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Abstract. In this paper, we study a semi-Riemannian submersion from Lorentzian almost (para) contact
manifolds and find necessary and sufficient conditions for the characteristic vector field to be vertical or
horizontal. We also obtain decomposition theorems for anti-invariant semi-Riemannian submersions from
Lorentzian para-Sasakian manifolds onto Lorentzian manifolds.

1. Introduction

Semi-Riemannian submersions between semi-Riemannian manifolds were studied by O’Neill [19, 20]
and Gray [9]. Moreover, B. Sahin in [22, 23] introduced anti-invariant Riemannian submersions and
slant submersions from almost Hermitian manifold onto Riemannian manifolds. Also, anti-invariant
Riemannian submersions were studied in [2, 6, 7, 14, 15, 18]. The theory of Lorentzian submersion was
introduced by Magid and Falcitelli ef al in [16] and [17], respectively. In [13] Kaneyuki and Williams defined
the almost paracontact structure on pseudo-Riemannian manifold. Recently, Giindiizalp and $ahin studied
paracontact structures in [10-12].

In this paper, we studied anti-invariant semi-Riemannian submersions from Lorentzian almost (para)
contact manifolds. In Sect. 3, we introduced anti-invariant semi-Riemannian submersions from Lorentzian
almost (para) contact manifolds and presented three examples. Also we find necessary and sufficient
conditions for the characteristic vector field to be vertical or horizontal. In sect. 4, we studied anti-
invariant semi-Riemannian submersions from Lorentzian (para) Sasakian manifolds onto a Riemannian
manifold such that the characteristic vector field is vertical and investigated the geometry of leaves of the
distributions. In sect. 5, we studied anti-invariant semi-Riemannian submersions from Lorentzian (para)
Sasakian manifolds onto Lorentzian manifolds such that the characteristic vector field is a horizontal vector
field and we obtained decomposition theorems for it.

2. Preliminaries

In this section, we recall some necessary details background on Lorentzian almost contact manifold,
Lorentzian almost para contact manifold, semi-Riemannian submersion and harmonic maps.
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2.1. Lorentzian almost (para)contact manifold

Let (M, g) be a (21 + 1)-dimensional Lorentzian manifold with a tensor field ¢ of type (1, 1), a vector field
£ and a 1-form 1 which satisfies

¢*X = eX +1(X)E, (1)
9(PX, dY) = g(X, Y) + n(X)n(Y), )
N(X) = eg(X, &), 3)
n) = —¢, ()

for any vector fields X, Y tangent to M, it is called Lorentzian almost contact manifold or Lorentzian almost
para contact manifold for ¢ = —1 or ¢ = 1, respectively[1]. In this case, (1) and (4) imply that p& = 0,n10¢p =0,
and rank ¢ = 2n. However, for any vector fields X, Y in I'(TM),

9(PX,Y) = eg(X, pY). (5)

Let @ be the 2-form in M given by (X, Y) = g(X, ¢Y). Then, M is called Lorentzian metric contact manifold
if dn(X,Y) = O(X,Y). So, if the manifold satisfies [¢, p] + 2dn ® & = 0, then M is called normal Lorentzian
almost contact manifold. If £ is a Killing tensor vector field, then the (para) contact structure is called
K-(para) contact. In such a case, we have

Vx& = X, (6)

where V denotes the Levi-Civita connection of g. A Lorentzian almost contact manifold or Lorentzian
almost para contact manifold M is called Lorentzian Sasakian (LS) or Lorentzian para Sasakian (LPS) if

(VxP)Y = g(@X, $Y)E + n(Y)¢*X. )
Now we will introduce a well known Sasakian manifold example on R*>**1.

Example 2.1 ([3]). Let R = {(x,...,x", y},..., vy, 2, v,z € R,i = 1,...,n}. Consider R*"* with the
following structure:

g=-n®n+ }L g(dxi ®dx' +dy ®dy), )
Ne = —g [dz - ZZ:‘ yidxi] , (10)
=22 (1)

Then, (R**™*Y, ¢, &, e, 9) is a Lorentzian Sasakian manifold if e = —1 and Lorentzian para Sasakian manifold ife = 1.
The vector fields E; = 28%,-, E,pi = 2(% + yi%) and & form a ¢p-basis for the contact metric structure.

2.2. Semi-Riemannian submersion
Let (M, gm) and (N, gn) be semi-Riemannian manifolds. A semi-Riemannian submersion F: M — Nisa
submersion of semi-Riemannian manifolds such that:

1. The fibers F71(g),q € N are semi-Riemannian submanifolds of M.
2. F, preserves scalar products of vectors normal to fibers.



M. Faghfouri, S. Mashmouli / Filomat 32:10 (2018), 3465-3478 3467

For each g € N, F~1(g) is a submanifold of M of dimension dim M —dim N. The submanifolds F~!(g),q € N
are called fibers, and a vector field on M is vertical if it is always tangent to fibers, horizontal if it is always
orthogonal to fibers. A vector field X on M is called basic if X is a horizontal vector field and F-related to
a vector field X, on N. Every vector field X, on N has a unique horizontal lift X to M, and X is basic. For a
semi-Riemannian submersion F : M — N, let H and V denote the projections of the tangent spaces of M
onto the subspaces of horizontal and vertical vectors, respectively. In the other words, H and V are the
projection morphisms on the distributions (ker F.)* and ker F., respectively [20].

