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Abstract. A relational structure is said to be reversible iff every bijective homomorphism (condensation)
of that structure is an automorphism. In the case of a binary structure X = 〈X, ρ〉, that is equivalent to
the following statement: whenever we remove finite or infinite number of edges from X, thus obtaining
the structure X′, we have that X′ � X. In this paper, we prove that if a nonreversible tree X = 〈X, ρ〉 has
a removable edge (i.e. if there is 〈x, y〉 ∈ ρ such that 〈X, ρ〉 � 〈X, ρ \ {〈x, y〉}〉, then it has infinitely many
removable edges. We also show that the same is not true for arbitrary binary structure by constructing
nonreversible digraphs having exactly n removable edges, for n ∈N.

1. Introduction

A relational structure X is said to be reversible iff every condensation (bijective homomorphism) f :
X → X is an automorphism. If Lb = 〈R〉, ar(R) = 2, is the binary language, we have that an Lb-structure
X is reversible iff whenever we remove finite or infinite number of edges from X, thus obtaining the
structure X′, we have that X′ � X. The class of reversible structures includes linear orders, Boolean lattices
(algebras), well founded posets with finite levels [3, 4], tournaments, Henson graphs [7], Henson digraphs
[5] and monomorphic structures [6]. Reversible structures have the Cantor-Schröder-Bernstein property for
condensations, i.e. whenever X is reversible and Y is arbitrary structure, and there are condensations
f : X→ Y, and 1 : Y→ Y, we have X � Y.

We say that an edge 〈x, y〉 ∈ ρ is removable in the structureX = 〈X, ρ〉 if and only if 〈X, ρ〉 � 〈X, ρ\ {〈x, y〉}〉.
Then clearly X is not reversible. Not all nonreversible structures have a removable edge, for example
nonreversible graphs trivially do not, because they are irreflexive and symmetric. Moreover, using the result
of Dushnik and Miller [1] on the existance of embedding-rigid linear orders, or the result of Vopěnka, Pultr
and Hedrlı́n [12] on the existance of endomorphism-rigid structures, one can easily construct nonreversible
structure X = 〈X, ρ〉 such that 〈X, ρ〉 � 〈X, ρ \ σ〉 for any finite σ ⊆ ρ. Among those nonreversible structures
that have a removable edge, not all have infinitely many removable edges (see Example 2.2). The class of
those nonreversible structures that have infinitely many removable edges is of particular interest, because
it contains the class of all nonreversible structures that have the Cantor-Schröder-Bernstein property for
condensations (the so called weakly reversible structures). For more information on weak reversibility, see
[7].
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In this article, we prove that if a tree has a removable edge, then it has infinitely many removable edges.
In the following paragraph, we introduce notation that will be used throughout the paper. In Section 2 one
can find definitions and facts about trees and disconnected binary structures, that play the central role in
the paper. Section 3 contains some statements on the properties of the set of removable edges of a given
tree. These results will be used in Section 4, that contains the main result of the paper.

Notation. IfX andY are relational structures, Iso(X,Y), Cond(X,Y), Mono(X,Y) and Emb(X,Y), will denote
the set of all isomorphisms, condensations (bijective homomorphisms), monomorphisms and embeddings
from X to Y respectively. Iso(X,X) = Aut(X) is the set of automorphisms of X, instead of Cond(X,X) we
shortly write Cond(X), etc.

For a function f : X → X and ρ ⊆ X × X, instead of ( f × f )[ρ] we write shortly f [ρ]. Thus, for binary
structures X = 〈X, ρ〉 and Y = 〈Y, σ〉, we have:

Cond(X,Y) = { f ∈ Sym(X,Y) : f [ρ] ⊆ σ}, (1)

and

Iso(X,Y) = { f ∈ Sym(X,Y) : f [ρ] = σ}. (2)

For relational structures 〈X, ρ〉 and 〈X, σ〉, we often write shortly ρ � σ instead of 〈X, ρ〉 � 〈X, σ〉.
According to that, for a binary structure X = 〈X, ρ〉, we define the corresponding set of removable edges,
i.e.

