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Abstract. A relational structure is said to be reversible iff every bijective homomorphism (condensation)
of that structure is an automorphism. In the case of a binary structure X = (X, p), that is equivalent to
the following statement: whenever we remove finite or infinite number of edges from X, thus obtaining
the structure X’, we have that X’ # X. In this paper, we prove that if a nonreversible tree X = (X, p) has
a removable edge (i.e. if there is (x, y) € p such that (X,p) = (X,p \ {{x, )}), then it has infinitely many
removable edges. We also show that the same is not true for arbitrary binary structure by constructing
nonreversible digraphs having exactly n removable edges, for n € IN.

1. Introduction

A relational structure X is said to be reversible iff every condensation (bijective homomorphism) f :
X — Xis an automorphism. If L, = (R), ar(R) = 2, is the binary language, we have that an L,-structure
X is reversible iff whenever we remove finite or infinite number of edges from X, thus obtaining the
structure X’, we have that X’ 2 X. The class of reversible structures includes linear orders, Boolean lattices
(algebras), well founded posets with finite levels [3, 4], tournaments, Henson graphs [7], Henson digraphs
[5] and monomorphic structures [6]. Reversible structures have the Cantor-Schroder-Bernstein property for
condensations, i.e. whenever X is reversible and Y is arbitrary structure, and there are condensations
f:X->Yandg:Y—>Y wehave X =Y.

We say that an edge (x, y) € p is removable in the structure X = (X, p) if and only if (X, p) = (X, p\ {{x, »)}).
Then clearly X is not reversible. Not all nonreversible structures have a removable edge, for example
nonreversible graphs trivially do not, because they are irreflexive and symmetric. Moreover, using the result
of Dushnik and Miller [1] on the existance of embedding-rigid linear orders, or the result of Vopénka, Pultr
and Hedrlin [12] on the existance of endomorphism-rigid structures, one can easily construct nonreversible
structure X = (X, p) such that (X, p) # (X, p \ o) for any finite ¢ C p. Among those nonreversible structures
that have a removable edge, not all have infinitely many removable edges (see Example 2.2). The class of
those nonreversible structures that have infinitely many removable edges is of particular interest, because
it contains the class of all nonreversible structures that have the Cantor-Schroder-Bernstein property for
condensations (the so called weakly reversible structures). For more information on weak reversibility, see

[7].
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In this article, we prove that if a tree has a removable edge, then it has infinitely many removable edges.
In the following paragraph, we introduce notation that will be used throughout the paper. In Section 2 one
can find definitions and facts about trees and disconnected binary structures, that play the central role in
the paper. Section 3 contains some statements on the properties of the set of removable edges of a given
tree. These results will be used in Section 4, that contains the main result of the paper.

Notation. If Xand Y are relational structures, Iso(X, Y), Cond(X, Y), Mono(X, Y) and Emb(X, Y), will denote
the set of all isomorphisms, condensations (bijective homomorphisms), monomorphisms and embeddings
from X to Y respectively. Iso(X, X) = Aut(X) is the set of automorphisms of X, instead of Cond(X, X) we
shortly write Cond(X), etc.

For a function f : X — X and p € X X X, instead of (f X f)[p] we write shortly f[p]. Thus, for binary
structures X = (X, p) and Y = (Y, 0), we have:

Cond(X,Y) = {f € Sym(X,Y) : f[p] C o}, (1)
and
Iso(X, Y) = {f € Sym(X, Y) : flp] = o}, 2)

For relational structures (X, p) and (X, o), we often write shortly p = ¢ instead of (X, p) = (X, 0).
According to that, for a binary structure X = (X, p), we define the corresponding set of removable edges,
ie.

pr={yepp=p\lx . o

In the sequel, when we write p [ 4 or (p [ 4) \ 0, we assume that the domain of the corresponding structure
is the set A. According to that, we have

pla=(plp)\o & (Apla)=<B,(plp)\ o),

and
(pra) ={xy)y € pla (A pla)=(A (p ta)\(x, D). )

Also, if for a given structure X = (X, p) we have Y,Z C X, then we shall often, by slightly abusing
notation, instead of X = (Y, p I'y) and (Y, p ['y) = (Z, p [ z), write shortly X = Y and Y = Z, respectively. And
if X =(X,p)and Y = (Y,0) are trees, x € X, y € Y, instead of (x Tx, p [x1x) = (¥ Ty, 0 [ 41,) we shortly write
xTx = y Ty (see the next section).