Lemma 2.2 ([19]). Let F : M — N be semi-Riemannian submersion between a semi-Riemannian manifolds and X, Y
are basic vector fields on M. Then
a) guX,Y) = gn(X, Yi) o F
b) the horizontal part H[X, Y] of [X, Y] is a basic vector field and corresponds to [X.,Y.], i.e., F(H[X,Y]) =
[X., Y.].
¢) [V, X] is vertical vector field for any vector field V of ker F..
d) H(VYY) is the basic vector field corresponding to Vé\i Y..

The fundamental tensors of a submersion were defined by O’Neill. They are (1, 2)-tensors on M, given by
the formula:

T (E,F) = TgF = HVqrVF + VVqyrHF, (12)
A(E,F) = AgF = VVygHF + HV 3£V, (13)
for any vector field E and F on M, where V denotes the Levi-Civita connection of (M, gu). It is easy to see
that a Riemannian submersion F : M — N has totally geodesic fibers if and only if 7~ vanishes identically.
For any E € I'(TM), T¢ and Ag are skew-symmetric operators on (I'(TM), g) reversing the horizontal and
the vertical distributions. In the other words,
g(TDE/ G) = _H(Ez 7-DG)/ (14)
9(ApE, G) = —g(E, ApG), (15)

forany D, E, G € I'(TM). For any U, V vertical vector fields and X, Y horizontal vector fields, 7 and A satisfy:
TuV =Ty, (16)

AxY = —AyX = %(V[X, Y1. (17)

Moreover, from (12) and (13), we have

VoW =Ty W + Vy W, (18)
VyX = HVyX +TvX, (19)
VxV = AxV + VVyV, (20)
VxY = HVxY + AxY, (21)

for X,Y € T((ker F.)*) and V, W € I'(ker F.), where VyW = VVyW.

2.3. Foliations on manifold and decomposition theorem

Afoliation O on a manifold M is an integrable distribution. A foliation 9 on a semi-Riemannian manifold
M is called totally umbilical, if every leaf of D is a totally umbilical semi-Riemannian submanifold of M.
If, in addition, the mean curvature vector of every leaf is parallel in the normal bundle, then D is called
a sphenic foliation, because in this case each leaf of D is an extrinsic sphere of M. If every leaf of D is a
totally geodesic submanifold of D, then D is called a totally geodesic foliation [4]. The following results
were proved in [21].
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Let (M, g) be a simply-connected semi-Riemannian manifold which admits two complementary folia-
tions O and D, whose leaves intersect perpendicularly.
1. If D is totally geodesic and D, is totally umbilical, then (M, g) is isometric to a twisted product My Xy M.
2. If D is totally geodesic and D, is spherical, then (M, g) is isometric to a warped product M; Xy Mp.
3. If Dy and D, are totally geodesic, then (M, g) is isometric to a direct product M; X M,, where M; and M,
are integral manifolds of distributions 9; and D.

2.4. Harmonic maps

We now recall the notion of harmonic maps between semi-Riemannian manifolds. Let (M, gp) and
(N, gn) be semi-Riemannian manifolds and suppose that ¢ : M — N is a smooth mapping between them.
Then the differential ¢. of ¢ can be viewed a section of the bundle Hom(TM, ¢ 'TN) — M, where ¢ 'TN
is the pullback bundle which has fibers (p‘l(TN,,) = Typ)N,p € M. Hom(TM, @ 'TN) has a connection V
induced from the Levi-Civita connection VM and the pullback connection. Then the second fundamental
form of ¢ is given by

(Ve )(X, Y) = Vip.(Y) = g (VYY) (22)

for X,Y € I'(TM), where V¥ is the pullback connection. It is known that the second fundamental form is
symmetric. For a semi-Riemannian submersion F, one can easily obtain

(VE)(X, Y) =0, (23)

for X, Y € T'((kerF.)*). A smooth map ¢ : M — N is said to be harmonic if trace(Vp.) = 0. On the other
hand, the tension field of ¢ is the section 7(¢) of I'(¢'TN) defined by

w(p) = dive. = ) e(Vo.)ei e, (24)
i=1

where {3, ..., ey} is the orthonormal frame on M and €; = gum(e;, ¢;). Then it follows that ¢ is harmonic if
and only if 7(¢) = 0, for details, see [8].

3. Anti-invariant semi-Riemannian submersions

In this section, we study a semi-Riemannian submersion from a Lorentzian almost (para) contact
manifold M(¢, &, 1, gm) to a semi-Riemannian manifold (N, gn) and give necessary and sufficient conditions
for the characteristic vector field to be vertical or horizontal.

