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A Compactification of an Orbit Space
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Abstract. Let X be a Tychonoff G−space, G be a finite discrete group and A be a dense and invariant
subspace of X. In this paper, by means of Gelfand’s method, we construct a compactification of the orbit
space A/G. As an application, we show that the set of maximal ideals of even function ring with Stone
topology is a compactification of non-negative rationals.

1. Introduction

By a topological transformation group, we mean a triple (X,G, θ) where G is a topological group, X is a
Tychonoff space and θ is a continuous action of G on X. In this case, X will be called a G−space. Using the
notation θ1(x) = θ(1, x) for each (1, x) ∈ G × X, we have θe = 1X (e denotes the identity element in G) and
θ1 ◦ θh = θ1h. So 1→ θ1 determines a homomorphism of G into the group of homeomorphisms of X.

A compactification γX of X is called a G−compactification, if the action of G on X extends to γX. X may
not have a G−compactification. For example, Megrelishvili [3] established a Tychonoff G−space admitting
no compact Hausdorff extension. But there are some partial results for sufficient conditions for existing
G−compactification. For instance, R. Palais [4] showed that the Alexandroff compactification for locally
compact G−space X is its G−compactification, and J. de Vries [7] proved that if G is a locally compact
group, then every Tychonoff G−space X has a G−compactification and also proved that a G−space X has a
G−compactification if and only if the action is bounded. If X has a G− compactification, then it has a largest
one(in the usual order of compactifications), denoted by βGX.

The following problems in the theory of G−spaces are well-known:
(1) the problem of existence of a G−compactification, say γX, of a Tychonoff G−space X and a compact-

ification γ(X/G) of its orbit space X/G.
(2) in case of existence of these compactifications, the question of how γ(X/G) is related with the orbit

space γX/G.
Srivastava [6] proved that βGX = βX and β(X/G) = βX/G for finite group G. (βX and β(X/G) are

Stone-Cech compactifications of X and X/G.)
In this paper, for finite G, we give some useful description of the compactification of the orbit space A/G

for dense and invariant subspace A of X. Among different methods for constructing compactifications, we
use Gelfand’s method.
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2. Preliminaries

In this section, we shall state a few definitions and facts about transformation groups and Gelfand’s
method for compactifications. We refer the reader to [1,5] for more details.

Definition 2.1. A subspace A of a G−space X is called invariant, if

θ(G × A) = A.

Definition 2.2. If X is a G−space and x ∈ X, the subspace

G(x) = {θ(1, x) = 1x : 1 ∈ G}

is called the orbit of x. Let X/G denote the set of all orbits G(x) of a G−space X and π : X→ X/G denote the
orbit map taking x to G(x). Then X/G endowed with the quotient topology relative to π is called the orbit
space of X. The orbit map is open and continuous.

Definition 2.3. An action θ of a group G on a space X is called trivial, if G(x) = {x} for all x ∈ X.

It is easy to see that the induced action of G on X/G is trivial. Now, we state some basic definitions
and theorems about Gelfand’s method for compactifications. We will denote continuous and bounded
real-valued function rings by C∗(X).

Definition 2.4. Let X be a topological space. A subcollection B of subsets of X is called a closed base for X,
if each closed subset of X can be written as an intersection of sets belonging to B.

Definition 2.5. Let Ω be a subring of C∗(X) which contains all constant functions and MΩX denotes the set
of all maximal ideals of Ω. For each f ∈ Ω, define S( f ) = {M ∈MΩX : f ∈M}. It is easy to see that the family
{S( f ) : f ∈ Ω} is closed base for a topology on MΩX which is called the Stone topology.

Theorem 2.6. MΩX with the Stone topology is a compact and Haussdorff space.

Proof. See [5, Theorem 4.5.j].

Definition 2.7. A complete subring Ω of C∗(X) with respect to the sup-norm metric is called regular, if
contains all constant functions and Z(Ω) = {Z( f ) : f ∈ Ω} is a closed base for X where Z( f ) is the zero-set of
f .

If x ∈ X and Ω is a regular subring of C∗(X), then Mx = { f ∈ Ω : f (x) = 0} ∈ MΩX (see[5]) Thus, we can
define a continuous function λ : X→MΩX by λ(x) = Mx.

The proof of the following theorem is given in [5].

Theorem 2.8. (Gelfand, [2]) If Ω be a regular subring of C∗(X) for a space X, then λ : X → MΩX is a dense
embedding.

