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Abstract. We consider a geometric combinatorial problem naturally associated to the geometric topology
of certain spherical space forms. Given a collection of m mass distributions on Rn, the existence of k
affinely independent regular q-fans, each of which equipartitions each of the measures, can in many cases
be deduced from the existence of a Zq-equivariant section of the Stiefel bundle Vk(Fn) over S(Fn), where
Vk(Fn) is the Stiefel manifold of all orthonormal k-frames in Fn, F = R or C, and S(Fn) is the corresponding
unit sphere. For example, the parallelizability ofRPn when n = 2, 4, or 8 implies that any two masses onRn

can be simultaneously bisected by each of (n − 1) pairwise-orthogonal hyperplanes, while when q = 3 or 4,
the triviality of the circle bundle V2(C2)/Zq over the standard Lens Spaces L3(q) yields that for any mass on
R4, there exist a pair of complex orthogonal regular q-fans, each of which equipartitions the mass.

1. Introduction

1.1. Measure Partitions and Topological Combinatorics

Topological methods are a well-established tool in combinatorial and discrete geometry, and have proven
especially powerful in the context of measure partition problems. Given an arbitrary collection µ1, . . . , µm of
absolutely continuous measures on Rn (called mass distributions), one seeks a partition P = {R1, . . . ,Rk} of
Rn by a fixed class of interior disjoint regions whose measures satisfy prescribed conditions. Most typical
among these is that the regions simultaneously equipartition of each of the masses, i.e., that each region
contains an equal fraction of each measure:

µi(R j) =
1
k
µi(Rn)

for each 1 ≤ j ≤ k and each 1 ≤ i ≤ m. A small sampling of the wide variety of conditions which have
been studied include weighted analogs in which each region contains a specified positive fraction of each
total mass [5], the imposition that each region has positive measure with respect to sufficiently many of the
masses [13], and that the regions satisfy simultaneous algebraic conditions (see, e.g., [25-26]).

The considered partition-types have likewise shown considerable diversity – e.g., those determined by
arrangements of one or more hyperplanes [10-12, 18-19, 24], disparate types of fans [6-7, 16], systems of
polyhedral wedges and cones [28-29], and so on. While each collection of regions posses geometric and/or
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Figure 1: A regular 3-fan in the plane

permutative symmetries, the mass distributions themselves may be quite asymmetrical, so that direct solu-
tions to such such problems have proven elusive. Instead, these underlying symmetries can be exploited via
a natural reduction of the problem to an equivariant topological framework, the Configuration-Space/Test-
Map (CS/TM) scheme formalized by Živaljević (see, e.g., [20, 30-31]), so that the desired equipartition is

identified with a zero of an equivariant map f : X G
→ W from a G-space X to a G-representation W. The

existence of the equipartition then follows by demonstrating the non-existence of any equivariant map
from X to the representation sphere S(W), which in favorable circumstances can be precluded by vast and
powerful algebraic invariants – equivariant cohomology and ideal-valued index theory, fiber bundles and
equivariant obstruction theory, spectral sequences, and so on.

1.2. Our Mass Partition Problem
We shall consider a mass partition problem where the desired equipartitions are by regular q-fans.

Definition 1.1. A q-fan Fq in Rn is the union of q half-hyperplanes centered about a (n − 2)-dimensional
affine space. A q-fan is called regular if the angle between successive half-hyperplanes is always 2π/q, in
which case the corresponding regions S0, . . . ,Sq−1 between the half-hyperplanes are called regular q-sectors.

In particular, a regular 2-fan is an ordinary hyperplane, while a regular 4-fan is the union of two
orthogonal hyperplanes. Note also that as a codimension two affine space in the plane is just a point, a q-fan
inR2 consists of q rays with a common vertex, and the fan is regular if the angles determined by successive
rays are all equal (See Figure 1 above for an example when q = 3). Given a mass distribution µ on Rn,
one says that a regular q-fan equipartitions µ if µ(Si) = 1

qµ(Rn) for each 0 ≤ i < q. We shall be concerned
with finding a family of linearly independent or orthogonal q-fans, each of which equipartitions a given
collection of mass distributions:

Definition 1.2. Regular q-fans F1
q , . . . ,Fr

q in Rn are linearly independent (pairwise orthogonal) if F1⊥
q , . . . ,Fr⊥

q

are linearly independent (pairwise orthogonal), where Fi⊥
q is the linear span of the normal vectors of the

half-hyperplanes of Fi
q.

We may now state the main concern of this paper:

Question 1.3. What is the maximum number k = Ω(q; m,n) (or k = Ω⊥(q; m,n)) such that for any m mass
distributions µ1, . . . , µm onRn, there exist k linearly independent (respectively, orthogonal) regular q-fans F1

q , . . . ,Fk
q,

each of which equipartitions each µ j?