Definition 3.1. Let M(¢, &, 1, gm) be a Lorentzian almost (para) contact manifold and (N, gn) be a semi-Riemannian
manifold. A semi-Riemannian submersion F : M(¢,&,n,gm) — (N, gn) is said to be anti-invariant if ker F, is
anti-invariant with respect to ¢, p(ker F.) C (ker F.)*. We denote the complementary orthogonal distribution
to ¢(ker F,) in (ker F,)*by p. Then, we have

(ker F.)* = ¢(ker F,) & u. (25)
3.1. Examples
We now give some examples of anti-invariant semi-Riemannian submersion.

Example 3.2. Let N be R® = {1, Y2, Y3, Ya, 2)ly1, Y2, y3,2 € R} and R” be a Lorentzian Sasakian manifold as in
Example 2.1. The semi-Riemannian metric tensor field gy is given by

2

=¥ -y -niys 0w
|y I-v3 -nays 0
IN=Zl-nys —ways 3-v3 O ws
0 0 o L1 o0

2 Y2 y3 0 -1



M. Faghfouri, S. Mashmouli / Filomat 32:10 (2018), 34653478 3469
on N. Let F : R” — N be a map defined by

2 2 2
Vi Yy Vs
F(x1,x2,%3, Y1, Y2, Y3,2) = | X1 + Y1, X2 + Y2, X3 + Y3, X3 — Y3, Sty tStz)
After some calculations, we have ker F, = span{V; = E; — E4, V, = E; — Es} and
keer = span{H1 =E1+Ey,H,=E, + E5,H3 = Eg,H4 = E6,H5 = E7}

It is easy to see that F is a semi-Riemannian submersion and ¢_1(V1) = Hi, ¢_1(V2) = Hy imply that ¢_q(ker F.) C
(ker F.)* = ¢_1(ker F.) ® span{H3, Hy, Hs}. Thus, F is an anti-invariant semi-Riemannian submersion such that &
is a horizontal vector field and p = span{Hs, H4, Hs}. Moreover, ¢_;(ker F.) is Riemannian Distribution.

It is clear that F : (R7, ¢1,m1,&,9) = N is an anti-invariant semi-Riemannian submersion from Lorentzian para
Sasakian manifold to semi-Riemannian manifold.

Example 3.3. R® has a Lorentzian Sasakian structure as in Example 2.1. The Riemannian metric tensor field
gre is defined by gre = $(du ® du + dv ® dv) on R* = {(u,0)lu,v € R}. Let F : R> — R? be a map defined by
F(x1,%2, 1, y2,2) = (x1+Yy1, X2+ Yy2). By direct calculations ker F. = span{Vy = E1—E3, V, = Ex—E4, V3 = E5 = &}
and (ker F,)* = span{H; = E1+Es, Hy = Ey+E,}. Therefore, it is easy to see that F is a semi-Riemannian submersion.
However, p_1(V1) = Hi, ¢_1(V2) = Hy. That is, F is an anti-invariant semi-Riemannian submersion from Lorentzian
para Sasakian manifold (]R5,¢1, m, &, g) to Riemannian manifold (R?, gr) and ¢(kerF.) = (ker F.)*.

Example 3.4. Let N be R® = {(y1, y2,2)ly1, Y2,z € R} and R® be a Lorentzian Sasakian manifold as in Example 2.1.
The Lorentzian metric tensor field gy is given by

-V -y

21 12
GN=Z T2 27 Y2
1 Y2 -1
on N. Let F : R® — N be a map defined by

Vi Y
F(x1,%2,¥1,Y2,2) = [ x1 + Y1, %2 + V2, ?1 + 72 + z).
After some calculations, we have kerF, = span{Vy; = E3 — E1,V, = E4 — Ey} and (kerF.)* = span{H; =
Eq + E3, Hy = Ey + E4, H = Es). Then, it is easy to see that F is an anti-invariant semi-Riemannian submersion and
(ker F.)* = ¢_1(ker F.) ® span{&}.
In the following results, we find necessary and sufficient conditions for the characteristic vector field to
be vertical or horizontal.

Theorem 3.5. Let M(¢, &, 1, gm) be a Lorentzian almost (para)contact manifold of dimension 2m + 1 and (N, gn) be
a semi-Riemannian manifold of dimension n and F : M(¢, &, 1, gm) — (N, gn) be a semi-Riemannian submersion.
Then the following statements hold:

1. The characteristic vector field & is vertical vector field if and only if N is a Riemannian manifold.
2. The characteristic vector field & is a horizontal vector field if and only if N is a Lorentzian manifold.

Proof. Let F be a semi-Riemannian submersion. Then F, is an isometry from (ker F.), to Tr(,)N for every
point p of M. So, they have the same dimension and index. & is a (horizontal) vertical vector field if and
only if (horizontal) vertical distribution is Lorentzian distribution and (vertical) horizontal distribution is
Riemannian distribution. O

Theorem 3.6. Let M(¢, &, 1, gm) be a Lorentzian almost (para)contact manifold of dimension 2m + 1 and (N, gn) be
a semi-Riemannian manifold of dimension n. Let F : M(¢p, &, 1, gm) — (N, gn) be an anti-invariant semi-Riemannian
submersion. Then the following statements hold:
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(a) If the characteristic vector field & is a vertical vector field then m < n < 2m.
(b) If m = n then the characteristic vector field & is a vertical vector field.
(c) If the characteristic vector field & is a horizontal vector field then m +1 < n.