2. Preliminaries

Trees. Let X = (X, p) € Mod, be a tree, i.e. p = <is irreflexive and transitive, and for each x € X the set x | x
is well-ordered, where for x € X:

xlx={yeX:y<xj, xTx={yeX:x <y},
xlx={yeX:y<u}, xIx:={yeX:x<y},

xIx =xIxUxTx.

For Y € X we have Y| x := U,ey ¥ x, and similarly for Y Tx, Y]x and Y Tx. If the tree X is clear from the
context, we write only x| instead of x | x, etc.

For x € X, the height function of x is given by htx(x) := otp(x | ) € Ord, and for @ € Ord the corresponding
level is defined by

Levelx(a) := {x € X : htx(x) = a},
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where Rooty := Levelx(0). Also,
Levely(a) := {x € Levelx(a) : |{y € Levelx(a) : xT =y T} > a)}, (5)
and Rooty := Levely (0). If htx(x) is a successor ordinal, then predy(x) := max(x]). For @ € Ord we define

X<a 1= ] Levelx(p). (6)

p<a

The fragments X<,, X5, and X, are defined in the similar way.
The equivalence relation ~, on X is defined in the following way:

x~yexl=yl.
The corresponding equivalence class of x will be denoted by [x]., .

Disconnected binary structures. If X = (X, p) is a binary structure, then the transitive closure p,s of the
relation p,s = AxUpU p‘1 (given by xp,sy iff there aren € Nand zp = x, 21, ...,2, = y such that z; p,s zi41, for
each i < n) is the minimal equivalence relation on X containing p. The corresponding equivalence classes
[x], x € X, are called the connectivity components of X and the structure X is called connected iff |X/p,s| = 1.
For example, the connectivity components of a tree X are x T, x € Rootx. A tree X is connected, if and only
if |Rootx | = 1 (the so called rooted trees).

If Xi = (X;, pi), i €1, are connected binary structures and X; N X; = 0, for different ,j € I, then the
structure U;e; Xi = (Ujer Xi, Ui pi) is the disjoint union of the structures X;, i € I, and the structures X;, i € I,
are its components.

The following characterization of nonreversible disconnected binary structures was obtained in [9].

Proposition 2.1. Let X;, i € I, be pairwise disjoint and connected Ly-structures, and let X = (X, p) = U;; Xi. Then
the following conditions are equivalent:

(a) p is not reversible, i.e. there exists g € Cond(X) such that g[p] < p;

(b) There exist a surjection f : I — I, and g; € Mono(X;, X)), for i € I, where {g;[X;] : i € f'[{j}1} is a partition
of Xj for all j € 1, such that: f is not an injection, or g; ¢ Iso(X;, X¢;)) for some i € I.

Then, g = Uler 9i-

Example 2.2. Let Y, = (Z,0,), where o, := {{k,k+1) : k € Z} U {{nl,nl) : | € w}, for n € N. The structures
Y, are connected, rigid, nonreversible, and we have that ¢;, = {{0,0)}, for all n € IN. Then for the disjoint union
X = X, pm) = Upeq Yu we have that |p,| = m, for all m € N. We see that there exist both connected and
disconnected nonreversible structures that have finitely many removable edges.

3. Properties of the set of removable edges of a tree

Proposition 3.1. Let X = (X, p) € Mody, be a tree.
(a) If (x,y) € p*, then htx(y) = htx(x) + 1 and y € MaxX;
(b) For every a € Ord we have p* ['x,, € (p I'x..)"
(c) IfIRootx | =1 then p* = (p I'x.,)";
(d) For all x € X we have (p I'1y_,1)" € p*;
(e) For all x € X we have (p I1)" C p*.

Proof.