1.3. Preliminary Observations
Clearly, Ω⊥(q; m,n) ≤ Ω(q; m,n). Note that there is a natural distinction between the cases q = 2 and

q ≥ 3. For instance, Ω⊥(2; 1,n) = n for all n, as one sees by considering the translated coordinate hyperplanes
Hi(t) = {x ∈ Rn

| xi = t} for each t ∈ R and applying the intermediate value theorem. On the other hand,
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the rigidity of the angles of a regular q-fan implies that Ω(q; 1, 2) = 0 when q ≥ 5, as one sees by considering
two unit disks in the plane at a sufficient distance (we shall show that Ω(3; 1, 2) = Ω(4; 1, 2) = 1). Secondly,
the condition on linear independence of fans is different in the two cases, as F⊥q is one-dimensional when
q = 2 and is two-dimensional otherwise. This distinction manifests itself in the upper bounds

Ω(2; m,n) ≤ n −m + 1 and Ω(q; m,n) ≤ b
n −m + 1

2
c, q ≥ 3, (1)

which can be derived by examining m disjoint balls in Rn with affinely independent centers: If F1
q , . . . ,Fk

q
are linearly independent regular q-fans, q ≥ 3, each of which equipartitions each ball, then each centering
codimension two affine subspace Ai of Fi

q must pass through the center of each of the m balls, so that
dim(

⋂k
i=1 Ai) ≥ m − 1. On the other hand, dim(

⋂k
i=1 Ai) ≤ n − 2k by linear independence of these q-fans,

yielding the second upper bound. A similar argument involving the intersection of linearly independent
hyperplanes which bisect each ball establishes the first inequality.

2. Main Results and Computations

We shall establish lower bounds for Ω(q; m,n) and Ω⊥(q; m,n) which arise from the existence of Zq-
equivariant sections of Stiefel Bundles over spheres, or equivalently from sections of the corresponding
quotient bundles over Real Projective Space when q = 2 and over the standard Lens Spaces when q ≥ 3. Let
ρ(2;R,n), ρ(q;R; 2n), and ρ(q;C,n) denote the maximum number k for which the bundles (3.2), (3.3), and
(3.4) admit sections, respectively. Then

Theorem 2.1. Ω⊥(2; m,n) ≥ min{ρ(2;R,n), n−1
m−1 }

Theorem 2.2. For q an odd prime,
(a) Ω⊥(q; m, (q − 1)n) ≥ min{ρ(q;C, (q − 1)n/2), n

m }, and
(b) Ω(q; m, (q − 1)n) ≥ d 1

2 min{ρ(q;R, (q − 1)n), n
m }e.

Theorem 2.3. (a) Ω⊥(4; 1, 2n) ≥ min{ρ(4;C,n), 2n − 1}, and
(b) Ω(4; 1, 2n) ≥ d 1

2 min{ρ(4;R, 2n), 2n − 1}e.

2.1. Some Calculations
We give some estimates on Ω⊥(q; m,n), exact in a number of cases, which follow as consequences of

the above theorems. First, note that Theorem 2.1 and the estimate (1.1) show that Ω⊥(2; n,n) = 1, thereby
recovering the well-known Ham Sandwich Theorem - any n mass distributions on Rn can be bisected by a
single hyperplane. When q is an odd prime, Theorem 2.2 yields that Ω(q; n, (q − 1)n) ≥ 1 (see also [25]) and
Ω⊥(q; n, 2(q − 1)n) ≥ 2. In particular, one has the following corollary:

Corollary 2.4. For q an odd prime,
(a) Ω(q; 1, q − 1) ≥ 1, and

(b) Ω⊥(q; 1, 2q − 2) ≥ 2.

Thus any mass distribution on Rq−1 can be bisected by a regular q-fan, while for any mass distribution
on R2q−2 there exists a pair of orthogonal q-fans, each of which equipartitions the measure. In general, our
best estimates occur for Rn when n is a relatively small even number, in which case the quotiented Stiefel
bundles admit a relatively large number of sections:

Ω(3; 1, 2) = 1 Ω(4; 1, 2) = 1 Ω⊥(2; 2, 4) = 3
Ω⊥(3; 1, 4) = 2 Ω⊥(4; 1, 4) = 2 Ω(5; 1, 4) ≥ 1
Ω(3; 2, 4) = 1 Ω(7; 1, 6) ≥ 1 Ω⊥(2; 2, 8) = 7
Ω⊥(2; 3, 8) ≥ 3 Ω(4; 1, 8) ≥ 3 Ω⊥(3; 2, 8) ≥ 2
Ω⊥(5; 1, 8) ≥ 2 Ω(11; 1, 10) ≥ 1 Ω⊥(7; 1, 12) ≥ 2
Ω⊥(2; 2, 16) ≥ 9 Ω(3; 1, 16) ≥ 4 Ω(4; 1, 16) ≥ 4

(2)
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In Section 6, we give a detailed comparison of the above estimates with previous estimates of Ω(q; m,n)
and Ω⊥(q; m,n), as well as how they compare to the results of some related questions. The hyperplane
case and its proof is discussed in Section 4, while the regular q-fan case for odd primes q is handled in
Section 5, as is the case of regular 4-fans and what interesting (near) equipartition statements can be made
be for regular 2q-sectors when q is an odd prime (Theorem 5.5.). First, we provide some justification for the
topological nature of our lower bounds.