Proof. Assume that the characteristic vector field £ is a vertical vector field. We have 0 < dim ¢(kerF,) =
2m —n < n, then m < n < 2m. So the proof of (a) ends.

Assume that m = nand k = dim{X € ker F.|¢(X) = 0}. If £ is not a vertical vector field, then k = 0. Therefore,
dim ¢p(ker F.) = n + 1 < n, it is a contradiction, which proves (b).

If the characteristic vector field £ is a horizontal vector field, then dim ¢(ker F,) = 2m + 1 —n < n. Therefore,
1 <2(n—m), wehave 1 < n —m. So the proof of (c) ends. [

Theorem 3.7. Let F be a semi-Riemannian submersion from a K-(para)contact manifold M(¢p, &, 1, gm) of dimension
2m + 1 onto a semi-Riemannian manifold (N, gn) of dimension n. If & is a horizontal vector field, then F is an
anti-invariant submersion and m+1 < n.

Proof. From (6), (14) and (16), we have
gm(PU V) = gu(eVué&, V) = egm(Tué, V) = —egm(&E, TuV)

forany U, V € I'(ker F.). Since ¢ is skew-symmetric and 7 is symmetric, that s, (19), we have gp(¢pU, V) = 0.
Thus F is an anti-invariant submersion. From part (c) of Theorem 3.6 we havem +1 <n. [J

Corollary 3.8. Let M(¢, &, 1, gm) be a Lorentzian almost (para)contact manifold of dimension 2m + 1 and (N, gn) is
a semi-Riemannian manifold of dimension nand F : M(¢, &, 1, gm) — (N, gn) be an anti-invariant semi-Riemannian
submersion. If m = n, then ¢(ker F.) = (ker F.)*. Moreover, N is a Riemannian manifold.

Proposition 3.9. Let M(¢, &, 1, gm) be a Lorentzian almost (para)contact manifold of dimension 2m+1and (N, gn) is
a semi-Riemannian manifold of dimension n and F : M(¢, &, 1, gm) — (N, gn) be an anti-invariant semi-Riemannian
submersion such that ¢p(ker F.) = (ker F.)*. Then the characteristic vector field & is a vertical vector field and m = n.
Moreover, N is a Riemannian manifold.

Proof. 1If & is not a vertical vector field, then dim ¢p(ker F.) = 2m + 1 — n = n. Therefore, 2(n —m) =1, itis a
contradiction. So & € ker F,. That is, £ is a vertical vector field. Now, since £ is a vertical vector field. We
have dim ¢(ker F.) = 2m — n = n. Thus, m = n and by Theorem 3.5, N is a Riemannian manifold. [

Proposition 3.10. Let M(¢, &, 1, gm) be a Lorentzian almost (para) contact manifold of dimension 2m + 1 and
(N, gn) be a semi-Riemannian manifold of dimension n and F : M(¢, &, 1, gm) — (N, gn) be an anti-invariant semi-
Riemannian submersion such that ¢(kerF.) = {0}. Then the characteristic vector field & is a vertical vector field,
2m = n and ker F, = span{&}. Moreover, N is a Riemannian manifold.

Proof. 1If & is not a vertical vector field, then dim ¢(ker F.) = 2m + 1 — n = 0. Therefore, dimker F, = 0, it is
contradiction. So ¢ is a vertical vector field. In this case dim ¢(ker F.) = 2m —n = 0 and dim ker F, = 1, Thus
2m = n,ker F. = span{&} and by Theorem 3.5, N is a Riemannian manifold. [J

Proposition 3.11. Let M(¢, &, 1, gm) be a Lorentzian almost (para) contact manifold of dimension 2m + 1 and
(N, gn) be a semi-Riemannian manifold of dimension n and F : M(¢, &, 1, gm) — (N, gn) be an anti-invariant semi-
Riemannian submersion. If 2m = n, then & is a vertical vector field, ker F. = span{&}, ¢(kerF.) = {0} and N is a
Riemannian manifold or & is a horizontal vector field and N is a Lorentzian manifold

Proof. If & is not a vertical vector field, then dim ¢(ker F.) = 2m + 1 — n = 0. Therefore, dimker F, = 0, it is
contradiction. So ¢ is a vertical vector field. In this case dim ¢(ker F.) = 2m —n = 0 and dim ker F, = 1, Thus
2m = n,ker F, = span{&} and by Theorem 3.5, N is a Riemannian manifold. [J

Proposition 3.12. Let M(¢, &, 1, gm) be a Lorentzian almost (para)contact manifold of dimension 2m+1 and (N, gn)
is a Lorentzian manifold of dimension n. Let F : M(¢, &, 1, gm) — (N, gn) be an anti-invariant semi-Riemannian
submersion. (ker F.)* = ¢(ker F.) ® span{&} ifand only if m + 1 = n.
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Proof. Obviously, & is a horizontal vector field, if (ker F.)* = ¢(kerF,) ® span{&} then dim ¢(kerF.) =
2m+1-n=n-1,s0m+ 1 =n. Conversely, by using (25), we have2m +1 -n+dimpy =n. Sodimu =1
then u = span{&}. O

Remark 3.13. We note that Example 3.4 satisfies Proposition 3.12.