(@) If (x, y) € p* C p, then htx(x) < htx(y), thatis htx(x)+1 < htx(y). If we assume that htx(x)+1 < htx(y),
then there is z € y | such that htx(z) = htx(x) + 1. Then x < z < y, and we conclude that p \ {{x, )} is not
transitive, which is a contradiction. Let us now assume that y ¢ MaxX, and let y < w, for some w € X.
Then x, y € w|x are incomparable in X’ := (X, p \ {{x, y)}), which is also a contradiction.
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(b) Take (x, y) € p* I'x.,- Then X = (X, p) = (X, p \ {{x, Y)}) = X/, which implies that
(Xoar P Ixo0) = A Xsa)x, (0 NS D T xou)x V-

Since (X>a)x = X0 and (p \ {{x, ) I'x., = (p I'x.,) \ {{x, y)}, we have proven (b).
(c) If |[Rootx | = 1, then by (b) we have p* = p* I'x,, € (p I'x.,)". Now take (x,y) € (p [ x,,)". Then

(X>1,0 Tx0? = (Xo1, (p Tx2) \ {Kx, h), that is (Xs1, p Txe,) = (Xo1, (0 \ {5, ) Tx.,)- Since |Rootx | = 1, this
implies that (X, p) = (X, p \ {{x, y)}), which proves the other inclusion.
(d) Take (y,z) € (p I'x].,1)"- Then there is

gelso({[x]-, 1, p Mepo1) ([x]-, 1, (0 Py )\, 21))-

Since for any u, v € [x]., we have u| = v, we easily conclude that

f=gVUidx\q.,1 € Iso ((X, p>, <X, p\y, z)}>),

which means that (y,z) € p".
(e) If xT = {x}, this is trivial. And if y € Min(x T\{x}), then (xT)>, = [y]~, T, and (e) follows from (c) and
(d). O

Lemma 3.2. Let X = (X, p) € Mody, be a tree. Then we have:

P = (pra)yUup, )
xeRootyx
where
p = U {(x, ¥y :y € Max(xT) N Levelx(1) A 3z € Rooty zT ={y} A xT = xI\{y}},
xeRootx

and

"= ) {(predy®), 1) ¢ (p 1) 1 y € Max(x1) A 3Z € [Rooti ] (p Pap) \ {predy(y), v = p 121).

x€Rooty
Proof. Since by Proposition 3.1 (c) (p ['+1)" = (p [x\ix})", we conclude that the first union is disjoint.

(2) From Proposition 3.1 (e) it follows that ,croot, (P [21)" € p*. Now take (x*, y*) € p’. Then we have
that, by removing the single edge (x*, y*) from X, the connectivity component x*T ends up split into two
components: {y*} and x*T \ {y*}. Since |[{z € Rootx : zT= {z}}| > w, and since x* T = x* T \{y*}, we conclude
that the structures (X, p) and (X, p \ {{x*, y*}) have isomorphic components. Hence, p = p \ {{x*, y*}, which
means that (x*, y*) € p*. And if

(x",y") € {<predx(y), Y & (plyp) ¥ €Max(xoT) A IZ € [Rooty ] (p [x1) \ {{predy(v), v)} = p er},

for some x; € Rootyx/, we have two possibilities:

1. By removing the single edge (x*, y*) from X, the connectivity component xy] remains connected. Then
we have that there exists Z = {z} € [Rooty]' such that (p [,7) \ {(x*, y*)} = p [ 21, and since (x*, y*) & (p Tx1)",
we have that p [ ;1 2 (p [ x7) \ (X", ¥")}. But xy € Rooty, which implies that the structures (X, p) and
(X, p \ {{x*, y*}) have isomorphic components. Therefore, p = p \ {{x*, y*}, which means that (x*, y*) € p*.

2. By removing the single edge (x*, y*) from X, the connectivity component xy T ends up split into two
components. Then xp = x*, and those two components are {y*} and x* T \ {y*}. Then we have that there
exists Z = {z1,22} € [Rooty]* such that (p ['+7) \ {(x*, ¥*)} = p I'z, and since x* € Rooty, we conclude that,
regardless of whether x* T = x* T \{y*} or not, we have that the structures (X, p) and (X, p \ {{(x*, y*}) have
isomorphic components. Therefore, p = p \ {(x*, y*}, which means that (x*, y*) € p".
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(S) Take (u,v) € p*. Then p = p \ {{u, v)}, thatis g[p] = p \ {{u, v)} for some g € Cond(X). By Proposition
2.1 there are a surjection f : Rootx — Rootx, and g, € Mono(x T, f(x)T), for x € Rootx, where

lgylyTl:ye f_l[{x}]} is a partition of xT for all x € Root, (8)
such that
g= U Gz ©)
xe€Rootx

and such that: f is not an injection, or g, ¢ Iso(x T, f (x)7) for some x € Rootx