3. Topological Justification

The lower bounds of Theorems 2.1, 2.2, and 2.3 depend directly on the geometric topology of Real
Projective Space RPn−1 and the standard Lens Spaces L2n−1(q). Our first indication that these manifolds are
naturally involved in answering Question 1.1 arises from a canonical identification of the space F(2; n) of
all hyperplanes in Rn with the tautological real line bundle over RPn−1, and of the space FC(q; 2n) of all
complex regular q-fans in R2n with the tautological complex line bundle over L2n−1(q). In other words, these
regular q-fans are the natural combinatorial objects associated to these spherical space forms.

To see these identifications, note that each hyperplane H(a, b) = {u ∈ Rn
| 〈u, a〉 = b} in Rn is uniquely

determined by a pair of antipodal points {(a, b), (−a,−b)} in Sn−1
× R, so that F(2; n) is realizable as the

orbit space of Sn−1
× R under the diagonal Z2-antipodal action, i.e., with the canonical line bundle E(γ) =

(Sn−1
×R)/Z2 overRPn−1. Letting 〈z, a〉C =

∑n
i=1 ziāi denote the standard Hermitian form onCn, one similarly

sees that each complex regular q-fan in R2n (i.e., one centered about a complex hyperplane) is of the form
FCq (a, b) = {z ∈ Cn

| 〈z, a〉C = b̄ + v; arg(v) = 2π j/q, 0 ≤ j < q}. Thus each complex regular q-fan can be
uniquely identified with an element of the orbit space of S2n−1

× C under the standard diagonal Zq-action,
i.e, with an element of the tautological complex line bundle E(γq) = (S2n−1

×C)/Zq over L2n−1(q) = S2n−1/Zq.

3.1. Stiefel Bundles and their Quotients
Let F = R or C. The Stiefel manifold Vk(Fn) consists of all k-frames of Fn, i.e., k-tuples (v1, . . . , vk) of

orthonormal vectors of Fn, and is topologized as a subset of the k-fold product S(Fn) × . . . × S(Fn), where
S(Fn) is the unit sphere in Fn (see, e.g., [13]). In particular, V1(Fn) = S(Fn), and there is a fiber bundle

Vk−1(Fn−1) ↪→ Vk(Fn) π
→ S(Fn) (3)

given by projecting a k frame (v1, . . . , vk) onto π(v1, . . . , vk) = v1.
Diagonally extending the antipodal action on Sn−1 gives a free Z2-action on Vk(Rn): −1 · (v1, . . . , vk) =

(−v1, . . . ,−vk), and quotienting (3.1) by this action yields a fiber bundle

Vk−1(Rn−1)/Z2 ↪→ Vk(Rn)/Z2
π̄
→ RPn−1 (4)

over RPn−1. Similarly, the free Zq-action on both Vk(R2n) and Vk(Cn) generated by ζq · (v1, v2, . . . , vk) =

(ζqv1, ζr
qv2, . . . , ζr

qvk), ζq = e
2πiq

m and 1 ≤ r < q relatively prime to q, yields fiber bundles over L2n−1(q):

Vk−1(R2n−1)/Zq ↪→ Vk(R2n)/Zq
π̄
→ L2n−1(q), (5)

Vk−1(Cn−1)/Zq ↪→ Vk(Cn)/Zq
π̄
→ L2n−1(q). (6)

We shall want to find a Zq-equivariant section of the bundle (3.1), or in other words a section of the
corresponding quotient bundle (3.2), (3.3), and (3.4): a continuous map s : S(Fn) → Vk(Fn) such that (i)
π ◦ s(v) = v for each v ∈ S(Fn) (i.e., each (v, s(v)) is a k-frame in Fn) and (ii) (ζqv, s(ζqv)) = ζq · (v, s(v)).

As a section of (3.2) is the same as the existence of (k − 1) orthonormal vector fields on RPn−1, we
have ρ(2;R,n) = Span(RPn−1) + 1, where we recall that Span(Mn) denotes the maximum number of linearly
independent (equivalently, orthonormal) vector fields on a smooth manifold Mn. Likewise, a section of
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(3.3) is the same as the existence of (k − 1) orthonormal vector fields on L2n−1(q) when the Zq-action above
on Vk(R2n) is standard (i.e., r = 1), and in fact ρ(q;R; 2n) = Span(L2n−1(q)) + 1 by the explicit calculations of
Becker [8] and Szczarba [27] (see, e.g., [17] as well).

