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Abstract. We give elementary proofs of three formulas involving Bell numbers, including a generalization
of the Gould-Quaintance formula and a generalization of Spivey’s formula. We find variants for two of
our formulas which involve some well-known sequences, among them the Fibonacci, Bernoulli and Euler
numbers.

1. Introduction

The n-th Bell number is given by

B(n) =

n∑
j=0

S(n, j), (1)

where S(n, j) denotes the Stirling number of the second kind which counts the partitions of an n-element
set having exactly j blocks. Then B(n) counts the total number of partitions of an n-element set (see, e.g.,
[14, p. 33]). The Bell numbers B(n) may be defined by Dobiński’s formula

B(n) = e−1
∞∑

m=0

nm

m!

(see [3]), or by the generating function

eex
−1 =

∞∑
n=0

B(n)
xn

n!

(see [4]). A recurrence for the sequence B(n) is given by

B(n + 1) =

n∑
j=0

(
n
j

)
B( j). (2)
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The inverse relation of (2) is

B(n) =

n∑
j=0

(
n
j

)
(−1)n+ jB( j + 1). (3)

In 2008, Spivey [13] proved the following generalized recurrence for Bell numbers

B (n + k) =

k∑
m=0

n∑
j=0

(
n
j

)
mn− jS (k,m) B

(
j
)
, (4)

which is called “Spivey’s formula” nowadays. When n = 0 in (4), this is reduced to the definition (1). When
k = 1 in (4), this is reduced to the recurrence (2). Besides the generalizations of Bell numbers and their
recurrences (see, e.g., [7] and [2, 8, 9]), we also have several generalizations of Spivey’s formula (4) (see,
e.g., [1, 5, 10, 12, 15]).

In this work, we give elementary proofs of the following three formulas involving Bell numbers: for
arbitrary non-negative integers n and k, we have

n∑
j=0

(
n
j

)
B(k + j) =

k∑
j=0

(
k
j

)
(−1)k+ jB(n + j + 1), (5)

n∑
j=0

(
n
j

)
a jbn− jB( j) =

k∑
j=0

(−1)k+ js(k, j)
n∑

l=0

(
n
l

)
al(b − ak)n−lB(l + j), (6)

n+k∑
j=0

(
n + k

j

)
an+k− jb jB

(
n + k − j

)
=

k∑
m=0

n∑
j=0

k∑
l=0

j∑
i=0

(
n
j

)(
k
l

)(
j
i

)
an+l+i− jbk+ j−l−imn− jS (l,m) B (i) . (7)

In (6), s
(
k, j

)
denotes the unsigned Stirling numbers of the first kind whose recurrence is given by

s(k + 1, j) = s(k, j − 1) + ks(k, j). In (6) and (7), a and b are arbitrary complex numbers.
Observe that the case a = 1, b = 0 of (7) is Spivey’s formula (4). More particular cases in (5), (6) and (7)

are discussed in the next section.

2. The Main Results

In this section, we prove formulas (5), (6) and (7).

Proposition 1. Formula (5) holds.

Proof. We proceed by induction on k. By (2), the result is true for k = 0. Suppose that the result is true for a
given k ∈N. Then

k+1∑
j=0

(
k + 1

j

)
(−1)k+1+ jB(n + j + 1)

=

k∑
j=0

(
k
j

)
(−1)k+1+ jB(n + j + 1) +

k+1∑
j=1

(
k

j − 1

)
(−1)k+1+ jB(n + j + 1)

=

k∑
j=0

(
k
j

)
(−1)k+1+ jB(n + j + 1) +

k∑
j=0

(
k
j

)
(−1)k+ jB(n + 1 + j + 1)
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= −

n∑
j=0

(
n
j

)
B(k + j) +

n+1∑
j=0

(
n + 1

j

)
B(k + j)

=

n+1∑
j=1

(
n

j − 1

)
B(k + j)

=

n∑
j=0

(
n
j

)
B(k + 1 + j),

as desired.

When n = 0 in (5), we obtain the inverse relation (3). Formula (5) can be written as the following
recurrence for Bell numbers:

B(k + n + 1) =

k−1∑
j=0

(
k
j

)
(−1)k+1+ jB(n + j + 1) +

n∑
j=0

(
n
j

)
B(k + j). (8)

For example, the Bell number B(8) can be expressed in terms of B(1), . . . ,B(7), by taking k,n such that
k + n = 7:

n k B(8) =

6 1 B(1) + 6B(2) + 15B(3) + 20B(4) + 15B(5) + 6B(6) + 2B(7)
5 2 B(2) + 5B(3) + 10B(4) + 10B(5) + 4B(6) + 3B(7)
4 3 B(3) + 4B(4) + 7B(5) + B(6) + 4B(7)
3 4 7B(5) − 3B(6) + 5B(7)
2 5 B(3) − 5B(4) + 11B(5) − 8B(6) + 6B(7)
1 6 −B(2) + 6B(3) − 15B(4) + 20B(5) − 14B(6) + 7B(7)

Proposition 2. Formula (6) holds.

