Vn,r |

k< ∞, for r = 1, 2, 3, 4. (23)

It may be noted that, the following results can be seen by condition (16) and (17), we have

m+1∑
n=v+1

|∆̄anv| ≤ avv, (24)

n−1∑
v=1

|∆̄anv| ≤ ann. (25)

First, by applying Hölder’s inequality with indices k and k′, where k > 1 and 1
k + 1

k′ = 1, and using conditions
(24) and (25) for the third sum, and since (θnann) is a non-increasing sequence, we have that

m+1∑
n=2

θk−1
n | Vn,1 |

k
≤

m+1∑
n=2

θk−1
n

n−1∑
v=1

|
v + 1

v
|

∣∣∣∆̄anv

∣∣∣ |λv||tv|


k

= O(1)
m+1∑
n=2

θk−1
n

n−1∑
v=1

∣∣∣∆̄anv

∣∣∣ |λv|
k
|tv|

k
×

n−1∑
v=1

∣∣∣∆̄anv

∣∣∣
k−1

= O(1)
m+1∑
n=2

θk−1
n ak−1

nn

n−1∑
v=1

|∆̄anv||λv|
k
|tv|

k


= O(1)

m∑
v=1

|λv|
k−1
|λv||tv|

k
m+1∑

n=v+1

(θnann)k−1
|∆̄anv| = O(1)

m∑
v=1

(θvavv)k−1 1
Xk−1

v
|λv||tv|

kavv

= O(1)
m−1∑
v=1

∆|λv|

v∑
r=1

θk−1
r ak

rr
|tr|

k

Xk−1
r

+ O(1)|λm|

m∑
v=1

θk−1
v ak

vv
|tv|

k

Xk−1
v

= O(1)
m−1∑
v=1

|∆λv|Xv + O(1)|λm|Xm = O(1)
m−1∑
v=1

|Av|Xv + O(1)|λm|Xm

= O(1) as m→∞,
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by virtue of the hypotheses of Theorem 3.1 and Lemma 3.2. Now, using Hölder’s inequality we have that

m+1∑
n=2

θk−1
n | Vn,2 |

k
≤

m+1∑
n=2

θk−1
n

n−1∑
v=1

|
v + 1

v
||ân,v+1||∆λv||tv|


k

= O(1)
m+1∑
n=2

θk−1
n

n−1∑
v=1

|ân,v+1||Av||tv|


k

= O(1)
m+1∑
n=2

θk−1
n

n−1∑
v=1

(v|Av|)k
|∆̄anv||tv|

k
×

n−1∑
v=1

∣∣∣∆̄anv

∣∣∣
k−1

= O(1)
m+1∑
n=2

θk−1
n ak−1

nn

n−1∑
v=1

(v|Av|)k
|∆̄anv||tv|

k

= O(1)
m∑

v=1

(v|Av|)k−1(v|Av|)|tv|
k

m+1∑
n=v+1

(θnann)k−1
|∆̄anv| = O(1)

m∑
v=1

θk−1
v ak

vv
1

Xk−1
v
|tv|

k(v|Av|)

= O(1)
m−1∑
v=1

∆(v|Av|)
v∑

r=1

θk−1
r ak

rr
1

Xk−1
r
|tr|

k + O(1)m|Am|

m∑
v=1

θk−1
v ak

vv
1

Xk−1
v
|tv|

k

= O(1)
m−1∑
v=1

|∆(v|Av|)|Xv + O(1)m|Am|Xm

= O(1)
m−1∑
v=1

|(v + 1)∆|Av| − |Av||Xv + O(1)m|Am|Xm

= O(1)
m−1∑
v=1

vXv|∆Av| + O(1)
m−1∑
v=1

|Av|Xv + O(1)m|Am|Xm

= O(1) as m→∞,

by virtue of the hypotheses of Theorem 3.1 and Lemma 3.2. Again, as in Vn,1 we have that