Owing to the identification of regular (complex) q-fans and the aforementioned tautological bundles, the
connection between Question 1.1 and the tangent bundles of these manifolds can be therefore be glimpsed
philosophically in terms of the fundamental relationship (see, e.g., [21, 27]) between the tangent bundles
over these manifolds and the n-fold Whitney sum of their tautological bundles:

TRPn−1
⊕ ε1 = E(γ) ⊕ . . . ⊕ E(γ), (7)

and

TL2n−1(q) ⊕ ε1 = Re(E(γq)) ⊕ . . . ⊕ Re(E(γq)), (8)

where Re(E(γq) denotes the underlying 2-dimensional real bundle of E(γq) and ε1 is the trivial line bundle
obtained by quotienting the normal bundle of the sphere. A similar analysis holds in the complex case
by quotienting the complex tangent bundle TCS2n−1 = {(v,w) | 〈v,w〉C = 0} ⊆ S2n−1

× Cn by the Zq-action
considered.

Our proofs of the Theorems 2.1, 2.2., and 2.3 follow a similar pattern. A section of the relevant quotiented
Stiefel bundle gives rise to a parametrized family of k-tuples of regular q-fans. Given an appropriate
number of mass distributions, the algebraic topology of the related manifold, as realized by an appropriate
equivariance statement, implies that each fan in at least one these collections must equipartition each of
the given measures. In the case of hyperplanes, the orthonormality of the vector fields implies that these
hyperplanes are orthogonal. For q ≥ 3, the regular q-fans are orthogonal if one considers complex Stiefel
manifolds, while one can ensure that half of the regular q-fans are linearly independent if one considers
real Stiefel manifolds.

It is worthwhile to note that our methods for establishing our lower bounds are in some sense the
opposite of the usual topological constructions utilized in equipartition theory. In the configuration
space/test-map procedure, one deduces the existence of a desired partition from the non-existence of an
(equivariant) section of an appropriate bundle, while here the existence of such sections is used to establish
our equipartition results.

4. Bisections by Orthogonal Hyperplanes

As noted above, Theorem 2.1 recovers the Ham Sandwich Theorem when m = n, and in fact our proof
of Theorem 2.1 reduces to the classical geometric proof of the Ham Sandwich Theorem as attributed to
Banach by Steinhaus [9] in this case. For m < n, our best estimates occur when Span(RPn−1) is largest. It is a
well-known fact thatRPn−1 is parallelizable iff n = 2, 4, 8, arising from multiplication in the division algebras
of complex numbers, Quaternions, and Octonions. Thus one obtains the optimal values Ω⊥(2; 2,n) = n
in these cases. For general n = 2a+4bm, m odd and 0 ≤ a ≤ 3, the exact value of Span(RPn−1) = 2a + 8b
was determined by Adams [1], with vector fields arising from realizations of Rn as a real Clifford module
(see, e.g., [3, 17]). Thus Ω⊥(2; 3, 8) ≥ 3 because Span(RP7) = 7, while Ω⊥(2; 2, 16) ≥ 9 and Ω⊥(2; 3, 16) ≥ 7
since Span(RP15) = 9. Owing to the paucity of orthonormal vector fields on RPn−1, however, our estimates
on Ω⊥(2; m,n) obtained in this fashion worsen as n increases. In particular, one can compare our estimate
Ω⊥(2; 2,n) ≥min{Span(RPn−1) + 1,n − 1}with the known value Ω⊥(2; 2,n) = n − 1 given in [17].

4.1. Proof of Theorem 2.1

We follow the program laid out in Section 3. First, we have the following lemma.

Lemma 4.1. Let µ be a mass distribution onRn, and let s : Sn−1
→ Sn−1 be a continuousZ2-equivariant map. Then

there exists a continuous family {H(x) = H(−x)}x∈Sn−1 of hyperplanes parametrized by RPn−1, each of which bisects
µ. Moreover, H±(−x) = H∓(x) for each pair of corresponding half-spaces.
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Proof. Define a family of hyperplanes H(x, t) = {u ∈ Rn
| 〈u, s(x)〉 = t} and half-spaces H+(x, t) = {〈u, s(x)〉 ≥ t}

and H−(x, t) = {〈u, s(x)〉 ≤ t} for each (x, t) ∈ Sn−1
× R. As µ is a mass distribution, the association

(x, t) 7→ µ(H+(x, t)) is continuous, while H±(−x,−t) = H−(x, t) for each (x, t) because s(−x) = −s(x) by
assumption.

For each x ∈ Sn−1, define 1x : R → [0,∞) by 1x(t) = µ(H+(x, t)). The monotonicity properties of µ show
that 1x is monotone decreasing, with limt→−∞ 1x(t) = µ(Rn) and limt→+∞ 1x(t) = µ(∅) = 0. Hence 1−1

x ( 1
2µ(Rn))

is a closed interval by the intermediate value theorem and the monotonicity of 1x, and letting t(x) be the
center of this interval defines a continuous function t : Sn−1

→ R. As t(−x) = −t(x), defining H(x) := H(x, t(x))
and H±(x) := H±(x, t(x)) gives the desired family of parametrized hyperplanes and half-spaces.