1. If f is not an injection, then {x € Rootx : [~ il > 1) = {x*}, and | f ‘1| = 2, because otherwise,
we would have by (8), (9), and since x T is connected that |p \ g[p]l > 1. We conclude that in this case, by
removing the edge (u, v) from X, the connectivity component x*T was split into two components. This is
possible if and only if

u =x" € Rootx and v = y* € Max(x"T) N Levelx(1), (10)
and in that case:
those two components in <X, p\ {7, y*)}> are {y*} and x* T\ {y'}. (11)

We have two possibilities:

o I N{f"(x") : n € w} # 0. Let f![{x*}] = {z",w"}, and let m € w be the smallest number such
that f”(x*) = w". Then there is the sequence (z, : n € w) of different elements from Rootx \{f"(x") : n € w}
such that zg = z* and f~![{z(}] = {zx41} for all k € w. Since lp\ glpll = 1, by (8) and (9) we conclude that

Jz., € 1so (zk+1 T,zeT ), for all k € w, which means that
{zk : k € w} C Rooty . (12)

Similarly, g € Iso(f"(x") T, f"*1(x*) 1) for n < m, and, in particular, x* T = w* 1. By (8) and (11), we have

{gor[w 11,9212 11} = {¥' 1 \ (v}, ly'}}. Since [w* 1| = " 1| > 1, we have that g, [w" 1] = "1 \ {y’}, and that
g-[z" T]1 = {y*}, whence z* T= {z*}. Since |p \ g[p]| = 1, we conclude that g+ € Iso(w" T,x* T \{y*}), i.e. that
xT=zwT=x"7T\{y}). Now, from (10) and (12) it follows that (u,v) = (x*, y*) € p’.

o F{x N {f"(x") : n € w} = 0. Then there are sequences (X, : 1 € W), (Yn : 1 € w), and (z, : 1 € w)
of different elements frorn Rooty, such that xy = yp = zp = x*, and such that f~[{x1}] = {x}, for k € w,
Fxo}] = {y1,z1}, and T {yid] = (i}, f 1z}l = {2k}, for all k € N. Since [p \ glp]l = 1, by (8) and (9)
we conclude that gy, € Iso(xx T,xk117T), for all k € w, and that g,,,, € Iso(yk+1 T, Yk T), 2., € IS0(zks1 1,21 T),
forallk € N, i.e.

{x¢ ke wyU{yr: ke N} U {z; : k € N} C Rooty . (13)

By (8) and (11) we have {!]yl [viT] 9. [z1 I]} = {{y*},x*I \ {y*}}. Without loss of generality, let g, [y1 T] = {y"}
and g;,[z1 T] = x* T \ {y’}. This implies that y; T= {y1}, and since |p \ glp]l = 1, we get that g, € Iso(z; T
X T\ YY), ie. that (p Teq) \ (X, ¥} = p [ 27, where Z = {y1, 21} € [Root;(]gz. Now, from (10), (13) and
Proposition 3.1 (c), it follows that (u,v) = (x*, y*) € p”.

2. f is bijective, but g,« ¢ Iso(x* T, f(x*) 1) for some x* € Rootx. We have two possibilities:

o x* ¢ {f"(x*) : n € N}. Then the sequence (x, : n € Z), where x,, := f"(x*) for n € Z, consists of different
elements from Rooty, and since [p \ g[p]| = 1, by (8) and (9) we conclude that gy, € Iso (xn T, %4171 ), for all
n € Z. \ {0}, which means that

{x, : n € Z} C Root . (14)
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Since gx, € Cond(p l'x,1, P Iv,7) \ I0(p Tx1, p Tx1), by (8) and (9) we have @ # p T'xq \ gx,[p Txi2] € p \ glp] =
{(u, v)}. Hence, p 1,7 \ {1, )} = p [ 21, where Z = {xo} € [Rooty]**>. Now, from Proposition 3.1 (a) and (14) it
follows that (1, v) € U croot, (P Tx1)" U p”'.

o x* € {f"(x*) : n € N}. Let m € N be the smallest number such that f"(x*) = x*. If we put x,, := f*(x*),
for n € w, then x* = xo = x,,. Now for every k < m we have that f~![{xs1}] = {x¢}, and since |p \ g[p]| = 1,
by (8) and (9) we conclude that g, € Iso(x; T, xx+1T) for 0 < k < m, that is

