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Abstract. In the present article, we study some smoothness properties of new Lupas-Kantorovich type
operators based on Pélya distribution, as uniform convergence and asymptotic behavior. In order to get
the degree of approximation, some quantitative type theorems will be established. The bivariate extension
of these operators, with some indispensable results will be also presented.

1. Introduction

Let IN be the set of positive integers and Ny = IN U {0}. In 1930, Kantorovich [24] has considered the
following integral form of the well-known Bernstein operators, in order to approximate functions in space

L1[0, 1] (the class of Lebesgue integrable functions on [0, 1], which means fol |f(x)ldx < o0), given by

Ky(f;x) = (n+1)ank x)fk fHdt = (”+1)Z(k)xk(l x)"" kfk F(bt, (1)

for x € [0,1] and n € IN, where p,,x are the Bernstein fundamental polynomials. Looking for papers which
contain certain researches and studies of the Kantorovich operators (1) or generalizations of them, we find
thousand of published articles until nowadays. Some representative examples in this sense could be the
following papers [1, 2, 4, 5, 8, 11, 12, 14, 19-21, 26, 29, 34, 36, 37]. Among highly investigated operators in
the last period, which have the preservation property of the linear functions are the Lupas operators [27],
defined for any function f € C[0, 1] by

n n—k—-1
P (fr2) = Zp“/’” (x) =2 ( )H(nx+v> H (n=nx+p)f (). 2)
k=0 v=0

Having as fundamental basis p( " the Lupas operators (2) are based on Pélya distribution and they could
be obtained as a special case from the well-known class of operators introduced by Stancu [35]. Some
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approximation properties, as well as the bivariate extension of Lupas operators (2) are investigated in
two recent papers [28], [30]. In 2014, Gupta and Rassias [22] have introduced the Durrmeyer type integral
modification of the operators (2) and studied asymptotic behavior, local, respectively global results. Further
modifications in sense of Lupag operators having as start point the paper of Gupta and Rassias are given
in [6, 7, 15]. A new interesting sequence of positive linear operators is presented by Ozarslan and Duman
[33] as follows

na(f x) ank(x)f I;T—f;

for a given @ > 0 and n € IN. The main results investigated by the authors for these modified operators
K.« are geometric properties concerning convexity and some approximation properties involving uniform
convergence, the order of approximation and simultaneous approximation.

Inspired by [33], for any integrable function f : [0,1] — R, p > 0 and n € IN we introduce the Lupas-
Kantorovich type operators based on Pélya distribution, given by

Ko (f;2) = Zp(l/n)(x)f N
k-1 n—k-1
"o ()H<”x+v H(n—nxw)f (55)a
k=0 N

The purpose of this paper is to present these new Lupas-Kantorovich type operators (3) based on Pélya
distribution, studying the uniform convergence and asymptotic behavior. In order to get the degree of
approximation, some quantitative type theorems will be established. The bivariate extension of these
operators, with some approximation results will be also presented.

2. Auxiliary Results

For Lupas-Kantorovich type operators (3) we establish some necessary results. The monomials e;(x) = x*,
for k € Ny called also test functions play an important role in uniform approximation by linear positive
operators. In order to determine the images of the monomials by operators (3) we present a useful form of
these operators.

Lemma 2.1. Foranyn € N, p > 0and x € [0,1], it follows

m
i 1
Koplenix) = g ), (Dt P e ), @
i=0
where Pﬁ,l/ " i given at (2) and m € INj.