ρ∗ :=
{
〈x, y〉 ∈ ρ : ρ � ρ \ {〈x, y〉}

}
. (3)

In the sequel, when we write ρ�A or (ρ�A)\σ, we assume that the domain of the corresponding structure
is the set A. According to that, we have

ρ�A � (ρ�B)\ σ ⇐⇒ 〈A, ρ�A〉 � 〈B, (ρ�B)\ σ〉,

and

(ρ�A)∗ =
{
〈x, y〉 ∈ ρ�A : 〈A, ρ�A〉 � 〈A, (ρ�A)\{〈x, y〉}〉

}
. (4)

Also, if for a given structure X = 〈X, ρ〉 we have Y,Z ⊆ X, then we shall often, by slightly abusing
notation, instead of X � 〈Y, ρ�Y〉 and 〈Y, ρ�Y〉 � 〈Z, ρ�Z〉, write shortly X � Y and Y � Z, respectively. And
if X = 〈X, ρ〉 and Y = 〈Y, σ〉 are trees, x ∈ X, y ∈ Y, instead of 〈x↑X, ρ�x↑X〉 � 〈y↑Y, σ� y↑Y〉 we shortly write
x↑X � y↑Y (see the next section).

2. Preliminaries

Trees. LetX = 〈X, ρ〉 ∈ModLb be a tree, i.e. ρ =< is irreflexive and transitive, and for each x ∈ X the set x↓X
is well-ordered, where for x ∈ X:

x↓X := {y ∈ X : y < x}, x↑X := {y ∈ X : x < y},

x↓X := {y ∈ X : y ≤ x}, x↑X := {y ∈ X : x ≤ y},

xlX := x↓X ∪ x↑X.

For Y ⊆ X we have Y↓X :=
⋃

x∈Y x↓X, and similarly for Y↑X, Y↓X and Y↑X. If the tree X is clear from the
context, we write only x↓ instead of x↓X, etc.

For x ∈ X, the height function of x is given by htX(x) := otp(x↓ ) ∈ Ord, and forα ∈ Ord the corresponding
level is defined by

LevelX(α) := {x ∈ X : htX(x) = α},
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where RootX := LevelX(0). Also,

Level′X(α) :=
{
x ∈ LevelX(α) : |{y ∈ LevelX(α) : x↑ � y↑}| ≥ ω

}
, (5)

and Root′X := Level′X(0). If htX(x) is a successor ordinal, then predX(x) := max(x↓). For α ∈ Ord we define

X<α :=
⋃
β<α

LevelX(β). (6)

The fragments X≤α, X>α and X≥α are defined in the similar way.
The equivalence relation ∼v on X is defined in the following way:

x ∼v y⇔ x↓= y↓ .

The corresponding equivalence class of x will be denoted by [x]∼v .

Disconnected binary structures. If X = 〈X, ρ〉 is a binary structure, then the transitive closure ρrst of the
relation ρrs = ∆X∪ρ∪ρ−1 (given by xρrsty iff there are n ∈N and z0 = x, z1, . . . , zn = y such that zi ρrs zi+1, for
each i < n) is the minimal equivalence relation on X containing ρ. The corresponding equivalence classes
[x], x ∈ X, are called the connectivity components of X and the structure X is called connected iff |X/ρrst| = 1.
For example, the connectivity components of a tree X are x↑ , x ∈ RootX. A tree X is connected, if and only
if |RootX | = 1 (the so called rooted trees).

If Xi = 〈Xi, ρi〉, i ∈ I, are connected binary structures and Xi ∩ X j = ∅, for different i, j ∈ I, then the
structure

⋃
i∈I Xi = 〈

⋃
i∈I Xi,

⋃
i∈I ρi〉 is the disjoint union of the structures Xi, i ∈ I, and the structures Xi, i ∈ I,

are its components.
The following characterization of nonreversible disconnected binary structures was obtained in [9].

Proposition 2.1. LetXi, i ∈ I, be pairwise disjoint and connected Lb-structures, and letX = 〈X, ρ〉 =
⋃

i∈I Xi . Then
the following conditions are equivalent:

(a) ρ is not reversible, i.e. there exists 1 ∈ Cond(X) such that 1[ρ] ( ρ;
(b) There exist a surjection f : I→ I, and 1i ∈Mono(Xi,X f (i)), for i ∈ I, where {1i[Xi] : i ∈ f−1[{ j}]} is a partition

of X j for all j ∈ I, such that: f is not an injection, or 1i < Iso(Xi,X f (i)) for some i ∈ I.
Then, 1 =

⋃
i∈I 1i.