m+1∑
n=2

θk−1
n | Vn,3 |

k=

m+1∑
n=2

θk−1
n

∣∣∣∣∣∣∣
n−1∑
v=1

ân,v+1λv+1
tv

v

∣∣∣∣∣∣∣
k

≤

m+1∑
n=2

θk−1
n

n−1∑
v=1

|ân,v+1||λv+1|
|tv|

v


k

= O(1)
m+1∑
n=2

θk−1
n

n−1∑
v=1

|∆̄anv||λv+1||tv|


k

= O(1)
m+1∑
n=2

θk−1
n

n−1∑
v=1

|∆̄anv||λv+1|
k
|tv|

k
×

n−1∑
v=1

|∆̄anv|


k−1

= O(1)
m+1∑
n=2

θk−1
n ak−1

nn

n−1∑
v=1

|∆̄anv||λv+1|
k
|tv|

k = O(1)
m∑

v=1

|λv+1|
k
|tv|

k
m+1∑

n=v+1

(θnann)k−1
|∆̄anv|

= O(1)
m∑

v=1

θk−1
v ak

vv|tv|
k
|λv+1|

k−1
|λv+1| = O(1)

m∑
v=1

θk−1
v ak

vv
1

Xk−1
v
|λv+1||tv|

k

= O(1) as m→∞,

by virtue of the hypotheses of Theorem 3.1 and Lemma 3.2. Finally, as in Vn,1, we have that

m∑
n=1

θk−1
n |Vn,4|

k = O(1)
m∑

n=1

θk−1
n ak−1

nn ann|λn|
k
|tn|

k = O(1)
m∑

n=1

θk−1
n ak

nn|λn|
k−1
|λn||tn|

k

= O(1)
m∑

n=1

θk−1
n ak

nn
1

Xk−1
n
|λn||tn|

k = O(1) as m→∞,

by virtue of hypotheses of the Theorem 3.1 and Lemma 3.2. This completes the proof of Theorem 3.1.
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4. Applications

4.1. An Application to Trigonometric Fourier Series
Let f be a periodic function with period 2π and integrable (L) over (−π, π). We may assume that the

constant term in the Fourier series of f (t) is zero, so that∫ π

−π
f (t)dt = 0

and

f (t) ∼
∞∑

n=1

(ancosnt + bnsinnt) =

∞∑
n=1

Cn(t), (26)

where

a0 =
1
π

∫ π

−π
f (t)dt, an =

1
π

∫ π

−π
f (t)cos(nt)dt, bn =

1
π

∫ π

−π
f (t)sin(nt)dt.

We write

φ(t) =
1
2
{
f (x + t) + f (x − t)

}
, (27)

φα(t) =
α
tα

∫ t

0
(t − u)α−1φ(u) du, (α > 0). (28)

It is well known that if φ(t) ∈ BV(0, π), then tn(x) = O(1), where tn(x) is the (C, 1) mean of the sequence
(nCn(x)) (see [7]).
Using this fact, the following theorem has been proved.

Theorem 4.1. ([5]) If φ1(t) ∈ BV(0, π), and the sequences (An), (λn), and (Xn) satisfy the conditions of Theorem
2.1, then the series

∑
Cn(x)λn is summable |N̄, pn|k, k ≥ 1.

We have generalized Theorem 4.1 for |A, θn|k summability method in the following form.

Theorem 4.2. Let A be a normal matrix as in Theorem 3.1. If φ1(t) ∈ BV(0, π), and the sequences (An), (λn), and
(Xn) satisfy the conditions of Theorem 3.1, then the series

∑
Cn(x)λn is summable |A, θn|k , k ≥ 1.

In this paper, the concept of absolute matrix summability is investigated. In this investigation, we
prove an interesting theorem related to |A, θn|k. We also obtain applications to Fourier series. We can apply
Theorem 3.1 and Theorem 4.2 to weighted mean A = (anv) is defined as anv =

pv

Pn
when 0 ≤ v ≤ n, where

Pn = p0 + p1 + ... + pn. We have that,

ānv =
Pn − Pv−1

Pn
and ân,v+1 =

pnPv

PnPn−1
.

The following results can be easily verified.
1. If we take θn = Pn

pn
in Theorem 3.1 and Theorem 4.2, then we have a result dealing with

∣∣∣A, pn

∣∣∣
k

summability.
2. If we takeθn = n in Theorem 3.1 and Theorem 4.2, then we have a result dealing with |A|k summability.
3. If we take θn = Pn

pn
and anv =

pv

Pn
in Theorem 3.1 and Theorem 4.2, then we have Theorem 2.1 and

Theorem 4.1, respectively.
4. If we take θn = n, anv =

pv

Pn
and pn = 1 for all values of n in Theorem 3.1 and Theorem 4.2, then we

have a new result concerning |C, 1|k summability.
5. If we take θn = n and anv =

pv

Pn
in Theorem 3.1 and Theorem 4.2, then we have

∣∣∣R, pn

∣∣∣
k summability.
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