Proof. Using the definition of the K, ,, we get

1
(](n,p(em/ Z‘P(l/n)(x)f };j—ff (n+1)m Z( )Zp(l/”) x)krf pp(m=i) g4

1/11) k (1/n)
(n+1 )y Z (m p(mnz)+1 Z p ﬁ (n+1)"‘ Z (m) p(m z)+1 (81, X)

O

The images of the monomials e;(x) = x fori=0,1,2,3,4 by Lupas operators (2) are given in [27] or [28].
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Lemma 2.2. Forany n € IN hold
1 1 1 2(1— 1 61:2(1— 6x(1—
P ey = 1; P =x P en) = o+ B P (esix) = 2+ GG + Gty
/), oo o4, 1200%+D)a%(1-x) | 12(8n—1)x*(1-x) 2(13n—1)x(1-x)
Py, ea; X) = X + Gigmmmy) T aeDomees) T amiDor2me)

Corollary 2.3. For the Lupas-Kantorovich type operators (3) hold
1-(1
Konpleo; x) = 1; Kinpler;x) = x + <n+(1><+1i);>"
o (4n243n+1)x | 2n(14n(2+p))x

Kaplez; x) = x° = —qm— + i) T

1
(n+1)2(1+2p)

Proof. Using the relation (4) and Lemma 2.2, it follows the desired results. [

Corollary 2.4. The computation of the central moments up to the second order for Lupas-Kantorovich type operators
(3), is given by

vy — (x|
Kipler —x;x) = D) (+p)’
o\ _ (1+n=2n2)x®  2(n(np+n-1)-T)x 1
Kop ((61 - X) ,x) = e T T paep T Ry

Proof. The above results follow from Corollary 2.3 and simple computations. [

Proposition 2.5. Let f be a real-valued function continuous on [0, 1], with ||f|| = sup |f(x)|, then
x€[0,1]

1,0 (5 0 < IfII-

Proof. Taking the definition of Lupas-Kantorovich type operators (3) and Corollary 2.3 into account, it
follows

n 1
o0 < Y0 [ (55t < WA i) = 11
k=0

O

Lemma 2.6. For any n € IN, we can write
Koy (01~ 0%57) <~ 52(0) ©
G “n+l "

where C > 1, 82(x) = ¢?(x) + m and $?(x) = x(1 — x).

3. Direct Results for Lupas-Kantorovich Type Operators

Our further studies focus on the qualitative properties of Lupas-Kantorovich type operators (3), involv-
ing the uniform convergence and asymptotic behavior.

Theorem 3.1. For every f € C[0,1] and p > 0, yields lim K, ,(f;x) = f(x) uniformly on [0, 1].

5 (4n243n+1)22  2n(1+nQ+p))x 1

1-(1+p)x L
K plez;x) = X = 7w i+ 1p(+p) | (r1R(142p)”

Proof. Since K, p(e0;x) =1, Ky ple1;x) = x + T+

it follows

lim K, ,(e;; x) = ei(x), fori=0,1,2.
Applying the well-known Korovkin’s theorem, we get

lim K, ,(f;x) = f(x) uniformly on [0, 1].
n—o0
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The next result provides the asymptotic behavior of the Lupas-Kantorovich type operators.

Theorem 3.2. If f € C?[0,1], then
lim 1 (%, (f3 %) = £00) = (15 = %) £/ (0 + x(1 = 0)f(x) ©)
uniformly on [0, 1].

Proof. Using Taylor’s expansion formula of the function f, it follows

ft) = fG) + (t=x)f () + 3(t = x> (@) + r(t, 2)(t = x)%, )
where 7(t, x) := r(t — x) is a bounded function and ltim r(t,x) = 0. Taking the linearity of operators (3) into
account and applying the operators %K, , on both side of the above equation (7), we get

Konp(F30) = F(X) = Koppler = x:0) f () + 3K (e = 0%%) £/ (0) + Ko (1(E,0) - (e1 = 2% %)
Therefore, using Corollary 2.4 it follows
lim n (Tp(f; ) = f()) = (ﬁ —x) f/(x) + x(1 - ) f"(x) + lim n (%6 (r(t, ) - (02 — )% %)) (8)

We estimate the last term on the right-hand side of the above equality, applying the Cauchy-Schwarz
inequality, so we obtain

