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A Compactification of an Orbit Space
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Abstract. Let X be a Tychonoff G—space, G be a finite discrete group and A be a dense and invariant
subspace of X. In this paper, by means of Gelfand’s method, we construct a compactification of the orbit
space A/G. As an application, we show that the set of maximal ideals of even function ring with Stone
topology is a compactification of non-negative rationals.

1. Introduction

By a topological transformation group, we mean a triple (X, G, 0) where G is a topological group, X is a
Tychonoff space and 6 is a continuous action of G on X. In this case, X will be called a G—space. Using the
notation 6,(x) = 6(g, x) for each (g,x) € G X X, we have 0, = 1x (e denotes the identity element in G) and
0y 0 0, = Ogy. So g — 6, determines a homomorphism of G into the group of homeomorphisms of X.

A compactification yX of X is called a G—compactification, if the action of G on X extends to yX. X may
not have a G—compactification. For example, Megrelishvili [3] established a Tychonoff G—space admitting
no compact Hausdorff extension. But there are some partial results for sufficient conditions for existing
G—compactification. For instance, R. Palais [4] showed that the Alexandroff compactification for locally
compact G—space X is its G—compactification, and J. de Vries [7] proved that if G is a locally compact
group, then every Tychonoff G—space X has a G—compactification and also proved that a G—space X has a
G—compactification if and only if the action is bounded. If X has a G— compactification, then it has a largest
one(in the usual order of compactifications), denoted by fcX.

The following problems in the theory of G—spaces are well-known:

(1) the problem of existence of a G—compactification, say yX, of a Tychonoff G—space X and a compact-
ification y(X/G) of its orbit space X/G.

(2) in case of existence of these compactifications, the question of how y(X/G) is related with the orbit
space yX/G.

Srivastava [6] proved that fcX = BX and B(X/G) = BX/G for finite group G. (X and B(X/G) are
Stone-Cech compactifications of X and X/G.)

In this paper, for finite G, we give some useful description of the compactification of the orbit space A/G
for dense and invariant subspace A of X. Among different methods for constructing compactifications, we
use Gelfand’s method.
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2. Preliminaries

In this section, we shall state a few definitions and facts about transformation groups and Gelfand’s
method for compactifications. We refer the reader to [1,5] for more details.

Definition 2.1. A subspace A of a G—space X is called invariant, if
0(GxA) =A.

Definition 2.2. If X is a G—space and x € X, the subspace
Gx)=1{6(g,x) =gx: g€ G}

is called the orbit of x. Let X/G denote the set of all orbits G(x) of a G—space X and 7 : X — X/G denote the
orbit map taking x to G(x). Then X/G endowed with the quotient topology relative to 7 is called the orbit
space of X. The orbit map is open and continuous.

Definition 2.3. An action 6 of a group G on a space X is called trivial, if G(x) = {x} for all x € X.

It is easy to see that the induced action of G on X/G is trivial. Now, we state some basic definitions
and theorems about Gelfand’s method for compactifications. We will denote continuous and bounded
real-valued function rings by C*(X).

Definition 2.4. Let X be a topological space. A subcollection 8 of subsets of X is called a closed base for X,
if each closed subset of X can be written as an intersection of sets belonging to 8.

Definition 2.5. Let Q be a subring of C*(X) which contains all constant functions and MoX denotes the set
of all maximal ideals of Q. For each f € Q, define S(f) = {M € MqX : f € M}. Itis easy to see that the family
{S(f) : f € Q}is closed base for a topology on MqX which is called the Stone topology.

Theorem 2.6. MqX with the Stone topology is a compact and Haussdorff space.
Proof. See [5, Theorem 4.5j]. O

Definition 2.7. A complete subring QO of C*(X) with respect to the sup-norm metric is called regular, if
contains all constant functions and Z(Q) = {Z(f) : f € )} is a closed base for X where Z(f) is the zero-set of

f.

If x € X and Q) is a regular subring of C*(X), then M, = {f € Q: f(x) = 0} € MX (see[5]) Thus, we can
define a continuous function A : X = MuX by A(x) = M,.
The proof of the following theorem is given in [5].