We now prove Theorem 2.1. Let µ1, . . . , µm be a collection of mass distributions on Rn. For k =
min{ρ(2;R,n), n−1

m−1 }, let s(x) = (s1(x), . . . , sk(x)) be a Z2-equivariant map section of Vk(Rn), where s1(x) = x.
Letting Hi(x) denote the hyperplane corresponding to si(x) which bisects µ1 as given by (the proof of)
Lemma 4.1, we see that H1(x), . . . ,Hk(x) are pairwise orthogonal by the orthonormality of the si(x). Defining
f = ( f2, . . . , fk) : Sn−1

→ Rk(m−1)
⊆ Rn−1 by f j(x) = (µ j(H+

1 (x)), . . . , µ j(H+
k (x))) for each 2 ≤ j ≤ m, applying the

Borsuk-Ulam Theorem below shows there exists some pair {x,−x} ⊆ Sn−1 for whichµ j(H−i (x)) = µ j(H+
i (−x)) =

µ j(H+
i (x)) for each 2 ≤ j ≤ m and each 1 ≤ i ≤ k, thereby finishing the proof.

Theorem 4.2. (The Borsuk-Ulam Theorem) Let f : Sn−1
→ Rn−1 be a continuous map. Then f (−x) = f (x) for some

pair {±x} ⊆ Sn−1.

5. Regular q-Fans, q ≥ 3

5.1. Proof of Theorem 2.2

Proof. Let µ1, . . . , µm be mass distributions on R2t, t =
(q−1)n

2 . For k = min{ρ(q;C, t),n/m} (respectively,
k = min{ρ(q;R, 2t),n/m}), let s(x) = (s1(x) = x, s2(x) . . . , sk(x)) be a section of Vk(Ct) (respectively, Vk(R2t)),
equivariant with respect to a given Zq-action on Vk(Ct) (respectively, Vk(R2t)), and extend each si to a
Zq-equivariant map s̃i : R2t

→ R2t by setting s̃i(ax) = asi(x) for each a ≥ 0 and each x ∈ S2t−1.
Fix 1 ≤ i ≤ k. For each u = (u0, . . . ,ut) ∈ S2t+1

⊆ Ct+1, we define Si
j(u) := {z ∈ Ct

| 〈z, s̃i(u1, . . . ,ut)〉C =

−(ū0)r + v; arg(v) ∈ [ 2π j
q ,

2π( j+1)
q ]} for each 0 ≤ j < q. For the given 1 ≤ r < q, s̃i(ζqu) = ζr

qs̃i(u) for each u ∈ R2t,

and so Si
0(ζ j

qu) = Si
jr(u) (mod q) for each 0 ≤ j < q.

To ensure continuity of our construction, we exclude from S2t+1 the set Xq := {ζ j
q}

q−1
j=0 ×0. When u < S1

×0,

the Si
j(u) are the regular q-sectors of the complex regular q-fan FC,iq (u) := FCq (si(

(u1,...,ut)
||(u1,...,ut)||

),
−ur

0
||(u1,...,ut)||

)). On the

other hand, if u = (u0, 0) ∈ S1
× 0, that u0 , ζ

j
q for any 0 ≤ j < q implies that for each 1 ≤ i ≤ k there exists

some unique 0 ≤ ji < q such that Si
ji
(u) = R2t and Si

j(u) = ∅ for j , ji.
Now let µ1, . . . , µm be mass distributions onR2t. For each 1 ≤ ` ≤ m, let f ` = ( f `1 , . . . , f `k ) : S2t+1

−Xq → Rk

be given by f `i (u) = µ`(Si
0(u)) for each 1 ≤ i ≤ k, and let f = ( f 1, . . . , f m) : S2t+1

− Xq → Rkm
⊆ Rn. It follows

as in [23] that f is continuous, so by Theorem 5.2 below there exists some Zq-orbit {ζ j
qu}q−1

j=0 ⊆ S2t+1
− Xq for

which µ`(Si
jr(u)) = µ`(Si

0(ζ j
qu)) = µ`(Si

0(u)) for each 1 ≤ i ≤ k, 0 ≤ j < q, and 1 ≤ ` ≤ k. By the discussion

above, this u cannot be in S1
× 0, lest µ`(R2t) = µ(∅) = 0. Thus each FC,iq (u) is a complex regular q-fan, and

as
∑q−1

j=0 µ`(S
i
jr(u)) = µ`(R2t), each FC,iq (u) equipartitions each µ`.

Supposing s is a section of Vk(Ct), the si(
(u1,...,ut)
||(u1,...,ut)||

) are complex orthonormal, and hence the centering

complex hyperplanes of the FC,iq (u) are pairwise complex orthogonal. Thus these regular q-fans are pairwise
orthogonal. In the case s is a section of Vk(R2t), Proposition 5.1 applied to the orthonormal vectors
s1( (u1,...,ut)
||(u1,...,ut)||

), . . . , sk( (u1,...,ut)
||(u1,...,ut)

) shows that at least d k
2 e of these vectors are complex linearly independent, and

hence that at least d k
2 e of the regular q-fans are linearly independent.
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Proposition 5.1. If u1, . . . ,uk are linearly independent vectors in R2t, then at least r = d k
2 e of the u j are complex

linearly independent in Ct.