Konp (16, 2) - 1 = 202%) < Ko (0208, 1 0) 3| Fnp (e = 1)), 9)
Because r*(x, x) = 0 and 2(-,x) € C[0, 1], using the convergence from Theorem 3.1, we get

lim K, , (rz(t; x);x) = r*(x,x) = 0. (10)

n—oo

Therefore, from (9), respectively (10) yields

tim 1 (%K, (r(t, %) - (1 — %)% %)) = 0

n—oo

and using (8) we obtain the asymptotic behavior of the Lupas-Kantorovich type operators (3). [

The main tools to measure the degree of approximation of linear positive operators towards the identity
operators are moduli of smoothness. For f € C[0,1] and 6 > 0 we consider the moduli of smoothness of
first, respectively second order, given by

w1(f,0) :=supflf(x +h) — f(x)| : x,x+h€[0,1], 0 <h <0},
respectively

wy(f,0) :=supflf(x +h) =2f(x) + f(x=h)| : x,x+he[0,1], 0 <h <6}
Moreover, let us consider Peetre’s K-functional

Ka(f,6) = inf{lf — gll + 8llg”1l = g € C2[0,1]), for & > 0. (1)
There exists an absolute constant M > 0, such that

K(f,5) < M- s (f, V), (12)

according to Theorem 2.4, p. 177 in [16].
Below, we derive some quantitative estimates in terms of moduli of smoothness and Peetre’s K-functional
for the Lupas-Kantorovich type operators (3).
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Theorem 3.3. Let f € C[0,1], p > 0 and n > 1, then for any x € [0,1] yields

1Ko (f32) = F) < My - 3 (f, 1) + @1 (f,60)

n1/2
where My is an absolute constant and 6, = (7(,1,9 ((31 - x)z;x) + (Wn,p(el - Xx; x)) ) ;00 = K pler — x; 1)

Proof. For any n € N, p > 0 and x € [0, 1], we construct the auxiliary operators as

Tonp(f32) = Ko p(£3) + £ = f (¥ + gty ) (13)

By Corollary 2.3, we remark that 75, ,(eo; x) = 1 and 7, 5(e1; x) = x, i.e. the defined operators (13) preserve
constants as well as linear functions. Therefore

Tnpler —x;x) = 0. (14)

For any g € C?[0,1] and t,x € [0, 1], by using the Taylor’s expansion formula, we have

t
90 = g2 + (£ — 1) () + f (t - w)g" ().

Applying the operators 7, on both sides of the above equation, we get

Top0:) = 9 = g QT pler = ) + T f (t - )" () )

1-(1+p)x

£ X+ G ) ~ . ,
= «"’p(f (t— u)g” (u)du; x) - f (x + (3!+(11)2—1F-)+—)p) - u)g (w)du.

On the other hand

< (=27 lg”ll

t
IR

then
IT0,0(93%) = g(x)| < (7<n,p (e = 2% x) + (K pler — 3 x))z) gl =62 - llg” . (15)

Using the definition (13) of the operators 7, , and Proposition 2.5, it follows

Ko (f0) = FQO = [T (F52) = £0) + f (x+ et = ()
< 7500 = 50| + 1T3(2) — 9001 +190) = @+ [ 3+ 2825) - £
<4-NIf = gll+ 05 - lg”Il + @1 (£, 60),

with 82 . = XK, ((e1 - x)z;x) + (‘Kn,p(el -x; x))2 and 6, = |%,p(e1 — x; ).
Now, taking the infimum on the right-hand side over all g € C?[0, 1] and using the relation (11), we get

Ko (f32) = F) < 4- Ko (£, 162,) + @1 (f, 60) < My - 2 (f, 16u) + 01 (f, 00),

where M; is an absolute constant. [
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In order to prove a global approximation theorem for the Lupas-Kantorovich type operators involving
the Ditzian-Totik modulus of smoothness, we recall some results from [17]. For any f € Cz[0,1] and 6 > 0,
the Ditzian-Totik modulus of smoothness of second order and appropriate K-functional are given by