Example 2.2. Let Yn := 〈Z, σn〉, where σn := {〈k, k + 1〉 : k ∈ Z} ∪ {〈nl,nl〉 : l ∈ ω}, for n ∈ N. The structures
Yn are connected, rigid, nonreversible, and we have that σ∗n = {〈0, 0〉}, for all n ∈ N. Then for the disjoint union
Xm = 〈Xm, ρm〉 =

⋃m
n=1 Yn we have that |ρ∗m| = m, for all m ∈ N. We see that there exist both connected and

disconnected nonreversible structures that have finitely many removable edges.

3. Properties of the set of removable edges of a tree

Proposition 3.1. Let X = 〈X, ρ〉 ∈ModLb be a tree.
(a) If 〈x, y〉 ∈ ρ∗, then htX(y) = htX(x) + 1 and y ∈MaxX;
(b) For every α ∈ Ord we have ρ∗ �X≥α ⊆ (ρ�X≥α )

∗;
(c) If |RootX | = 1 then ρ∗ = (ρ�X≥1 )∗;
(d) For all x ∈ X we have (ρ�[x]∼v↑

)∗ ⊆ ρ∗;
(e) For all x ∈ X we have (ρ�x↑)∗ ⊆ ρ∗.

Proof.
(a) If 〈x, y〉 ∈ ρ∗ ⊆ ρ, then htX(x) < htX(y), that is htX(x)+1 ≤ htX(y). If we assume that htX(x)+1 < htX(y),

then there is z ∈ y ↓ such that htX(z) = htX(x) + 1. Then x < z < y, and we conclude that ρ \ {〈x, y〉} is not
transitive, which is a contradiction. Let us now assume that y < MaxX, and let y < w, for some w ∈ X.
Then x, y ∈ w↓X′ are incomparable in X′ := 〈X, ρ \ {〈x, y〉}〉, which is also a contradiction.
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(b) Take 〈x, y〉 ∈ ρ∗ �X≥α . Then X = 〈X, ρ〉 � 〈X, ρ \ {〈x, y〉}〉 = X′, which implies that

〈X≥α, ρ�X≥α〉 � 〈(X≥α)X′ , (ρ \ {〈x, y〉})�(X≥α)X′ 〉.

Since (X≥α)X′ = X≥α and (ρ \ {〈x, y〉})�X≥α = (ρ�X≥α ) \ {〈x, y〉}, we have proven (b).
(c) If |RootX | = 1, then by (b) we have ρ∗ = ρ∗ � X≥1 ⊆ (ρ � X≥1 )∗. Now take 〈x, y〉 ∈ (ρ � X≥1 )∗. Then

〈X≥1, ρ�X≥1〉 � 〈X≥1, (ρ�X≥1 ) \ {〈x, y〉}〉, that is 〈X≥1, ρ�X≥1〉 � 〈X≥1, (ρ \ {〈x, y〉})�X≥1〉. Since |RootX | = 1, this
implies that 〈X, ρ〉 � 〈X, ρ \ {〈x, y〉}〉, which proves the other inclusion.

(d) Take 〈y, z〉 ∈ (ρ�[x]∼v↑
)∗. Then there is

1 ∈ Iso
(〈

[x]∼v ↑ , ρ�[x]∼v↑

〉
,
〈
[x]∼v ↑ , (ρ�[x]∼v↑

) \ {y, z}
〉)
.

Since for any u, v ∈ [x]∼v we have u↓ = v↓ , we easily conclude that

f := 1 ∪ idX\[x]∼v↑
∈ Iso

(〈
X, ρ

〉
,
〈
X, ρ \ {〈y, z〉}

〉)
,

which means that 〈y, z〉 ∈ ρ∗.
(e) If x↑ = {x}, this is trivial. And if y ∈ Min(x↑\{x}), then (x↑ )≥1 = [y]∼v ↑ , and (e) follows from (c) and

(d). �

Lemma 3.2. Let X = 〈X, ρ〉 ∈ModLb be a tree. Then we have:

ρ∗ =
⋃

x∈RootX

(ρ�x↑)∗
.
∪ (ρ′ ∪ ρ′′), (7)

where

ρ′ :=
⋃

x∈RootX

{
〈x, y〉 : y ∈Max(x↑ ) ∩ LevelX(1) ∧ ∃z ∈ Root′X z↑ � {y} ∧ x↑ � x↑\{y}

}
,

and

ρ′′ :=
⋃

x∈Root′X

{
〈predX(y), y〉 < (ρ�x↑)∗ : y ∈Max(x↑ ) ∧ ∃Z ∈ [Root′X]≤2 (ρ�x↑) \ {〈predX(y), y〉} � ρ�Z↑

}
.