Proof. We argue by induction of k. For k = 1 there is nothing to show, and for the induction step it is
enough to assume that k = 2r. Suppose that u1, . . . ,uk+1 are linearly independent in R2t. By induction, we
may assume that the vectors u1, . . . ,ur are complex linearly independent in Ct, i.e., that u1, iu1, . . . ,ur, iur are
linearly independent inR2t. If u1, . . . ,ur,u j were not complex linearly independent inCt for any r < j ≤ k+1,
then the linear span of {u1, iu1, . . . ,ur, iur} would equal the linear span of {u1,u2, . . . ,uk+1}, contradicting the
linear independence of these vectors.

Theorem 5.2. Let q be an odd prime. Given any continuous map f : S(q−1)n+1
−Xq → Rn, there exists someZq-orbit

{ζk
qx}q−1

k=0 ⊆ S(q−1)n+1
− Xq such that f (x) = f (ζqx) = . . . = f (ζq−1

q x).

Proof. This is a corollary of the “Zq-Borsuk Ulam Theorem” considered in [25], which states that given any
continuous map 1 = (11, . . . , 1n) : S2n+1

− Xq → Cn and any n integers 1 ≤ r1, . . . , rn < q relatively prime to q
, there exists some x ∈ S2n+1

− Xq such that
∑q−1

k=0 ζ
−kri
q 1i(ζk

qx) = 0 for each 1 ≤ i ≤ n.
For q an odd prime and f = ( f1, . . . , fn) : S(q−1)n+1

−Xq → Rn a continuous map, we apply this theorem to
the map 1 = (11,1, . . . , 1n,(q−1)/2) : S(q−1)n+1

−Xq → Rn(q−1)/2
⊆ Cn(q−1)/2 and numbers r1,1, . . . , rn,(q−1)/2 by letting

1i,k = fi and ri,k = k for each 1 ≤ i ≤ n and 1 ≤ k ≤ (q − 1)/2.
Fixing 1 ≤ i ≤ n, we have

q−1∑
k=0

ζ−kr
q fi(ζk

qx) = 0 (9)

for each 1 ≤ r ≤ (q − 1)/2. As
∑ q−1

2
r=1 cos( 2πrk

q ) = − 1
2 for each 1 ≤ k < q, summing (5.1) over r and evaluating

the real part of the ensuing equation gives q−1
2 fi(x) − 1

2 (Bi(x) − fi(x)) = 0, and hence fi(x) = 1
q Bi(x), where

Bi(x) =
∑q−1

k=0 fi(ζk
qx). If we multiply (5.1) by ζ jr

q for each r, similar reasoning yields fi(ζ
j
qx) = 1

q Bi(x) for each
j > 0 as well.

5.2. Proof of Theorem 2.3
As in the proof of Theorem 2.1, one has the following observation concerningZ4-equivariant maps and

regular 4-fans:

Lemma 5.3. Let µ be a mass distribution on R2n. A Z4-equivariant map s : S2n−1
→ S2n−1 induces a continuous

family {F4(x) = F4(ix) = F4(−x) = F4(−ix)}x∈S2n−1 of complex regular 4-fans parametrized by L2n−1(4), each of whose
opposite regular 4-sectors Sk(x) and Sk+2(x) = Sk(−x) have equal measure.

Proof. The proof is analogous to that of Lemma 4.1. For 0 ≤ k < 4, each pair (x, t) ∈ S2n−1
×R defines a family

of hyperplanes Hk(x, t) = {u ∈ R2n
| 〈u, iks(x)〉 = t} in R2n. For simplicity, assume that s(ix) = is(x) for each

x ∈ S2n−1 (the proof when s(ix) = −is(x) is similar), so that H±k (x, t) = H±0 (ikx, t) and H±k+2(x, t) = H±0 (−ikx, t) =

H∓0 (ikx,−t) = H∓k (x,−t).
As before, for each x ∈ S2n−1 we can choose tk(x) ∈ R for which the hyperplane Hk(x) := Hk(x, tk(x)) bisects

µ and so that the association x 7→ tk(x) is continuous. As tk(x) = t0(ikx) and tk+2(x) = tk(−x) = −tk(x), we
have H±k (x) = H±0 (ikx) and H±k+2(x) = H±k (−x) = H∓k (x). Since s(x) and is(x) are orthonormal, the hyperplanes
H0(x) = H0(−x) = H2(x) and H1(x) = H1(−x) = H3(x) are orthogonal, and hence F4(x) := H0(x) ∪ H1(x) is a
regular 4-fan, and indeed a complex regular 4-fan because H0(x)∩H1(x) = {u ∈ Cn

| 〈u, x〉C = t0(x) + it1(x)} is
a complex hyperplane. The regular 4-sectors corresponding to F4(x) are given by Sk(x) := H−k (x)∩H+

k+1(x), so
Sk+2(x) = Sk(−x). That both Hk(x) and Hk+1(x) bisect µ is equivalent to µ(Sk(x)) = µ(Sk+2(x)) = µ(Sk(−x)).