W) (f, Vo) = sup  sup [f(x+ho(x) - 2f(x) + f(x — hp(x)),

0<h< V5 x£h(x)€[0,1]

and

KS(f,0) = inf{|If — gll + 8lip>g” | + &llg”"|l : g € W? 5>0

5(f,0) = inf{llf = gll + 6llg*g"Il + 3*lg”Il : g € WA(@)}, (6> 0),

with ¢(x) = +/x(1-x), x € [0,1], where W($) = {g € C[0,1] : ¢ € ACi[0,1], p*¢” € C[0,1]} and
g € ACi[0,1] means that g is differentiable and g’ is absolutely continuous on every closed interval
[a,b] C (0, 1). Conformable with [17], there exists a positive constant N > 0, such that

KJ(f,0) < N-wj (f, V5). (16)

Further, the Ditzian-Totik modulus of smoothness of first order is given by

wy(f,6) = sup sup ’f (x + %hz,b(x)) - f(x - —hlp(x))

0<h<d x£(h/2P(x)e0,1]
where 1) is an admissible step-weight function on [0, 1].

Theorem 3.4. Let be f € C[0,1], p > 0and n > 1, then for any x € [0, 1] we get

B (i) = FO < N1+ (£ = ) + g (£ 5.

where N is a positive constant and P(x) = |1 — (1 + p)x|.

Proof. We consider again the auxiliary operators defined at (13), given by the following relation

Top(£3) = Ko (F3) + £() = £ (¥ + Gy )-

Taking the definition of the Lupas-Kantorovich operators (3) into account, proceeding as in above theorem,
for g € W2(¢), we get

1-(1+p)x

t (n+1)(1+p)
IT20(0) = 9] < %, f = ul 19" (0 x) + f
X X

X+ e g )ldu. (17)
Since 6%(x) = ¢?(x)+ m isa concave functionon [0, 1], foru = Ax+(1-A)t, witht <u <xand A € [0, 1],
it follows
[t — ul _ Alt — x| < Alt — x| < [t — x|
Su) X+ (1 =Nh T AGx) + (1= DB T Gix)
Thus, using inequality (18), the relation (17) leads us to

(18)

1-(1+p)x

|t u| 2 e X+ D)
7205:2) = 90 < K [ 5 S -neti+| [

+ Oa(u)
B 1-(1+px \
6n( )”62 ||( n,p ((61 - X)Z ) (—(n 0+ p)) ]

1-(+p)x
X+ e ”‘ 12
67 (u)
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Now, applying the inequality (5), we find
1
. _ < 2 1 2 Il 77 )
T2 050 — 90 < — 16297 < —— (162" + —=1g"]
For any f € C[0, 1], using the above inequalities and Proposition 2.5, it follows

5o (f:3) = O < 1T (F = 9,30 + [T ,0(05%) - g(x)|+|g<x> FE+|f (v + ) - f)

<4-|f- 57||+—||<]52 ”||+

1- (1+p)x
0+ |7+ el - o).

Taking the infimum on the right hand side over all g € W?(¢), we obtain

T (f30) = FOO| < Ca - KG (£, 77) + [ (1 + goraty) - ) (19)
On the other hand
-(1+p 1-(1+p)x
‘f(x (Tl+ 1)(1 + p)) f(x) ’f x+ 17[) (I’Z + 1)(1 + P)Eb X)) f(x) (20)

< sup
te[0,1]

1
Tp
f{fﬂ#( Yo+ 0 +1)¢(X)J f(t)‘

——x
ww{f/%]<ww(ﬁnil).

Hence, combining (16), (19) and (20), we get the desired result. [

4. Construction of Bivariate Operators

Gurdek et al. [23] established some direct results for the bivariate extension of the Baskakov and
Baskakov-Kantorovich operators. Dogru and Gupta [18] presented a bivariate generalization of the Meyer-
Konig and Zeller operators based on g-integers and obtained the rate of convergence of these operators
with the help of Korovkin theorem for the bivariate functions. Wafi and Khatoon [38] established some
approximation properties for the bivariate extension of generalized Baskakov operators defined by Mihesan
[31]. Mishra et al. [32] introduced a bivariate generalization of the discrete g-Beta operators and obtained
their statistical approximation properties. In this section we present the bivariate form of the operators
defined at (3), respectively we establish their rate of approximation. For J?> := | x J, with | = [0,1],
let C(J?) be the space of all real-valued continuous functions on J?, endowed with the norm given by
Z 1

a'f

f =1,2
EL le or 1

Iifllczy = sup If(x, y)l. Let C*(J?) be the space of all functions f € C(J?), such that —
(e

belong to the space C(J?). The appropriate norm on the space C*(J?) is defined as