4. Anti-invariant submersions admitting vertical structure vector field

In this section, we will study anti-invariant submersions from a Lorentzian (para) Sasakian manifold
onto a Riemannian manifold such that the characteristic vector field & is a vertical vector field. It is easy to
see that y is an invariant distribution of (ker F.)*, under the endomorphism ¢. Thus, for X € I'((ker F.)*)
we have

¢X = BX + CX. (26)

where BX € I'(ker F,), CX € I'(u). On the other hand, since F.((ker F.)*) = TN and F is a semi-Riemannian
submersion, using (26) we derive gn(F.¢V, F.CX) = 0, for every X € I'((ker F.)*), V € I'(ker F.) which implies
that

TN = F.(¢(ker F.)*) @ F.(u). (27)

Theorem 4.1. Let M(¢, &, 1, gm) be a Lorentzian almost (para) contact manifold of dimension 2m + 1 and (N, gn)
be a Riemannian manifold of dimension n. Let F : M(¢p, &, 1, gm) — (N, gn) be an anti-invariant semi-Riemannian
submersion and & is a vertical vector field. Then the fibers are not totally umbilical.

Proof. From (18), we have that, for U € I'(ker F.), V& = Tué + VVyé. And from (6), we have V& = el
So, we have

epU = TUE. (28)

If the fibers are totally umbilical, then we have 7;V = gu(U, V)H for any vertical vector fields U, V, where H
is the mean curvature vector field of any fibers. Since 7:& = 0, we have H = 0, which shows that fibres are
minimal. Hence the fibers are totally geodesic, which is a contradiction to the fact that 7;& = epU # 0. O

Lemma 4.2. Let F be an anti-invariant semi-Riemannian submersion from a Lorentzian (para) Sasakian manifold
M(¢, &, 1, gm) onto a Riemannian manifold (N, gn). Then we have

BCX = 0,C*X + ¢BX = €X, (29)
VxY = g(X, pY)E + epVxoY, (30)
where X,Y € I'((ker F.)*).

Proof. First, by using (1) and (26) for X € I'(ker F.), we obtain €X = BCX + C2X + ¢BX. This proves (29).
Next, (30) is obtained from (1), (6) and (7). O

Lemma 4.3. Let F be an anti-invariant semi-Riemannian submersion from a Lorentzian (para) Sasakian manifold
M(¢, &, 1, gm) onto a Riemannian manifold (N, gn). Then we have

CX = eAxE, (31)
gu(AxE, pU) =0, (32)
gm(VyAxE, oU) = —gm(AxE, pAyU) — en()gm(AxE, Y), (33)
gm(X, AyE) = egm(Y, AxL), (34)

where X, Y € T((ker F,)*) and U € T'(ker F,).
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Proof. By using (20) and (6) for X € I'((ker F.)*) and V = ¢, the equality (31) is obvious. Next, from (2),
(26) and (31), the equality (32) is obtained. Now from (32), for X, Y € I'((ker F.)*), we get gm(VyAxE, oU) +

Im(AxE, VyU) = 0 and gu(AxE, VyU) = gu(AxE, (Vyd)U) + gu(AxE, $(VylD)). By using (7) and (20),

we obtain
gu(AxE, VypU) =egu( AxE, nU)Y) + g AxE, pAyU)
+ gu(AxE, S(VIYLD)).
Finally, by using (31), (33) is obtained. From (5), (6) and (31), we have (34). O

Theorem 4.4. Let F be an anti-invariant semi-Riemannian submersion from a Lorentzian (para) Sasakian manifold
M(p, &, n, gm) onto a Riemannian manifold (N, gn), then for all U,V € I'(kerF.) and X,Y € I'((ker F.)*), the
following assertions are equivalent to each other:

(i) (kerF.)* is integrable.

(ii) gn((VE)(Y, BX), E.pV) = gn((VE.)(X, BY), F.9V) + egu(Axé, AYV) — equ(AvE, pAx V).
(iii) gm(AxBY — AyBX, ¢V) = egm(AxE, pAYU) — egm(AvE, pAXV).

Proof. (i) < (ii). Assume that U,V € I'(ker F.,) and X, Y € I'((ker F.)*). From (30) and (5), we obtain.
gm(X, Y1 V) =gm(VxY, V) = gm(Vy X, V)
=gm(epVxY, V) + gu(gm(Y, pX)E, V)
— gu(e@Vv@X, V) = gu(gm(X, 4Y)E, V)
=qm(Vx9Y, V) = gua(VvdX, oV) + (1 = £)egua(dX, V)n(V).
Now from (26), (31) and since F is an anti-invariant submersion, we have

gm([X, Y], V) =gn(E.VxBY, F.¢V) + egu(VxAyE, V) — gn(F.VyBX, F.¢V)
—egm(VyAxE, PV) + (1 = &)gm(AxE, Y)n(V).