Proof. Since by Proposition 3.1 (c) (ρ�x↑)∗ = (ρ�x↑\{x})∗, we conclude that the first union is disjoint.

(⊇) From Proposition 3.1 (e) it follows that
⋃

x∈RootX (ρ�x↑)∗ ⊆ ρ∗. Now take 〈x∗, y∗〉 ∈ ρ′. Then we have
that, by removing the single edge 〈x∗, y∗〉 from X, the connectivity component x∗↑ ends up split into two
components: {y∗} and x∗↑ \ {y∗}. Since |{z ∈ RootX : z ↑= {z}}| ≥ ω, and since x∗ ↑ � x∗ ↑\{y∗}, we conclude
that the structures 〈X, ρ〉 and 〈X, ρ \ {〈x∗, y∗}〉 have isomorphic components. Hence, ρ � ρ \ {〈x∗, y∗}, which
means that 〈x∗, y∗〉 ∈ ρ∗. And if

〈x∗, y∗〉 ∈
{
〈predX(y), y〉 < (ρ�x0↑)

∗ : y ∈Max(x0 ↑ ) ∧ ∃Z ∈ [Root′X]≤2 (ρ�x0↑) \ {〈predX(y), y〉} � ρ�Z↑

}
,

for some x0 ∈ RootX′ , we have two possibilities:
1. By removing the single edge 〈x∗, y∗〉 fromX, the connectivity component x0↑ remains connected. Then

we have that there exists Z = {z} ∈ [Root′X]1 such that (ρ�x0↑) \ {〈x∗, y∗〉} � ρ�Z↑, and since 〈x∗, y∗〉 < (ρ�x0↑)
∗,

we have that ρ � x0↑ � (ρ � x0↑) \ {〈x∗, y∗〉}. But x0 ∈ Root′X, which implies that the structures 〈X, ρ〉 and
〈X, ρ \ {〈x∗, y∗}〉 have isomorphic components. Therefore, ρ � ρ \ {〈x∗, y∗}, which means that 〈x∗, y∗〉 ∈ ρ∗.

2. By removing the single edge 〈x∗, y∗〉 from X, the connectivity component x0 ↑ ends up split into two
components. Then x0 = x∗, and those two components are {y∗} and x∗ ↑ \ {y∗}. Then we have that there
exists Z = {z1, z2} ∈ [Root′X]2 such that (ρ � x∗↑) \ {〈x∗, y∗〉} � ρ �Z↑, and since x∗ ∈ Root′X, we conclude that,
regardless of whether x∗ ↑ � x∗ ↑ \{y∗} or not, we have that the structures 〈X, ρ〉 and 〈X, ρ \ {〈x∗, y∗}〉 have
isomorphic components. Therefore, ρ � ρ \ {〈x∗, y∗}, which means that 〈x∗, y∗〉 ∈ ρ∗.
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(⊆) Take 〈u, v〉 ∈ ρ∗. Then ρ � ρ \ {〈u, v〉}, that is 1[ρ] = ρ \ {〈u, v〉} for some 1 ∈ Cond(X). By Proposition
2.1 there are a surjection f : RootX → RootX, and 1x ∈Mono(x↑ , f (x)↑ ), for x ∈ RootX, where

{1y[y↑ ] : y ∈ f−1[{x}]} is a partition of x↑ for all x ∈ RootX, (8)

such that

1 =
⋃

x∈RootX

1x, (9)

and such that: f is not an injection, or 1x < Iso(x↑ , f (x)↑ ) for some x ∈ RootX.
1. If f is not an injection, then {x ∈ RootX : | f−1[{x}]| > 1} = {x∗}, and | f−1[{x∗}]| = 2, because otherwise,

we would have by (8), (9), and since x ↑ is connected that |ρ \ 1[ρ]| > 1. We conclude that in this case, by
removing the edge 〈u, v〉 from X, the connectivity component x∗↑ was split into two components. This is
possible if and only if

u = x∗ ∈ RootX and v = y∗ ∈Max(x∗ ↑ ) ∩ LevelX(1), (10)

and in that case:

those two components in
〈
X, ρ \ {〈x∗, y∗〉}

〉
are {y∗} and x∗ ↑ \ {y∗}. (11)