If )
cg*

C(?) Hay

2
df

2(12) = 2y + -—

fllezgy = I fllegry Z;( o

The Peetre’s K-functional of f € C(J?) is defined by

K(f;06) = inf - 2 + 0 212y, O > 0f.
(f;9) geczUZ){”f gllcgpy + Oligllcagey }
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It is also known that the following inequality
K(f;6) < M* - {@a(f; V) + min(1, )l fllcg) | (21)

holds, for all 6 > 0 conformable with [13]. The constant M"* is independent of 6 and f and w(f; \/5) is the
second order modulus of continuity defined in a similar manner as in the above section.

For any integrable function f : > - R, p1,p2 > 0 and ny,ny € IN we introduce the bivariate Lupas-
Kantorovich type operators based on Pélya distribution, given by

- ky + 1P kp 42
1,02 (1/"1) (1/nz 1 2
Ko n, (fi%, ) = z Z P GO, (Y) f f ( o —— )dtds, (22)

k1=0kp=0

withp () = TS G T s T n=mve ) and p U () = Gy G2 T1 (nay+) T2 (2
noy + u). The test functions in the blvanate case are given by e; j(x,y) = x'y/, for (i, j) € Ny X INO. In the
following, we establish some auxiliary results.

Lemma 4.1. For the bivariate Lupas-Kantorovich type operators (22), the following formulae hold

xPP2 P1,P2 . _ 1-(+p)x | KPP 1-(l+p2)y
m o, 00,x%,Yy) =1; 7<m,n2 (ero;x,y) =x+ (TS EThL n1 01X, Y) =Y+ i D(ips)’

(4243m+1)x% | 2m (14 (24p1))x
(m1+1)3 (m+1)*(1+p1) (m1+1)?

P1,02 . — 2 _ (4m3+3m+1)y? | 2m(1+mQ+p2)y
Koy (€02:%,Y) = y [C e A Frrs <TG ey e prre

—

P1,P2 . — 42 .
(]<n1 1y (62,01 X y) =X = T+2p1)’

—_ o~

1+2p2) -

Proof. The proof of this lemma easily follows taking relation (22) and Corollary 2.3 into account. [J

Corollary 4.2. The computation of the central moments up to the second order for the bivariate Lupas-Kantorovich
type operators, is given by

P1,P2 . — 1-(+p)x | P1,P2 1-(+po)y .
K, (10 =2%%,Y) = Gnyzpryy Kanne (€01 = Y0 % V) = Ginyrpyy

P1,02 2. _ (m=2m)? | 2(m(mprm—1)-1)x 1 .
Kiis ((e20 =253, y) = Gt + M) T Pz’

01,02 2. _ (m=2md)y* | 20ma(napatna-1)-1y 1
e (€02 = Wi y) = G + vty + G

Theorem 4.3. The sequence of bivariate Lupas-Kantorovich type operators (V(,ff,’,f; f) converges uniformly to f, for
any f € C(J?).

Proof. Since
lim K (e, y) = €%, y), (i, ) € 1(0,0),(0,1), (1, 0)}

ni1,NMp—00

and
nllgg K2 (62,0 + €02 %, ) = e20(x, ) + €0(x, )
uniformly on J?, then
lim K9"(f;x,y) = f(x,y) uniformly on J°.

1ni,My—00
O

Remark 4.4. A detailed proof of the above theorem in the case of any bivariate operators is given in [10].