On the other hand, according to (22), (33) and (34), we get

gm([X, Y], V) = = gn(VEL(X, BY), F.pV) + egm(AyE, pAYV)

+ gN(VE(Y, BX), F.0V) — egu(AXE, ALV %)
(if) &< (iii). By using (20) and (22), we have
gN(F.VyBX = VxBY, F.V) = gm(AyBX, pV) — gmu(AxBY, pV).
Thus according to part (i), we have
gM(AYBX — AxBY, V) = —egm(AxE, pAYV) + egm(AyE, pAxV). (36)

|
Remark 4.5. If p(ker F.) = (ker F.)*, then we get eAxé = CX = 0and BX = ¢pX.

Hence we have the following corollary.

Corollary 4.6. Let F : M(¢,&,1n,9m) — (N, gn) be an anti-invariant semi-Riemannian submersion such that
¢(kerF,) = (ker F.)*, where M(¢, &, 1, gm) is a Lorentzian (para) Sasakian manifold and (N, gn) is a Riemannian
manifold. Then for every X,Y € T'(ker F.)*, the following assertions are equivalent to each other;
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() (kerF.)* is integrable.
(i) (VE)(Y, pX) = (VE)(X, §Y).
(iii) AxpY = AypX.

Theorem 4.7. LetF : M(¢, &, 1, gm) — (N, gn) bean anti-invariant semi-Riemannian submersion, where M(¢p, &, 1, gm)
is a Lorentzian (para) Sasakian manifold and (N, gn) is a Riemannian manifold. Then the following assertions are
equivalent to each other;

(i) (ker F.)* defines a totally geodesic foliation on M.
(i)) gm(AxBY, ¢V) = egm(Av<, pAXV).
(i) gn((VE)(X, oY), F.pV) = —eqm(AvE, pAXV).

forevery X, Y € I((ker F,)*) and V € I'(ker F.).
Proof. (i) & (ii). Assume that V € T'(ker F,) and X, Y € I'((ker F.)"). By using (30), we have

gm(VxY, V) = gu(Vx@Y, dV) + en(V)gm(X, ¢Y), (37)
and from (20) and (26), we have

gm(VxdY, oV) = gm(AxBY, pV) + egm(VxAvE, pV), (38)
and from (33), we have

gm(VxQY, V) = gmu(AxBY, pV) = egm(AyE, 9AxV) = n(V)gm(AyE, X). (39)
Now, from (26), (31), (37), (38) and (39), (ker F.)* is a totally geodesic foliation on M if and only if

gM(AxBY, pV) = egm(AyE, pAxV). (40)
Finally, by using (22), (23), (26), (27) and (39), we have (ii) < (iii). O

Corollary 4.8. Let F : M(¢,&,n,9m) — (N, gn) be an anti-invariant semi-Riemannian submersion such that
¢(kerF,) = (ker F.)*, where M(¢, &, 1, gm) is a Lorentzian (para) Sasakian manifold and (N, gn) is a Riemannian
manifold. Then, for every X, Y € I'((ker F.)*), the following assertions are equivalent to each other;

(i) (ker F.)* defines a totally geodesic foliation on M.
(i) Ax¢Y =0.
(iii) (VF.)(X,9Y) = 0.

We note that a differentiable map F between two semi-Riemannian manifolds is called totally geodesic if
VF. = 0. Using Theorem 4.1 one can easily prove that the fibers are not totally geodesic. Hence, we have
the following theorem.

Theorem 4.9. Let F : M(¢p,E,1,9m) — (N,gn) be an anti-invariant semi-Riemannian submersion such that
¢(kerF.) = (ker F.)*, where M(¢, &, 1, gm) is a Lorentzian (para) Sasakian manifold and (N, gn) is a Riemannian
manifold. Then F is not totally geodesic map.

Finally, we give a necessary and sufficient condition for an anti-invariant Riemannian submersion to be
harmonic.

Theorem 4.10. LetF : M(¢p, &, 1, gm) — (N, gn) bean anti-invariant semi-Riemannian submersion such that m = n,
where M(¢p, &, 1, gm) is a Lorentzian (para) Sasakian manifold of dimension 2m + 1 and (N, gn) is a Riemannian
manifold of dimension n. Then F is harmonic if and only if trace ¢(Tv) = —nn(V), where V € T'(ker F.).
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Proof. We know that F is harmonic if and only if F has minimal fibres [5]. Thus, F is harmonic if and only
if Zf;l Teei = 0, where {ey, ..., e1,e = &} is the orthonormal basis for ker F, and k =2m+1-n=n+11is
dimension of ker F..