Definition 2.9. A compactification γX of a Tychonoff space X is called a Gelfand compactification, if for
some regular subring Ω of C∗(X), γX and MΩX are equivalent compactifications of X which is denoted by
γX ≡X MΩX.

Theorem 2.10. Let X be a Tychonoff space and γX be a compactification of X. Then γX ≡X MΩX for some regular
subring Ω of C∗(X).

Proof. See [5, Theorem 4.5.o].

Thus, a compactification of a Tychonoff space is a Gelfand compactification. For example for Stone-Cech
compactification, βX, of X, we have βX ≡X MΩX where Ω = C∗(X).
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3. Main Result

From now on X will be a Tychonoff G−space where G is a finite discrete group and A will be a dense
and G−invariant subspace of X.

We shall prove the following lemma.

Lemma 3.1. IfA = { f |A : f ∈ C∗(X)}, thenA is a regular subring of C∗(A). Hence MAA is a compactification of A.

Proof. Since Z( f ) ∩ A = Z( f |A) for all f ∈ C∗(X), it is easy to see that Z(A) is a closed base for A. Thus it
suffices to show that the subring A is complete with respect to the sup-norm metric. Let ( fn|A)n∈N be a
Cauchy sequence inA and ε > 0. There is an N ∈N such that

sup{| fn(x) − fm(x)| : x ∈ A} < ε

for N ≤ n ≤ m. Let x ∈ X. Since A is dense subset of X, there is a net (xλ) in A such that lim xλ = x. It can be
easily seen that

| fn(x) − fm(x) |= lim | ( fn − fm)(xλ) |≤ sup{| fn(x) − fm(x)| : x ∈ A} < ε

for N ≤ n ≤ m.
Thus ( fn)n∈N is a Cauchy sequence in C∗(X). Since C∗(X) is complete, there exist f ∈ C∗(X) such that

lim fn = f and also lim( fn|A) = f |A. So this implies thatA is a regular subring of C∗(A).

Proposition 3.2. The rings A and C∗(X) are naturally isomorphic and hence the compactification MAA can be
identified with βX.

Proof. Clearly, the map C∗(X) → A given by f → f |A preserves the ring operations and surjective by the
definitions ofA. On the other hand if f |A = 1|A, then the closed set B = {x ∈ X : f (x) = 1(x)} contains A and
hence B = X, that is, f = 1. This proves that the ringA is isomorphic to C∗(X).

The isomorphism of the ringsA→ C∗(X) induces the homeomorphism µ : MAA→MC∗(X)X = βX Since

the composition A λ
↪→ MAA

µ
→ MC∗(X)X coincides with the composition A↪→X λ

↪→ MC∗(X)X, we conclude

that the compactification A λ
↪→MAA is equivalent to the compactification of A represented by A↪→X↪→βX.

In other words, the compactification MAA can be identified with βX.

It follows from the above proposition 3.2 that the proof of the following proposition can be regarded as
another proof of the known result that βX is a G−compactification, if G is finite ([6]).

Proposition 3.3. MAA is a G−compactification of A.

Proof. Let P be a maximal ideal ofA and for 1 ∈ G, define the set 1P = { f |A◦θ1−1 : f |A ∈ P}whereθ1−1 : A→ A
is defined by θ1−1 (x) = 1−1x.

First we show that 1P is a maximal ideal ofA. If f |A ◦ θ1−1 , h|A ◦ θ1−1 ∈ 1P, then

f |A ◦ θ1−1 − h|A ◦ θ1−1 = ( f − h)|A ◦ θ1−1 ∈ 1P

On the other hand, let f |A ◦ θ1−1 ∈ 1P and h|A ∈ A. Define h′ = h ◦ θ1. Then it is easy to see that

(h|A)( f |A ◦ θ1−1 ) = (h′|A f |A) ◦ θ1−1 ∈ 1P

Now, let I be an ideal ofA such that 1P ⊆ I ⊆ A. Then the ideal

1−1I = { f |A ◦ θ1 : f |A ∈ I}

ofA satisfies the relation

P ⊆ 1−1I ⊆ A
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Since P is a maximal ideal ofA,

1−1I = P or 1−1I = A

This implies that

I = 1P or I = A

Hence 1P is a maximal ideal ofA.
An action ψ of G on MAA is defined by ψ(1,P) = 1P. Clearly eP = P and 1(hP) = (1h)P where e is the

identity in G and 1, h ∈ G.
Since

ψ−1(S( f )) = {(1,P) : 1P ∈ S( f )} =
⋃
1∈G

{1} × S(1 f )

which is closed, the action ψ is continuous. On the other hand, it can be checked that the following diagram
is commutative

A
θ1 //

λ

��

A

λ

��
MAA

ψ1 // MAA

This implies that MAA is a G−compactification of A.