For any function f € C(J?), the complete modulus of continuity for bivariate case is defined by

@9(f36) = sup {IFt,5) = F(& DI (1,9), (e y) € P and (¢ =27+ s = 2 < 0.
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Further, the partial moduli of continuity with respect to x, respectively y are defined by
W(f£;6) = sup {|f(x1,y) — f(x2, )l : y € Jand |x; — x2| < 6}
and

@(f;6) = sup{If(x, y1) = f(x, y2)| : x € ] and [y1 — yo| < 6.

It is clear that they satisfy the properties of the usual modulus of continuity. The details of the modulus
of continuity for the bivariate case can be found in [9]. Below, we get the degree of approximation for the
bivariate Lupas-Kantorovich type operators (22).

Theorem 4.5. Let the function f € C(J?). The following inequality

(K2, y) = f )l <2+ (0 (f 1+ 1)7V2) + 0@ (f; (2 + 1)712))
holds.

Proof. Taking the definition of the partial moduli of continuity into account and applying Cauchy-Schwarz
inequality, we may write

KR (Fr 2, y) = FOo, y)l < K2 (E8) — F(x, ) x,y)
<SKE(f(s) — f(EExy) + KL F(Ey) — o y)lix, y)
< K2 (0@ (315 = y)ix, y) + KO (0O (f3 1t - ) x, )

< wA(f;6,) (1 + 6iv<,qus —yl; y)) +wW(f;6,,) (1 + (%7(5;(# - xl;x))

<0500 (14 5 (K= 050) )+ o300 (14 5 (K - 070) ) = 40+

Taking 6, = (np + 1)_1/2, we obtain A; <2 - w® (f, (ny + 1)—1/2)‘ Analogously, taking 6, = (n1 + 1)‘1/2, we
get Ay <2- (f, (n1 + 1)‘1/2). Hence, we get the desired result. [

Asin [25], for 0 < m; < 1and 0 < i < 1 we define the Lipschitz class Lipyu (11, 12) for the bivariate case as
follows

£ (t,8) = fx, )l < ME |t = x|™|s — yI™.

The degree of approximation for the bivariate Lupas-Kantorovich type operators (22) on LipILV(Im”h)could be
established by the following result.

Theorem 4.6. Let the function f € Lippu(m1,12), then we have

K (%, 9) = FOs )l < M - 0P )07 (y), (23)
where &y, (x) = Ki' ((t - x)z;x) and 6,,(y) = K ((s -y y).
Proof. Taking the definition (22) of the Lupas-Kantorovich type operators into account, we may write

(Koo (f:x,y) = fQ, | < KRR (f(Es) = f(x v)lx, )
< ME KDt = x| s =yl x, )
= ME K (1t — x5 0K (Is — yI™; ).
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and w, = %

2
=, Uu
s UL = m’

Using the Holder’s inequality with w; = o

= m JUp = 55— '7 , we get the desired result

K23, ) = £ )l < ME - (K0 (= 250) (K0 o) - (KI5 - y5) (KD )
= ME- 1P 08 ().

O

Theorem 4.7. Let the function f € C'(J?) (which means that partial derivatives f;, f, € C(J?)), then

KD (F%, ) = £G4 < IFU VB 0O + 1) om (),
with 6,,(x) and 6,,(y) defined in the above theorem.

Proof. For (x,v) € J* fixed, we may write

ft,s)— flx,y) = I{t fuw, s)dw + LS filx, u)du.
Applying the Lupas-Kantorovich type operators K},'/> on both sides of the above equality, we get
KL (frx,y) = fx, )| < KA f t fi(w, s)dw; x, y) + WEE,’EZ( f s ful, wydu; x, y)-
x y
Since

" (w, s)dw

<IIFN- 1 - and

" (x, u)du
y

<Ifl-Is - yl,

we have
[FC i (F5x,9) = £ )| < AN TR = 3150 + 1yl - KR ls = i ).
Using the Cauchy-Schwarz inequality, we obtain
I ) = )] < I (I = 20750 (KD e )|+ I (K - 9% ) (K2 )
<A, ) + 1A VOm W)
|
The next result provides the asymptotic behavior of the bivariate Lupas-Kantorovich type operators (22).