Irlp Txt]l = p L, for 0 <k <m. (15)

Since gy, € Cond(p 'xy1, 0 Tx17) \ Iso(p ['x1, P Txi1), @s above, we have that gy [p Txy1] = p Tx1 \ {{, ©)}. Now,
by (15) we have

Jx,, © "0 fGx, O Gx, [P rxlj] ==y, [P rme] = gxo[P Fon] =p Fm \ {u,v)},
thatis p I'y1 = p Typ \ ({1, 0)}, and hence (1, v) € (p [1,1)" € Userooty (P Tx1)" m|

Proposition 3.3. Let X = (X, p) € Mody, be a tree. Then we have:
(a) If the set p* \ Uyerooty (P Tx1)" is nonempty, then it is infinite;
(b) If [Rootx | = 1 and the set p* \ Uerevelx1)(P [x1)" is nonempty, then it is infinite.

Proof.
(a) Since for y € Max(xT) N Levelx(1) we have

xT=xT\{y} & |Max(xT)N Levelx(1)| = w, (16)

we conclude that, for any x € Rooty, the set
{(x, ¥y 1y € Max(xT) NLevelx(1) A 3z € Rooty zT = {y} A xT = xI\{y}},

is clearly either empty or infinite. The set

| {¢predy (), v) & (p1.0)" 1y € Max(x1) A 3Z € [Rooty =2 (p 1q) \ [(predy(y), v} = p 121},

xeRooty
is, by (5), also either empty or infinite. The statement now follows from Lemma 3.2.
(b) This follows from (a) and Proposition 3.1 (c) O
4. Main result

Theorem 4.1. Let X = (X, p) € Mod;, be a tree. If the tree X has a removable edge, then it has infinitely many
removable edges.

Proof. We shall prove by induction, that for any tree X = (X, p), and any n € IN,
"l =2n=|p| >n. 17)

We first assume that [p*| = 1, that is p* = {{(x*, y")}. Then, by Proposition 3.1 (a), we have that htx(y") is a
successor ordinal. Let y* | = {x, : @ < htx(y")} be the increasing enumeration of y*| , such that htx(x,) = a.
Next we prove, by transfinite induction, that

(pTxp) =", ¥}, forevery a <htx(y"). (18)

By Proposition 3.3 (a) and Proposition 3.1 (e), itis p* = U erooty (P <), Whichimplies that (p [1,1)" = {(x*, y)}.
Let us now assume, for some y < htx(y"), that for all B <y we have (p [,1)" = {(x", y")}. It is possible:
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1. y = 6 + 1. Since Level,;(1) = [x,].,, by Proposition 3.1 (c) and the induction hypothesis, we have
that (p 'x,).,1)" = (p T'x1)" = (&%, ¥y} Now, by Proposition 3.3 (a) and Proposition 3.1 (e), we have that

(p r[xy]wI)* = Uxe[xy]w(p I'+1)", and consequently (p rxyI)* = {{(x", y")}.
2. y is a limit ordinal. Then, since [p*| = 1, and since (p [ y,1)" = {{(x*, y")} for all B < ), we conclude, by
Proposition 3.1 (e), that:

for every f <y, and for every x € [xg]., \ {xg}, we have xT # xgT. (19)
Since (X, p) =X = X' =(X,p") =<(X, p \ {{x", y")}), there is f € Iso(X, X’), and for such f we have

flLevelx(8)] = Levelx (8) = Levelx(B), for f <y < htx(y").
Next we prove, by transfinite induction, that

f(xp) = xp, forall B <y <htx(y). (20)
Since (x*, y*) € (p ['x1)", we have that xT = xTx, for all x € Rootx = Rootx.. Hence, by (19), it is

xTx % xoTx for all x € Rooty: \{xp}. (21)

Since f : X — X’ is isomorphism, we have xo Tx = xo 7= f[xo T] = f(x0) T x, which, together with
(21), implies f(xp) = x9. Assume now, for some 6 < y, that for all C < 0 we have f(x;) = x;. Then
xsd = flxs 1= f(xs)Ix = f(x5)|, which means that x5 ~, f(x;), thatis

Fo) € ]y = [xole, - (22)

Since (x*, ) € (p I';1)", we have that xT = xTx, for all x € [x5]., = [xg;]NVX,. Hence, by (19), it is

xTx # x5 x forall x € [x5]~\,x/ \ {xs). (23)
Now we have x5 Txr = x5 T= flxsT]1 = f(xs5) Tx, which, together with (22) and (23), implies that f(x;s) = x;.
We have proven (20).