We have two possibilities:

• f−1[{x∗}] ∩ { f n(x∗) : n ∈ ω} , ∅. Let f−1[{x∗}] = {z∗,w∗}, and let m ∈ ω be the smallest number such
that f m(x∗) = w∗. Then there is the sequence 〈zn : n ∈ ω〉 of different elements from RootX \{ f n(x∗) : n ∈ ω}
such that z0 = z∗ and f−1[{zk}] = {zk+1} for all k ∈ ω. Since |ρ \ 1[ρ]| = 1, by (8) and (9) we conclude that
1zk+1 ∈ Iso

(
zk+1 ↑ , zk ↑

)
, for all k ∈ ω, which means that

{zk : k ∈ ω} ⊆ Root′X . (12)

Similarly, 1 f n(x∗) ∈ Iso( f n(x∗)↑ , f n+1(x∗)↑ ) for n < m, and, in particular, x∗ ↑ � w∗ ↑ . By (8) and (11), we have{
1w∗ [w∗ ↑ ], 1z∗ [z∗ ↑ ]

}
=

{
x∗ ↑ \ {y∗}, {y∗}

}
. Since |w∗ ↑| = |x∗ ↑| > 1, we have that 1w∗ [w∗ ↑ ] = x∗ ↑ \ {y∗}, and that

1z∗ [z∗ ↑ ] = {y∗}, whence z∗ ↑= {z∗}. Since |ρ \ 1[ρ]| = 1, we conclude that 1w∗ ∈ Iso(w∗ ↑ , x∗ ↑ \ {y∗}), i.e. that
x∗ ↑ � w∗ ↑ � x∗ ↑ \ {y∗}. Now, from (10) and (12) it follows that 〈u, v〉 = 〈x∗, y∗〉 ∈ ρ′.
• f−1[{x∗}] ∩ { f n(x∗) : n ∈ ω} = ∅. Then there are sequences 〈xn : n ∈ ω〉, 〈yn : n ∈ ω〉, and 〈zn : n ∈ ω〉

of different elements from RootX, such that x0 = y0 = z0 = x∗, and such that f−1[{xk+1}] = {xk}, for k ∈ ω,
f−1[{x0}] = {y1, z1}, and f−1[{yk}] = {yk+1}, f−1[{zk}] = {zk+1}, for all k ∈ N. Since |ρ \ 1[ρ]| = 1, by (8) and (9)
we conclude that 1xk ∈ Iso(xk ↑ , xk+1 ↑ ), for all k ∈ ω, and that 1yk+1 ∈ Iso(yk+1 ↑ , yk ↑ ), 1zk+1 ∈ Iso(zk+1 ↑ , zk ↑ ),
for all k ∈N, i.e.

{xk : k ∈ ω} ∪ {yk : k ∈N} ∪ {zk : k ∈N} ⊆ Root′X . (13)

By (8) and (11) we have
{
1y1 [y1 ↑ ], 1z1 [z1 ↑ ]

}
=

{
{y∗}, x∗ ↑ \ {y∗}

}
. Without loss of generality, let 1y1 [y1 ↑ ] = {y∗}

and 1z1 [z1 ↑ ] = x∗ ↑ \ {y∗}. This implies that y1 ↑= {y1}, and since |ρ \ 1[ρ]| = 1, we get that 1z1 ∈ Iso(z1 ↑

, x∗ ↑ \ {y∗}), i.e. that (ρ � x∗↑) \ {〈x∗, y∗〉} � ρ � Z↑, where Z = {y1, z1} ∈ [Root′X]≤2. Now, from (10), (13) and
Proposition 3.1 (c), it follows that 〈u, v〉 = 〈x∗, y∗〉 ∈ ρ′′.