Theorem 2.8. (Gelfand, [2]) If Q be a regular subring of C*(X) for a space X, then A : X — MqX is a dense
embedding.

Definition 2.9. A compactification yX of a Tychonoff space X is called a Gelfand compactification, if for
some regular subring Q of C*(X), yX and MqX are equivalent compactifications of X which is denoted by
X =x MaX.

Theorem 2.10. Let X be a Tychonoff space and yX be a compactification of X. Then yX =x MqX for some reqular
subring Q of C*(X).

Proof. See [5, Theorem 4.5.0]. [

Thus, a compactification of a Tychonoff space is a Gelfand compactification. For example for Stone-Cech
compactification, X, of X, we have X =x MqX where Q) = C*(X).
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3. Main Result

From now on X will be a Tychonoff G—space where G is a finite discrete group and A will be a dense
and G—invariant subspace of X.
We shall prove the following lemma.

Lemma 3.1. If A = {fla : f € C'(X)}, then A is a reqular subring of C*(A). Hence M A is a compactification of A.

Proof. Since Z(f) N A = Z(fla) for all f € C*(X), it is easy to see that Z(A) is a closed base for A. Thus it
suffices to show that the subring A is complete with respect to the sup-norm metric. Let (fula)nen be a
Cauchy sequence in A and € > 0. There is an N € IN such that

supllfy (@) — fu@)] :x € A} <e

for N <n < m. Letx € X. Since A is dense subset of X, there is a net (x,) in A such that lim x, = x. It can be
easily seen that

| fo(0) = fun () 1= Hm | (fi = fu)(x2) |< supllfu(x) = fu(¥)] : x € A} <€

for N <n <m.
Thus (f,)uen is a Cauchy sequence in C*(X). Since C*(X) is complete, there exist f € C*(X) such that
lim f, = f and also lim(f,|4) = fla. So this implies that A is a regular subring of C*(4). O

Proposition 3.2. The rings A and C*(X) are naturally isomorphic and hence the compactification MaA can be
identified with BX.

Proof. Clearly, the map C'(X) — A given by f — f|a preserves the ring operations and surjective by the
definitions of A. On the other hand if f|4 = gls, then the closed set B = {x € X : f(x) = g(x)} contains A and
hence B = X, that s, f = g. This proves that the ring A is isomorphic to C*(X).

The isomorphism of the rings A — C*(X) induces the homeomorphism p : MgA — McxX = BX Since

the composition A SN M4A N Mc-x)X coincides with the composition A—X SN Mc )X, we conclude

that the compactification A LM aA is equivalent to the compactification of A represented by A<= X—pX.
In other words, the compactification M zA can be identified with fX. [

It follows from the above proposition 3.2 that the proof of the following proposition can be regarded as
another proof of the known result that X is a G—compactification, if G is finite ([6]).

Proposition 3.3. M aA is a G—compactification of A.

Proof. Let Pbe amaximalideal of Aand for g € G, define theset gP = {f|400,1 : fls € P}where 6,1 : A —> A
is defined by 6,-1(x) = g~'x.
First we show that gP is a maximal ideal of A. If fl4 0 0

flao By —hlao 041 =(f —h)lac 6y €gP

On the other hand, let f|a 0 6,1 € gP and h|4 € A. Define i’ = h o 6,. Then it is easy to see that
(ha)(fla © 641) = (W'|afla) © Oy € gP

Now, let I be an ideal of A such that gP € I € A. Then the ideal
g = {flacO,: flael)

of A satisfies the relation

g1 hlA o ngl [S gP, then

PcglicA
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Since P is a maximal ideal of A,
glI=Porgli=A
This implies that
I=gPorlI=A

Hence gP is a maximal ideal of A.

An action 1 of G on M#A is defined by ¢(g, P) = gP. Clearly eP = P and g(hP) = (gh)P where e is the
identity in Gand g,h € G.