Remark 3.4. MAA may be different from βA. For example, take X = R and A = Q. Then A , C∗(Q) and
MAQ , βQ.

Note that, in view of the proposition 3.2, MAQ = βR. Thus MAQ , βQ corresponds to βR , βQ.

Lemma 3.5. LetA′ = { f ∈ A : f takes a constant value for each orbit}. ThenA′ is a complete subring of C∗(A).

Proof. Let ( fn|A)n∈N be a Cauchy sequence inA′. It follows, by Lemma 3.1, that ( fn)n∈N is a Cauchy sequence
in C∗(X) and from the completeness of A there exists f ∈ A such that lim fn|A = f . Since each fn|A has
constant value on orbits, fn(1x) = fn(hx) for each x ∈ A and 1, h ∈ G. Therefore

f (1x) = lim fn(1x) = lim fn(hx) = f (hx)

which implies completeness ofA′.

Remark 3.6. Observe that Z(A′) can be a closed base for A only in the case of trivial action of G.
Indeed, every set of Z(A′) is a G−invariant subspace of A and hence, if Z(A′) is a closed base for A, every

closed subset of invariant, in particular, every one point set is invariant, that is the action of G is trivial.

Since the orbit space A/G is dense subspace of the orbit space X/G, by the Lemma 3.1, the space MB(A/G)
with the Stone topology is a compactification of the orbit space A/G where

B = { f |A/G: f ∈ C∗(X/G)}

Lemma 3.7. The rings B andA′ are naturally isomorphic.
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Proof. Since f |G(x) is constant for each f ∈ A′ and for each x ∈ A, there exists a unique h f ∈ C∗(A/G) such
that f = h f ◦ π where π is the orbit map (i.e. h f (G(x)) = f (x) for each x ∈ A). Since A is dense subspace of
X, for each x ∈ X there exists a net (xλ) in A such that lim xλ = x. Furthermore the nets ( f (1xλ)) and ( f (hxλ))
are equal for each 1, h ∈ G. So if we have f = f̃ |A for some f̃ ∈ C∗(X), then

f̃ (1x) = lim f (1xλ) = lim f (hxλ) = f̃ (hx)

which implies that f̃ takes a constant value on each orbit as well as f ; consequently, f̃ induces a unique map
f ′ ∈ C∗(X/G) and h f = f ′|A/G. This implies that the map ϕ : A′ → B given by f → h f is well defined and
also obviously preserves the ring operations. It is easy to see that ϕ is isomorphism because it has inverse
ψ : B → A′ is given by f → f ◦ π

After these preparations, we are going to prove the following main theorem.

Theorem 3.8. MB(A/G) is homeomorphic to MA′A .

Proof. The above ring isomorphism ϕ : A′ → B induces, ϕ : MA′A→ MB(A/G), defined by ϕ(P) = ϕ(P) =
{h f : f ∈ P}. Since

ϕ−1(S( f )) = {P : ϕ(P) ∈ S( f )} = {P : f ∈ ϕ(P)} = {P : f ◦ π ∈ P} = S( f ◦ π),

We conclude that ϕ is continuous.
Similarly, the inverse isomorphism ψ : B → A′ induces ψ : MB(A/G)→MA′A defined by

ψ(P) = ψ(P) = { f ◦ π : f ∈ P}

Moreover for each f ∈ A′

ψ
−1

(S( f )) = {P ∈MB(A/G) : ψ(P) ∈ S( f )} = {P ∈MB(A/G) : h f ∈ P} = S(h f )

which implies the continuity of ψ and it is easily checked that

ϕ(ψ(P)) = P for each P ∈MB(A/G) and ψ(ϕ(P)) = P for each P ∈MA′A.

Corollary 3.9. If we take A = X, we have β(X/G) = MX′X where

X
′ = { f ∈ C∗(X) : f takes a constant value for each orbit}

The next application of Theorem 3.8 shows the set of maximal ideals of even function ring with Stone
topology is a compactification of non-negative rationals.

Example 3.10. The antipodal map onR viewed as an action of the group G = Z2 onR. If A = Q (rationals),
then

A
′ = { f |Q: f ∈ C∗(R) and f is even function}

Thus

MA′Q = {P : P is maximal ideal ofA′}

is a compactification of the orbit space A/G = Q/Z2 = Q+ (non-negative rationals.)
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