By (20), we have f(x) lx = flxl]= flx, ] =x,l=x, lx, forany x € [x,].,. Hence, f(x) € [xy]NVX,,
that is f[[xy]w] c [x),]ww. Since f! € Iso(X’,X), we analogously prove that f‘l[[x},]NVX,] C [x].,, ie.
[xy]NVX, cf [[xy]wv]. Hence, f [[x),]NV] = [x),]NVX,, and thus f [[x),]NVI ] = [x),]NVX, Tx. Itis easy to see that
[xy]-, T=[x)]-,, Tx, hence

fln11 ] =x1.1 (24)

Since f : X — X'’ is an isomorphism, this implies that

(11,0 1) = (fll6 11 | 0/ D) = (25)

(161100 Ty 1) = (D51, 1 (0 D1, D) VG, 00,

which means that (x*, y*) € (p ['[r,1.,1)"- By Proposition 3.1 (d), we have that (p r[xy]wI)* = {{(x*, y")}. Now,
by Proposition 3.3 (a) and Proposition 3.1 (e), we have that (p ['x,1.,1)* = Usefr, 1., (P [51)", and consequently,
(p Iy,1) = {x", y)}. We have proven (18).

Since x* = xpy () € Y1, from (18) it follows that (p [ 1) = {(x", y")}, and that is a contradiction with
Proposition 3.1 (c). Therefore, |p*| # 1, and thus we have proven that |[p*| > 1 = |p*| > 1, which is the basis
of the main induction.

Let us now assume that, for any tree X = (X, p) we have

p’l=2m=|p*|>m, forme{l,2,...,n-1}, (26)
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and let us assume that |[p*| = n. Let £ := min(htx [nz[p*]]), and let (x*, y*) € p*, such that htx(y*) = £. Let
'l = {x, : a < htx(y")} be the increasing enumeration of y* |, such that htx(x,) = a.
Next we prove, by transfinite induction, that

(plxp) =p", forevery a <htx(y’). (27)

By Proposition 3.3 (a) and Proposition 3.1 (e), it is p* = U,eroot, (P 21), Which, together with (26), implies
that (p I'y,1)* = p*. Let us now assume, for some y < htx(y"), that for all B <y we have (p ['y,1)" = p*. Itis
possible:

1. y = 6+ 1. Since Level,;(1) = [x,].,, by Proposition 3.1 (c) and the induction hypothesis, we
have that (p r[x)’]ﬂvl)* = (p 1) = p*. Now, by Proposition 3.3 (a) and Proposition 3.1 (e), we have that
(Pl = Uxe[xy]w(p l+1)", and therefore, by (26), it is (p I+,1)" = p".

2. yis a limit ordinal. Then, since |p*| = n, and since (p I x,1)* = p* for all B <y, we conclude, by
Proposition 3.1 (e), that:

for every f <y, and for every x € [xg]., \ {xg}, we have xT # xgT. (28)

Take any (x*, y*) € p*. Since (X,p) = X = X' = (X, p") = (X, p \ {(x", y}), there is f € Iso(X,X’), and for
such f we analogously as with (20) and (24), by transfinite induction, prove that

f(xﬁ) = xg, forall B <y < htx(y"),

and that
Al 1 ] =11

Since f is an isomorphism, as in (25) we conclude that (x*, y*) € (p ['x,1.,1)". Since (x*, y*) € p* was arbitrary,
we have that p* C (p I'[,],,1)", and hence, by Proposition 3.1 (d), we have (p I'[r,.,1)" = p". Now, by
Proposition 3.3 (a) and Proposition 3.1 (e), we have that (p M1 1) = User,1, (P Tx7)". This, together with
(26), implies that (p I'+,1)* = p*. We have proven (27).

Since x* = xpgy () € ¥'l, from (27) it follows that (x*, y*) € p* = (p [¢1)", and that is a contradiction with
Proposition 3.1 (c). Therefore, |p*| # 1, which together with (26) gives us

lp"l = n=lp| >n.
O
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