Theorem 4.8. Let the function f : J> — R. If f € C*(J?), then

ti n (KEE 0 = £060) = 5 = 1) 2 + (1 = o) o
#x(1 =00 ) + Y0 = PFAE Y.

Proof. Let (x,y) € J* be arbitrary fixed. By the Taylor’s expansion bivariate formula with the Peano’s form
of remainder term, for any (¢, s) € J* we get

Ft,9) = fGx,y) + 0o y)(E—2) + f06,y)(s = v) + 3 (F2Ge y)(E - x)? (24)
+2f x, it —x)s—y)+ f”(x y)(s — y)z) +r(t,5;x,Y) \/(t -+ (s —y)*,
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where r(t,s; x, y) € C(J*) and (t,s; x, y) — 0 as (t,5) — (x,y). Applying 7(,5/ ¥ on the equation (24), we get

KL%, 9) = F069) + £ DKE(E = x)0) + F(x KL = )i ) (25)
+ 3 (£ PG = 0%2) + 20 DK = 9% ) + 210 KL (E =26 - )33, )

+ 7(5,5 (r(t,s;x, y) \/(t —x)*+ (s —y)hx, y).

Applying the Cauchy-Schwarz inequality, we get

1/2

< (KL sxysx ) (K- + 6 - v)xy)

Ko (r(tr 5%, Y) \/ (t—x*+(6-yhx y)
< (KL s %) - (KO =050 + KL (s - %) -

In view of Theorem 4.3, lim K}f (**(t, s; x, y); x, y) = 0 uniformly on J? and taking the linearity, respectively
n—oo

Corollary 2.4 into account, it follows K} ((t — x)*; x) = O (n%) and K1 (s - y)4;y) = O (%), such that

lim 1 - K} (r(t,s;x, Y) \/(t -4+ (s -y x, y) =0.

n—co
Using Corollary 4.2, we get
lim n -G (t - x2) = 75 —x, lmn- K- yiy) = 15 - v,
and
lim KO =250 = 261 — ), Tim - KE(Gs — ) y) = 2y(1 - y).
Also, using Corollary 4.2, we get
lim 12+ KL (¢ = x); K (s — )i y) = 0.
Combining the above results and the equation (25), we get the desired result. [

Our last result proposed for study is the order of approximation for the bivariate Lupas-Kantorovich type
operators, involving the Petree’s K-functional.

Theorem 4.9. For the function f € C(J?), the following inequality

— 2 _ 2
(KA ) £ 9] < Co K Ay ) + [f; \/( L) (e )]

(nm +1)(1 + p1) (n2 + 1)(1 + p2)
' 1-(1+p1)x \? 1-(1+p)y \?
£ \/((n1 + 1)1+ Pl)) " ((7’12 + 1)1+ Pz)) ]

holds. The constant C is independent of f and Ay, n,(x,y), where Ay, u,(x,y) = (n]l—ﬂ)é,zll (x) + ﬁéﬁz(y), 0% (2) =
z(1-2)+ k=1,2andze].

<M - (w_2 (fr VAR (X, y)) + Ay (X, ]/)||f||c(]2)) +w®

1
(m+1)(1+pr) 7
Proof. We introduce the auxiliary bivariate operators as follows

1-(1+p)x . 1-1+p2)y )

DA+ p0) Yt 2 DA+ p2) (26)

Tk (fix,y) = K or(f;x, ) + f(x, ) — f(x +
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Then, using Corollary 4.2, we get T4 17 (t —x;x,y) = 0 and 770> (s — y;x, ) = 0
Let g € C?(J%) and (t, s) € J*. Using the Taylor’s expansion bivariate formula, we can write

gt,s) = g(x,y) = g(t, y) — 9(x, y) + g(t,s) — g(t, y) (27)
dg(x, ¢ Pa(u, dg(x,
- gg;y)(t—x)wtj;(t—u) g(;lzy)du+ gf;yy)(s—y)+f(s— v) (x 2 4o