2. f is bijective, but 1x? < Iso(x? ↑ , f (x?)↑ ) for some x? ∈ RootX. We have two possibilities:
• x? < { f n(x?) : n ∈N}. Then the sequence 〈xn : n ∈ Z〉, where xn := f n(x?) for n ∈ Z, consists of different

elements from RootX, and since |ρ \ 1[ρ]| = 1, by (8) and (9) we conclude that 1xn ∈ Iso
(
xn ↑ , xn+1 ↑

)
, for all

n ∈ Z \ {0}, which means that

{xn : n ∈ Z} ⊆ Root′X . (14)
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Since 1x0 ∈ Cond(ρ�x0↑, ρ�x1↑) \ Iso(ρ�x0↑, ρ�x1↑), by (8) and (9) we have ∅ , ρ�x1↑ \ 1x0 [ρ�x0↑] ⊆ ρ \ 1[ρ] =
{〈u, v〉}. Hence, ρ�x1↑ \ {〈u, v〉} � ρ�Z↑, where Z = {x0} ∈ [Root′X]≤2. Now, from Proposition 3.1 (a) and (14) it
follows that 〈u, v〉 ∈

⋃
x∈RootX (ρ�x↑)∗ ∪ ρ′′.

• x? ∈ { f n(x?) : n ∈N}. Let m ∈N be the smallest number such that f m(x?) = x?. If we put xn := f n(x?),
for n ∈ ω, then x? = x0 = xm. Now for every k < m we have that f−1[{xk+1}] = {xk}, and since |ρ \ 1[ρ]| = 1,
by (8) and (9) we conclude that 1xk ∈ Iso(xk ↑ , xk+1 ↑ ) for 0 < k < m, that is

1xk [ρ�xk↑] = ρ�xk+1↑, for 0 < k < m. (15)

Since 1x0 ∈ Cond(ρ�x0↑, ρ�x1↑) \ Iso(ρ�x0↑, ρ�x1↑), as above, we have that 1x0 [ρ�x0↑] = ρ�x1↑ \ {〈u, v〉}. Now,
by (15) we have

1xm ◦ · · · ◦ 1x2 ◦ 1x1 [ρ�x1↑] = · · · = 1xm [ρ�xm↑] = 1x0 [ρ�x0↑] = ρ�x1↑ \ {〈u, v〉},

that is ρ�x1↑ � ρ�x1↑ \ {〈u, v〉}, and hence 〈u, v〉 ∈ (ρ�x1↑)
∗
⊆

⋃
x∈RootX (ρ�x↑)∗. �

Proposition 3.3. Let X = 〈X, ρ〉 ∈ModLb be a tree. Then we have:
(a) If the set ρ∗ \

⋃
x∈RootX (ρ�x↑)∗ is nonempty, then it is infinite;

(b) If |RootX | = 1 and the set ρ∗ \
⋃

x∈LevelX(1)(ρ�x↑)∗ is nonempty, then it is infinite.

Proof.
(a) Since for y ∈Max(x↑ ) ∩ LevelX(1) we have

x↑ � x↑\{y} ⇐⇒ |Max(x↑ ) ∩ LevelX(1)| ≥ ω, (16)

we conclude that, for any x ∈ RootX, the set{
〈x, y〉 : y ∈Max(x↑ ) ∩ LevelX(1) ∧ ∃z ∈ Root′X z↑ � {y} ∧ x↑ � x↑\{y}

}
,

is clearly either empty or infinite. The set⋃
x∈Root′X

{
〈predX(y), y〉 < (ρ�x↑)∗ : y ∈Max(x↑ ) ∧ ∃Z ∈ [Root′X]≤2 (ρ�x↑) \ {〈predX(y), y〉} � ρ�Z↑

}
,

is, by (5), also either empty or infinite. The statement now follows from Lemma 3.2.
(b) This follows from (a) and Proposition 3.1 (c) �

4. Main result

Theorem 4.1. Let X = 〈X, ρ〉 ∈ ModLb be a tree. If the tree X has a removable edge, then it has infinitely many
removable edges.

Proof. We shall prove by induction, that for any tree X = 〈X, ρ〉, and any n ∈N,

|ρ∗| ≥ n⇒ |ρ∗| > n. (17)

We first assume that |ρ∗| = 1, that is ρ∗ = {〈x∗, y∗〉}. Then, by Proposition 3.1 (a), we have that htX(y∗) is a
successor ordinal. Let y∗ ↓= {xα : α < htX(y∗)} be the increasing enumeration of y∗ ↓ , such that htX(xα) = α.

Next we prove, by transfinite induction, that

(ρ�xα↑)
∗ = {〈x∗, y∗〉}, for every α < htX(y∗). (18)

By Proposition 3.3 (a) and Proposition 3.1 (e), it isρ∗ =
⋃

x∈RootX (ρ�x↑)∗, which implies that (ρ�x0↑)
∗ = {〈x∗, y∗〉}.