On the other hand, from (18), (19) and (7), we get

gm(TvoW, U) = egm(@V, pWn(U) + n(Wgm(@*V, U) + egu(Tv W, pU). (41)
By using (41) and (14), we get

k k

—¢ ) guler, §ToU) = e (k= DD + g(Y_ Teei, $LD). (42)

i=1 i=1

Since F is a Harmonic mapping, Zle (T eie;, pU) = 0. Then we have

k
trace p(Tu) = Z gm(ei, o7, U) = —nn(U). (43)

i=1

O

5. Anti-invariant submersions admitting horizontal structure vector field

In this section, we will study anti-invariant submersions from a Lorentzian (para) Sasakian manifold
onto a Lorentzian manifold such that the characteristic vector field ¢ is a horizontal vector field. From (25),
it is easy to see that ¢(u) C p and & € u. Thus, for X € I'((ker F.)*) we have

¢X = BX + CX, (44)

where BX € I'(ker F.),CX € I'(). On the other hand, since F.((ker F.)*) = TN and F is a semi-Riemannian
submersion, using (44) we derive gn(F.¢V,F.CX) = 0, for every X € I'((kerF.)*),V € I'(kerF.), which
implies that

TN = F.(¢(ker F.)) ® F.(u). (45)

Lemma 5.1. Let F be an anti-invariant semi-Riemannian submersion from a Lorentzian (para) Sasakian manifold
M(¢, &, 1, gm) onto a Lorentzian manifold (N, gn). Then we have

BX = ¢Axé, (46)
Tué =0, (47)
gm(VxCY, pU) = —gm(CY, pAxU), (48)

where X, Y € T((ker F,)*) and U € T'(ker F,).
Proof. Assume that X, Y € T((ker F.)*) and U € I'(ker F.). By using (21) and (6), we have

BX = eAxE, (49)
and also from (19) and (6), we get

Tué =0. (50)
From (7) and (20), we obtain (48). [

Theorem 5.2. Let F be an anti-invariant semi-Riemannian submersion from a Lorentzian (para) Sasakian manifold
M(, &, 1, gm) onto a Lorentzian manifold (N, gn). Then for all X, Y € I'((ker F.)*) and V € T'(ker F.), the following
assertions are equivalent.
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() (kerF.)* is integrable.
(if)
gx((VE)(Y, BX), F.pV) = gn((VE)(X, BY), V) - gu(CX, 9Ty V)
+m(CY, AXV) + egm(X, V)n(Y) — egm(Y, pV)n(X).
(iif)
IM(AxAYE — AyAxE, PV) = — gm(CX, 9 AYV) + gm(CY, pAx V)
+ egm(X, oV)n(Y) — egm(Y, pV)n(X).
Proof. Assume that X, Y € I'((ker F,)*) and V € I'(ker F.). From (2), (7) and (5), we obtain.
gm([X, YL V) =gm(VxY, V) — gm(Vy X, V)
=gm(VxY, ¢V) — en(Y)gm(X, $V)
= gm(VyQX, dV) + en(X)gm(Y, $V)
=gm(VxBY, V) + gu(VxCY, pV) — en(Y)gm(X, $V)
= gm(VyBX, ¢V) — gm(VyCX, ¢V) + en(X)gm(Y, V).
Since F is an anti-invariant submersion, we have
gm([X, Y], V) =gn(E.VxBY, F.¢V) + gu(VxCY, ¢V) — en(Y)gm(X, $V)
— gN(F.VyBX, F.¢oV) — gm(VyCX, ¢V) + en(X)gm(Y, $V).
On the other hand, according to (22), (48) and (34), we get

gm([X, Y], V) = = gn(VEAX, BY), F.9V) = gm(CY, pAxV) — en(Y)gm(X, ¢V)

+ gN(VE.(Y, BX), V) + gui(CX, 6AyV) + en(X)gma(Y, V) 1)

which proves (i) & (ii). By using (20), (22), we have
gn(F.VyBX — VxBY, F.9V) = ~(gu(AyBX, V) — gu(AxBY, $V)
Thus according to part (i), we have (i) & (iii). O

Corollary 5.3. Let F be an anti-invariant semi-Riemannian submersion from a Lorentzian (para) Sasakian manifold
M(¢p, &, 1, 9m) onto a Lorentzian manifold (N, gn) with (ker F.)* = ¢(kerF,) @ span{&}. Then for all XY €
I'((ker F.)*), the following assertions are equivalent.

(i) (ker F.)* is integrable.
(i) (VE)(Y,BX) = (VF.)(X,BY) + en(Y)F.X — en(X)E.Y.
(iii) AxAyE — AyAxE = en(Y)X — en(X)Y.
Theorem 5.4. Let F be an anti-invariant semi-Riemannian submersion from a Lorentzian (para) Sasakian manifold

(M, gum, ¢, &, 1) onto a Lorentzian manifold (N, gn). Then for all X, Y € T'((ker F.)*) and V € I'(ker F.), the following
three statements are equivalent.

(i) (ker F.)* defines a totally geodesic foliation on M.
(ii) gu(AxBY, §V) = gm(CY, AxV) + en(Y)g(X, V).
(iii) gn((VE)(Y, $X), F.(9V)) = gu(CY, ¢ AxV) + en()g(X, o V).

Proof. For X,Y €T ((ker F*)L) and V € I'(ker F.), from (2), (7), and (48), we obtain

gm(VxY, V) = gu(AxBY, V) — gu(CY, pAxV) — en(Y)g(X, pV),

which shows (i) <= (ii). From (20) and (22), we have (ii) & (iii). O
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Corollary 5.5. Let F be an anti-invariant semi-Riemannian submersion from a Lorentzian (para) Sasakian manifold
(M, gm, ¢, &,1) onto a Lorentzian manifold (N, gn) with (ker F.)* = ¢(ker F.) @ span{&}. Then for all X,Y €
I'((ker F.)*), the following three statements are equivalent.