We may now prove Theorem 2.3:
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Proof. Let s(x) = (s1(x) = x, s2, . . . , sk) be a Z4-equivariant section of Vk(Cn) (respectively, Vk(R2n)), where
k = min{ρ(4;C,n), 2n − 1} (respectively, k = min{ρ(4;R, 2n), 2n − 1}). For a mass distribution µ on R2n, let
{F j

4(x)}x∈S2n−1 and {S j
`(x) | 0 ≤ ` < 4}x∈S2n−1 denote the family of complex regular 4-fans and regular 4-sectors

associated to the s j as given in the proof of Lemma 5.3.
As S j

0(±ix) = S j
1(x) and S j

1(±ix) = S j
0(x), defining f = ( f1, . . . , fk) : S2n−1

→ Rk
⊆ R2n−1 by f j(x) =

µ(S j
0(x)) − µ(S j

1(x)) for each 1 ≤ j ≤ k yields f (ix) = − f (x), and hence Theorem 5.4 below guarantees
some x ∈ S2n−1 such that µ(S j

0(x)) = µ(S j
1(x)) for each 1 ≤ j ≤ k. However, µ(S j

2(x)) = µ(S j
0(x)) and

µ(S j
1(x)) = µ(S j

3(x)), so µ(S j
k(x)) = 1

4µ(R2n) for each 0 ≤ k < 4.
In the case of complex Stiefel bundles, the complex orthonormality of s1(x), . . . , sk(x) shows that

F1
4(x), . . . ,Fk

4(x) are orthogonal, while in the case of real Stiefel bundles Proposition 5.1 applied to these
vectors implies that at least d k

2 e of the equipartitioning regular 4-fans F1
4(x), . . . ,Fk

4(x) are linearly indepen-
dent.

Theorem 5.4. If f : S2n−1
→ R2n−1 is a continuous map satisfying f (ix) = − f (x) for each x ∈ S2n−1, then f (x) = 0

for some x ∈ S2n−1.

Proof. This follows from the intermediate value theorem when n = 1 and is a standard if degree argument
n > 1: Supposing no such x exists, the map 1(x) = f (x)/|| f (x)|| is continuous, as is the composition
h = j ◦ 1 : S2n−1

→ S2n−1, where j : S2n−2 ↪→ S2n−1 is the inclusion x 7→ (x, 0). As h is nullhomotopic,
de1(h) = 0, but h(ix) = −h(x) for each x ∈ S2n−1 implies that de1(h) ≡ 2 mod 4, as follows from examining
the induced map h̄ : L2n−1(4)→ RP2n−1 and the fundamental group andZ2-cohomology rings of the spaces
involved (see, e.g., [13]).

5.3. Some Lower bounds for Regular q-fans
The values of ρ(q;R, 2n) = Span(L2n−1(q)) + 1 given in [7] when n , 4 and deduced as in [15] when n = 4

determine our lower bounds for Ω(q; k, 2n). For instance, Span(L7(4)) = 5 implies 3 ≤ Ω(4; 1, 8) ≤ 4, while
Span(L16(3)) = 9 and Span(L16(4)) = 8 yield the estimates Ω(3; 1, 16) ≥ 4 and Ω(4; 16, 4) ≥ 4, respectively. As
with the case of hyperplanes, however, our estimates on Ω(q; (q− 1)n) are relatively weak in comparison to
n, owing to the relative lack of linearly independent vector fields on Lq(n−1)−1. For instance, one can compare
Theorem 2.3 with the known value Ω⊥(4; 1,n) = b n−1

2 c given in [17].
On the other hand, the numbers ρ(q;C,n) apparently have yet to be determined (see, e.g., [17, 22-23]),

though the maximum value k = ρ(C,n) for which Vk(Cn) admits a (non-equivariant) section is known for
all n. Unfortunately, ρ(C,n) (and hence ρ(q;C,n) ≤ ρ(C,n)) is quite small. Indeed, ρ(C,n) = 1 if n is odd
and ρ(C, 2k) = 2 for 1 ≤ k ≤ 11 (see [2, 4] for an explicit formula for arbitrary n). In fact, the only (see, e.g.,
[15, 20, 21]) explicitly known example of a section s : S4n−1

→ V2(C2n) is s(x) = (x, jx), where j is the usual
unit quaternion and S4n−1

⊆ Hn. This map is S1-equivariant, with s(λx) = (λx, λ−1 jx) for each λ ∈ S1 and
x ∈ S4n−1, and hence is Zq-equivariant for each q. In particular, the triviality of the corresponding circle
bundle S1 ↪→ V2(C2)/Zq → L3(q) yields the optimal values Ω⊥(3; 1, 4) = Ω⊥(4; 1, 4) = 2, while ρ(q;C; 4) = 2
yields the estimates Ω⊥(5; 1, 8) ≥ 2 and Ω⊥(3; 2, 8) ≥ 2.