Let us now assume, for some γ < htX(y∗), that for all β < γ we have (ρ�xβ↑)
∗ = {〈x∗, y∗〉}. It is possible:
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1. γ = δ + 1. Since Levelxδ↑(1) = [xγ]∼v , by Proposition 3.1 (c) and the induction hypothesis, we have
that (ρ � [xγ]∼v↑

)∗ = (ρ � xδ↑)
∗ = {〈x∗, y∗〉}. Now, by Proposition 3.3 (a) and Proposition 3.1 (e), we have that

(ρ�[xγ]∼v↑
)∗ =

⋃
x∈[xγ]∼v

(ρ�x↑)∗, and consequently (ρ�xγ↑)
∗ = {〈x∗, y∗〉}.

2. γ is a limit ordinal. Then, since |ρ∗| = 1, and since (ρ � xβ↑)
∗ = {〈x∗, y∗〉} for all β < γ, we conclude, by

Proposition 3.1 (e), that:

for every β < γ, and for every x ∈ [xβ]∼v \ {xβ}, we have x↑ � xβ ↑ . (19)

Since 〈X, ρ〉 = X � X′ = 〈X, ρ′〉 = 〈X, ρ \ {〈x∗, y∗〉}〉, there is f ∈ Iso(X,X′), and for such f we have

f [LevelX(β)] = LevelX′ (β) = LevelX(β), for β < γ < htX(y∗).

Next we prove, by transfinite induction, that

f (xβ) = xβ, for all β < γ < htX(y∗). (20)

Since 〈x∗, y∗〉 ∈ (ρ�x0↑)
∗, we have that x↑ � x↑X′ , for all x ∈ RootX = RootX′ . Hence, by (19), it is

x↑X′ � x0 ↑X′ for all x ∈ RootX′ \{x0}. (21)

Since f : X → X′ is isomorphism, we have x0 ↑ X′ � x0 ↑� f [x0 ↑ ] = f (x0) ↑ X′ , which, together with
(21), implies f (x0) = x0. Assume now, for some δ < γ, that for all ζ < δ we have f (xζ) = xζ. Then
xδ ↓= f [xδ ↓ ] = f (xδ)↓X′ = f (xδ)↓ , which means that xδ ∼v f (xδ), that is

f (xδ) ∈ [xδ]∼v = [xδ]∼vX′
. (22)

Since 〈x∗, y∗〉 ∈ (ρ�xδ↑)
∗, we have that x↑ � x↑X′ , for all x ∈ [xδ]∼v = [xδ]∼vX′

. Hence, by (19), it is

x↑X′ � xδ ↑X′ for all x ∈ [xδ]∼vX′
\ {xδ}. (23)

Now we have xδ ↑X′ � xδ ↑� f [xδ ↑ ] = f (xδ)↑X′ , which, together with (22) and (23), implies that f (xδ) = xδ.
We have proven (20).

By (20), we have f (x) ↓X′ = f [x ↓ ] = f [xγ ↓ ] = xγ ↓= xγ ↓X′ , for any x ∈ [xγ]∼v . Hence, f (x) ∈ [xγ]∼vX′
,

that is f
[
[xγ]∼v

]
⊆ [xγ]∼vX′

. Since f−1
∈ Iso(X′,X), we analogously prove that f−1

[
[xγ]∼vX′

]
⊆ [xγ]∼v , i.e.

[xγ]∼vX′
⊆ f

[
[xγ]∼v

]
. Hence, f

[
[xγ]∼v

]
= [xγ]∼vX′

, and thus f
[
[xγ]∼v ↑

]
= [xγ]∼vX′

↑X′ . It is easy to see that
[xγ]∼v ↑= [xγ]∼vX′

↑X′ , hence

f
[
[xγ]∼v ↑

]
= [xγ]∼v ↑ . (24)

Since f : X→ X′ is an isomorphism, this implies that〈
[xγ]∼v ↑ , ρ�[xγ]∼v↑

〉
�

〈
f
[
[xγ]∼v ↑

]
, ρ′ � f [[xγ]∼v↑]

〉
= (25)〈

[xγ]∼v ↑ , ρ
′ �[xγ]∼v↑

〉
=

〈
[xγ]∼v ↑ , (ρ�[xγ]∼v↑

) \ {〈x∗, y∗〉}
〉
,

which means that 〈x∗, y∗〉 ∈ (ρ � [xγ]∼v↑
)∗. By Proposition 3.1 (d), we have that (ρ � [xγ]∼v↑

)∗ = {〈x∗, y∗〉}. Now,
by Proposition 3.3 (a) and Proposition 3.1 (e), we have that (ρ�[xγ]∼v↑

)∗ =
⋃

x∈[xγ]∼v
(ρ�x↑)∗, and consequently,

(ρ�xγ↑)
∗ = {〈x∗, y∗〉}. We have proven (18).