Applying the operator 7;;'"> on the relation (27), we get

P s Pg(x,
T (7%, ) = g, y) = T f (t—u)—5—>— g( y) ,x,y) Tyﬁlff( f (S—v)%dv;x,y)
y

—(L+pp)x
( y) x+‘(nT+1)(1‘+p1) ( 1- (1 + P1)x )82g(u, y)
— qePuP2 _ _ —
= Houi (f e y) f SN T R R o

929<x v) v 1-(l+p)y  \Pe0)
P1 Pz 3 g d
7<m 1y f ( du; x, ]/) L (y + (7’12 " 1)(1 " Pz) U) o2 0.

Hence, applying the Cauchy-Schwarz inequality, it follows

|70 (; %, y) — 9(x, y)|

1-(1+pq)x
‘929( ]/) AT 1-(1+pi)x ?*g(u, )
P14 Pz _ B ) ,
< 7(711 ny f |t | ,x, y) + fx X + (Vll n 1)(1 ¥ pl) u‘ au2 du
8257(9‘ v) MR — (1 +p2)y g(x,v)
P1,02 _ 3
7(111 nz f s — vl|—==—|dv|; x, ]/) + j; y+ —(le n 1)(1 " p2) ' 802 do

—(1+p1)x 2
P1,02 — ¥)2- - - 7 _ . 212
: (7(”1’”2 ((t LS y) " (x " (n1 + 1)1+ py) x) gllezqe)

1 —(1 +p2)y

(n2 + 1)1 + p2)
2

2
+ (7(53,955((5 - %X,y + (y - - y) ) gllczry

1—(1+py)x 1-1+p2)y
<((n1+1) 0 () + ((n1+1)(1+p1)) T 0 (¥) + ((n2+1)(1+p2)) )'”g”CZ(IZ)'

Thus, we get

TE @) - 9] < (SR 0 + g 8 0) Ialleger

(n1 +1) O,
Also

102/ ¢. 1,02/ ¢, 1_(1+P1)x 1_(1+P2)}/ .
[T ) < RG]+ e+ £ RS TN TEEE: pz))| <3+ lfllcgey-

Hence, in view of the relation (4), we get
KR Fix ) = )

_ Nep1p2/ f. _ 1- (1 + pl)x 1- (1 + pz
= [T i3 9) = fx9) +f(x+ DA+ T L DA+ 2 )
<|TE(f = gix, y)| + [T (752, ) — 9(x, )| + Ig(x y) - f(x, )l

1—(1+p1)x 1—(1+p2
+’f(x+ m+na+py YT (n2+1)(1+p —fi y)’

- flx, y)‘
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Further

[KE22 (i, ) = fOoy)| <40 1f = gllegy + [T (g x, ) - 9(x, )|

1-(+py)x 1-1+p2)y
+f( (1’11 +1)(1+p1)/y (n2+1)(1 +p2))—f(x/]/)
<41f = gl + (=700 + = 00) Iallage
-0+ pl)x 1- (1 p2)y
A e oY G 2 p) Y

< (4417 = glleqp) + €+ Aun(x ) gl

2

_ _ 2
r(f (mll +(11><+1p+1);>) * (("12 +(11><+1p+2)pyz>) )

Taking the infimum on the right hand side over all g € C?(J?) and using (21), we get

T (f5 %, ) = f(x, y)|

2

1-(1+p1)x ) +( 1-(1+p2)y )2
(m+ 1)1+ p1) (n2 + 1)(1 + p2)

M - (@2 (£ VA () + mind1, A, (5, 9} - I flle)

1—(1+p1)x )2+( 1-(1+p2)y )2
(n1 + 1)+ p1) (n2 + 1)1 + p2)

< Cr - K(f; Anpny (x, 1) + 09| f; (

+0 9| f; (

M; (@2 (f3 VAnaG 1) + A ) - )

1—(1+p1)x )2+( 1-(1+p2)y )2

(c) .
o f; ((n1 +1)(1 + p1) (n2 + 1)(1 + p2)

Hence, the proof is completed. [J
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