5.4. Regular 2q-sectors
Let q be an odd prime. Given a mass distribution on R2n, the same reasoning as in Lemma 5.3

shows that the identity map on S2n−1 induces a continuous family {H0(x),H1(x) = H0(±ζ2qx), . . . ,Hq−1(x) =

H0(±ζq−1
2q x)}x∈S2n−1 of q hyperplanes in R2n parametrized by L2n−1(2q), for which the angle 〈Hk(x),Hk+1(x)〉

between any two successive hyperplanes is always equal to π/q, and for which each pair Sk(x) and Sk(−x) =
Sk+q(x) of opposite regular 2q-sectors Sk(x) = H−k (x)∩H+

k+1(x) have equal measure. Moreover, Sk(x) = S0(ζk
2qx)

for each 0 ≤ k < 2q.
Theorem 5.2 still holds (with nearly identical proof) if the set Xq is not removed, so in particular for any

continuous map f : Sq
→ R there exists some x ∈ Sq for which f (x) = f (ζk

qx) for each 1 ≤ k < q. Letting
f (x) = µ(S0(x)) and noting that µ(S j(x)) = µ(S j+q(x)) for all 0 ≤ j < q therefore yields the following near
equipartition statement:
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Theorem 5.5. Let q be an odd prime and let µ be a mass distribution on Rq+1. There exists a collection {Hi}
q−1
i=0 of

q hyperplanes with consecutive angles 〈H j,H j+1〉 = π
q for each 0 ≤ j < q, so that Rq+1 is covered by the regular

2q-sectors {Sk = H−k ∩H+
k+1}

2q−1
k=0 and µ(S0) = µ(S1) = . . . = µ(S2q−1).

Such a collection of q hyperplanes as given by the theorem might not constitute a regular 2q-fan, however,
since the interiors of the 2q-sectors may intersect non-trivially. Thus for any µ onR4 we can say there exists
hyperplanes H0,H1,H2 whose successive angles are always equal π/3 and whose corresponding regular
6-sectors cover R4 and all have measure equal to 1

6µ(R4) + 1
3µ(I), where I is the intersection of the regular

sectors. This can be compared to the result that any mass distribution onR4 can be equipartitioned “modulo
2” by a regular 6-fan [25]. A similar decomposition gives R6 as the union of 10 regular 10-sectors of equal
measure exists for any mass distribution on R6, and likewise for R8 and regular 14-sectors. For a single
measure on R2q+2, the section s(x) = (x, jx) of V2(C2q+2) can be used as before to find a pair of collections
of regular 2q-sectors covering R2q+2, all of which have equal measure, and which are orthogonal in an
appropriate sense.

6. Related Questions and Results

We conclude this paper by discussing some research related to Question 1.1. Of most importance
is an equipartition problem originally posed by Grünbaum [14]. Instead of asking for a collection of k
hyperplanes, each of which bisects a given collection of mass distributions, one demands instead that the
hyperplanes equipartition each of the measures, i.e., that the each of the 2k orthants determined by the k
hyperplanes contains 1/2k the measure of each mass distribution. A triple (k,m,n) is said to be admissible if
any m mass distributions onRn can be equipartitioned by k hyperplanes, and one searches for the minimum
n = ∆(k,m) for which (k,m,n) is admissible. By considering the unit ball in Rn, one can deduce as in [24]
that the admissibility of (k,m,n) implies that any (m − 1) distributions on Rn can be equipartitioned by k
orthogonal hyperplanes. In particular, one has Ω⊥(2; m − 1,∆(k,m)) ≥ k and Ω⊥(4; m − 1,∆(2k,m)) ≥ k. For
instance, the values ∆(2, 2r+1

− 1) = 3 · 2r
− 1 of [16] imply that Ω⊥(4; 2r+1

− 2, 3 · 2r
− 1) ≥ 1.

A major breakthrough on estimates of ∆(k,m) was given by Ramos [24], whose results were extended
substantially in [19] and even further in [10-11]. Better conditions for ensuring the orthogonality of
equipartitioning hyperplanes were provided in [12]. Closely related to these results are those of Makeev
[18], who showed (i) that for a single measure onRn, one always find n−1 pairwise orthogonal hyperplanes,
any two of which equipartition the measure, (thereby establishing Ω⊥(4; 1,n) = b n

2 c), and (ii) that for any two
such measures onRn one can find (n− 1) pairwise orthogonal hyperplanes, any two of which equipartition
both measures (thereby establishing the values Ω⊥(4; 2,n) = b n−1

2 c and Ω⊥(2; 2,n) = n − 1). Finally, we
note that the values Ω(3; 1, 2) = Ω(4; 1, 2) = 1 were also obtained by Bárány and Matoušek ([6-7]), and that
Ω(3; n − 1,n) = 1 was established in [27].
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