Since x∗ = xhtX(x∗) ∈ y∗↓ , from (18) it follows that (ρ � x∗↑)∗ = {〈x∗, y∗〉}, and that is a contradiction with
Proposition 3.1 (c). Therefore, |ρ∗| , 1, and thus we have proven that |ρ∗| ≥ 1⇒ |ρ∗| > 1, which is the basis
of the main induction.

Let us now assume that, for any tree X = 〈X, ρ〉we have

|ρ∗| ≥ m⇒ |ρ∗| > m, for m ∈ {1, 2, . . . ,n − 1}, (26)
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and let us assume that |ρ∗| = n. Let ξ := min
(

htX
[
π2[ρ∗]

])
, and let 〈x∗, y∗〉 ∈ ρ∗, such that htX(y∗) = ξ. Let

y∗↓= {xα : α < htX(y∗)} be the increasing enumeration of y∗ ↓ , such that htX(xα) = α.
Next we prove, by transfinite induction, that

(ρ�xα↑)
∗ = ρ∗, for every α < htX(y∗). (27)

By Proposition 3.3 (a) and Proposition 3.1 (e), it is ρ∗ =
⋃

x∈RootX (ρ�x↑)∗, which, together with (26), implies
that (ρ � x0↑)

∗ = ρ∗. Let us now assume, for some γ < htX(y∗), that for all β < γ we have (ρ � xβ↑)
∗ = ρ∗. It is

possible:
1. γ = δ + 1. Since Levelxδ↑(1) = [xγ]∼v , by Proposition 3.1 (c) and the induction hypothesis, we

have that (ρ � [xγ]∼v↑
)∗ = (ρ � xδ↑)

∗ = ρ∗. Now, by Proposition 3.3 (a) and Proposition 3.1 (e), we have that
(ρ�[xγ]∼v↑

)∗ =
⋃

x∈[xγ]∼v
(ρ�x↑)∗, and therefore, by (26), it is (ρ�xγ↑)

∗ = ρ∗.
2. γ is a limit ordinal. Then, since |ρ∗| = n, and since (ρ � xβ↑)

∗ = ρ∗ for all β < γ, we conclude, by
Proposition 3.1 (e), that:

for every β < γ, and for every x ∈ [xβ]∼v \ {xβ}, we have x↑ � xβ ↑ . (28)

Take any 〈x∗, y∗〉 ∈ ρ∗. Since 〈X, ρ〉 = X � X′ = 〈X, ρ′〉 = 〈X, ρ \ {〈x∗, y∗〉}〉, there is f ∈ Iso(X,X′), and for
such f we analogously as with (20) and (24), by transfinite induction, prove that

f (xβ) = xβ, for all β < γ < htX(y∗),

and that

f
[
[xγ]∼v ↑

]
= [xγ]∼v ↑ .

Since f is an isomorphism, as in (25) we conclude that 〈x∗, y∗〉 ∈ (ρ�[xγ]∼v↑
)∗. Since 〈x∗, y∗〉 ∈ ρ∗ was arbitrary,

we have that ρ∗ ⊆ (ρ � [xγ]∼v↑
)∗, and hence, by Proposition 3.1 (d), we have (ρ � [xγ]∼v↑

)∗ = ρ∗. Now, by
Proposition 3.3 (a) and Proposition 3.1 (e), we have that (ρ� [xγ]∼v↑

)∗ =
⋃

x∈[xγ]∼v
(ρ�x↑)∗. This, together with

(26), implies that (ρ�xγ↑)
∗ = ρ∗. We have proven (27).

Since x∗ = xhtX(x∗) ∈ y∗↓ , from (27) it follows that 〈x∗, y∗〉 ∈ ρ∗ = (ρ�x∗↑)∗, and that is a contradiction with
Proposition 3.1 (c). Therefore, |ρ∗| , n, which together with (26) gives us

|ρ∗| ≥ n⇒ |ρ∗| > n.

�
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