Since

PUS() = (9, P): gP € S(N) = _Jigh x S(af)

g9€G

which is closed, the action 1 is continuous. On the other hand, it can be checked that the following diagram
is commutative

MgA —

MaA
This implies that M #A is a G—compactification of A. [

Remark 3.4. M#A may be different from BA. For example, take X = R and A = Q. Then A # C(Q) and

MaQ # pQ.
Note that, in view of the proposition 3.2, M4Q = fIR. Thus M#Q # pQ corresponds to SR # Q.

Lemma 3.5. Let A’ = (f € A: f takes a constant value for each orbit}. Then A’ is a complete subring of C*(A).

Proof. Let (fula)nen be a Cauchy sequence in A’. It follows, by Lemma 3.1, that (f,,)sen is a Cauchy sequence
in C*(X) and from the completeness of A there exists f € A such that lim f,[4» = f. Since each f,|4 has
constant value on orbits, f,(gx) = f,(hx) for each x € A and g,h € G. Therefore

f(gx) = lim f,(g9x) = lim f,(hx) = f(hx)
which implies completeness of A’. [

Remark 3.6. Observe that Z(A’) can be a closed base for A only in the case of trivial action of G.
Indeed, every set of Z(A’) is a G—invariant subspace of A and hence, if Z(A’) is a closed base for A, every
closed subset of invariant, in particular, every one point set is invariant, that is the action of G is trivial.

Since the orbit space A/G is dense subspace of the orbit space X/G, by the Lemma 3.1, the space Mg(A/G)
with the Stone topology is a compactification of the orbit space A/G where

B ={flac: f € CX/G)}

Lemma 3.7. The rings B and A’ are naturally isomorphic.
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Proof. Since f|g) is constant for each f € A" and for each x € A, there exists a unique hy € C*(A/G) such

that f = hy o m where 7t is the orbit map (i.e. hf(G(x)) = f(x) for each x € A). Since A is dense subspace of
X, for each x € X there exists a net (x)) in A such that lim x) = x. Furthermore the nets (f(gx1)) and (f(hx,))

are equal for each g,h € G. So if we have f = f|4 for some fe C*(X), then

F(gx) = lim f(gx3) = lim f(hxy) = f(hx)
which implies that f~takes a constant value on each orbit as well as f; consequently, f~ induces a unique map
f' € C(X/G) and hf = f’|ajc. This implies that the map ¢ : A" — B given by f — hy is well defined and
also obviously preserves the ring operations. It is easy to see that ¢ is isomorphism because it has inverse
Y:B—->Aisgivenby f = forn O
After these preparations, we are going to prove the following main theorem.

Theorem 3.8. Mg(A/G) is homeomorphic to Ma A .

Proof. The above ring isomorphism ¢ : A" — B induces, ¢ : Mg A — Mg(A/G), defined by ¢(P) = ¢(P) =
{hf: f € P}. Since

P S =P pP) €Sy ={P: fepP)}={P: fomeP})=5fon),

We conclude that ¢ is continuous.
Similarly, the inverse isomorphism ¢ : 8 — A’ induces 1 : Mg(A/G) — Mg A defined by

Y(P)=y(P)={fon:feP
Moreover for each f € A’
7 (S(F) = P € Ms(A/G) : y(P) € S(f)} = (P € Ms(A/G) : hy € P} = S(iy)
which implies the continuity of i and it is easily checked that
@((P)) = P for each P € Mg(A/G) and {(@(P)) = P for each P € My A.
U
Corollary 3.9. If we take A = X, we have §(X/G) = Mx- X where
X' ={f € C'(X) : f takes a constant value for each orbit}

The next application of Theorem 3.8 shows the set of maximal ideals of even function ring with Stone
topology is a compactification of non-negative rationals.

Example 3.10. The antipodal map on R viewed as an action of the group G = Z, on R. If A = Q (rationals),
then

A ={flo: f € C'(R) and f is even function}
Thus
Mg Q = {P : P is maximal ideal of A’}

is a compactification of the orbit space A/G = Q/Z, = Q" (non-negative rationals.)
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