(i) (ker F.)* defines a totally geodesic foliation on M.
(i) AxBY = en(Y)X.
(iii) (VE)(Y,¢X) = en(Y)F.X.

Theorem 5.6. Let F be an anti-invariant semi-Riemannian submersion from a Lorentzian (para) Sasakian manifold
(M, gm, @, &,1) onto a Lorentzian manifold (N, gn). Then for X € F((ker F*)l) and V, W € I'(ker F.), the following
three statements are equivalent.

(a) kerF. defines a totally geodesic foliation on M.
() gn((VE)(V, $X), F.pW) = 0.
(c) TvBX + AcxV € F(y)

Proof. AssumethatX € F((ker F*)l) and V, W € I'(ker F.). From (6) and gp(W, &) = 0, we obtain gm(Vy W, &) =
egu(W, Vv &) = g(W, pV) = 0. Thus, we have

gmu(VyW, X) =gm(¢Vv W, ¢X) — n(Vy W)n(X)
=gm(PVv W, ¢X)
=gum(VvoW, $X) - gu((Vvp)W, $X)
== gm(PW, VypX).

Since F is a semi-Riemannian submersion, we have
gm(VyW,X) = —gn(F.¢W, EVy¢X) = gn(F.pW, (VE)(V, $X)),
which proves (1) & (b).
By direct calculation, we derive
gN(F-OW, (VE)(V, §X)) = = gu(dpW, Vv X)
= - gM(gf)VV, VvBX + VVCX)
=—gm(@W, VyBX + [V, CX] + Vcx V)
Since [V, CX] € I'(ker F.), from (18) and (20), we obtain
N(E W, (VEY(V, $X)) = —gum(@W, TvBX + AcxV),
which proves (b) < (c). O

Corollary 5.7. Let F be an anti-invariant semi-Riemannian submersion from a Lorentzian (para) Sasakian manifold
(M, gm, ¢, &, 1) onto a Lorentzian manifold (N, gn) with (ker F.)* = ¢(ker F.) ® span{&}. Then the following three
statements are equivalent.

(a) kerE. defines a totally geodesic foliation on M.
(b) (VE)(V,¢X) =0.
(c) TvgW =0, for X € T((ker F.)*) and V, W € I (ker F.).

The proof of the following two theorems are exactly the same with Theorem 3.10 and Theorem 3.11 in
[15] for Riemannian case. Therefore, we omit them here.
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Theorem 5.8. Let F be an anti-invariant semi-Riemannian submersion from a Lorentzian (para) Sasakian manifold
(M, gum, ¢, &, 1) onto a Lorentzian manifold (N, gn) with (ker F.)* = ¢(ker F.)®span{&}. Then F is a totally geodesic
map if and only if

Tv¢W =0, V,W e I'(kerF.) (52)
and
AxdW =0, X € T((kerF.)*). (53)

Theorem 5.9. Let F be an anti-invariant semi-Riemannian submersion from a Lorentzian (para) Sasakian manifold
(M, gm, ¢, &, 1) onto a Lorentzian manifold (N, gn) with (ker F.)* = ¢(ker F.) ® span{&}. Then F is a harmonic map
if and only if trace(¢pTv) = 0 for V € I'(ker F,).

In the following, we obtain decomposition theorems for an anti-invariant semi-Riemannian submersion
from a Lorentzian (para) Sasakian manifold onto a Lorentzian manifold. By using results in subsection 2.3
and Theorems 5.2, 5.4 and 5.6, we have the following theorem.

Theorem 5.10. Let F be an anti-invariant semi-Riemannian submersion from a Lorentzian (para) Sasakian manifold
(M, gm, @, &, 1) onto a Lorentzian manifold (N, gn). Then M is a locally product manifold if and only if

an((VE)(Y, BX), F.pV) = gm(CY, pAxV) + en(¥)gm(X, V)
and

n((VE)(V, X), F.pW) = 0
for X, Y € I((ker F.)*) and V, W € I(ker F.).

Theorem 5.11. Let F be an anti-invariant semi-Riemannian submersion from a Lorentzian (para) Sasakian manifold
(M, gu, ¢, &, 1) onto a Lorentzian manifold (N, gn) with (ker F.)* = ¢(ker F.)@span{&}. Then M is a locally twisted
product manifold of the form Mkerr.)+ Xf Myerr, if and only if

TvoX = —guX, TvVIVI2oV
and
AxPY =n(YV)X

for X, Y € F((ker F*)L) and V,W € T'(ker F.), where Merr.) and Myerr, are integral manifolds of the distributions
(ker F.)* and ker F..

Theorem 5.12. Let (M, gm, ¢, &, 1) be a Lorentzian (para) Sasakian manifold and (N, gn) be a Lorentzian manifold.
Then it does not exist an anti-invariant semi-Riemannian submersion from M to N with (ker F,)* = ¢(kerF,) ®
span{&} such that M is a locally proper twisted product manifold of the form Merr.)+ X5 MerF. -
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