Proof. The proof is done by induction on k. If k = 0, formula (6) is trivial. If k = 1, then the result holds as

n∑
j=0

(
n
j

)
a jB( j + 1)

n− j∑
i=0

(
n − j

i

)
(−a)n− j−ibi

=

n∑
j=0

n− j∑
i=0

(
n
i

)(
n − i

n − i − j

)
(−1)n−i− jan−ibiB( j + 1)

=

n∑
i=0

(
n
i

)
an−ibi

n−i∑
j=0

(
n − i

j

)
(−1)n−i− jB( j + 1)

=

n∑
i=0

(
n
i

)
an−ibiB(n − i),

where we have used relation (3) in the last equality. Suppose formula (6) is true in the k-case for some k ≥ 1.
Then

k+1∑
j=0

(−1)k+1+ js(k + 1, j)
n∑

l=0

(
n
l

)
al
(
b − a(k + 1)

)n−l
B(l + j)
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=

k+1∑
j=0

(−1)k+1+ j
(
s(k, j − 1) + ks(k, j)

) n∑
l=0

(
n
l

)
al(b − a − ak)n−lB(l + j)

=

k∑
j=0

(−1)k+ js(k, j)
n∑

l=0

(
n
l

)
al(b − a − ak)n−lB(l + j + 1)

− k
n∑

j=0

(
n
j

)
a j(b − a)n− jB( j). (9)

Now observe that

k∑
j=0

(−1)k+ js(k, j)
n∑

l=0

(
n
l

)
al(b − a − ak)n−lB(l + j + 1)

=

k∑
j=0

(−1)k+ js(k, j)
n+1∑
l=0

(
(
n + 1

l

)
−

(
n
l

)
)al−1(b − a − ak)n+1−lB(l + j)

= a−1
n+1∑
j=0

(
n + 1

j

)
a j(b − a)n+1− jB( j) − a−1(b − a − ak)

n∑
j=0

(
n
j

)
a j(b − a)n− jB( j)

= a−1
n+1∑
j=0

(
n + 1

j

)
a j(b − a)n+1− jB( j) − a−1

n∑
j=0

(
n
j

)
a j(b − a)n+1− jB( j)

+ k
n∑

j=0

(
n
j

)
a j(b − a)n− jB( j).

Thus, from (9), we have

k+1∑
j=0

(−1)k+1+ js(k + 1, j)
n∑

l=0

(
n
l

)
al
(
b − a(k + 1)

)n−l
B(l + j)

= a−1
n+1∑
j=0

(
n + 1

j

)
a j(b − a)n+1− jB( j) − a−1

n∑
j=0

(
n
j

)
a j(b − a)n+1− jB( j)

= a−1
n+1∑
j=1

(
n

j − 1

)
a j(b − a)n+1− jB( j)

=

n∑
j=0

(
n
j

)
a j(b − a)n− jB( j + 1)

=

n∑
j=0

(
n
j

)
a jbn− jB( j).

as desired. Note that in the last step, we have used the k = 1 case of (6).

When a , 0 and b = 0, (6) is

B(n) =

k∑
j=0

(−1)k+ js(k, j)
n∑

l=0

(
n
l

)
(−k)n−lB(l + j). (10)
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This is the so-called “Gould-Quaintance Formula” in [5, (7)]. When a = 0 and b , 0 or n = 0 in (6), we have
the identity

k∑
j=0

(−1)k+ js(k, j)B( j) = 1,

which is also derived from (1) by using the orthogonality of the two type of Stirling numbers. When a = 1
and b = k in (6), we have the formula

n∑
j=0

(
n
j

)
kn− jB( j) =

k∑
j=0

(−1)k+ js(k, j)B(n + j), (11)

contained also in [5, (6)]. When k = 1 in (6), we also have

n∑
j=0

(
n
j

)
a jbn− jB( j) =

n∑
j=0

(
n
j

)
a j(b − a)n− jB( j + 1), (12)

which contains the recurrence (2) with a = b = 1 and the inverse relation (3) with a = 1 and b = 0 as
particular cases.

If a , 0, from (6), we obtain the recurrence

B(n + k + 1) =

n+k∑
j=0

(n + 1
j

)
zn+1− j

−

k∑
t=0

(−1)k+ts(k, t)
(
n + 1
j − t

)
(z − k)n+1− j+t

 B( j), (13)

where z = a−1b is an arbitrary complex number and n and k are arbitrary integers with n ≥ 0 and k > 0. The
case z = k of (13) is essentially the same as (11).

Formula (13) gives us the Bell number B(n + k + 1) written as a linear combination (with polynomial
coefficients) of the previous Bell numbers B(0),B(1), . . . ,B(n + k): each coefficient is a polynomial in z of
degree ≤ n + 1. For example, B(6) can be written as a linear combination of B(0),B(1), . . . ,B(5), in 5 different
ways, corresponding to (n, k) = (0, 5), (1, 4), (2, 3), (3, 2), (4, 1). In the simplest case where n = 0 and k = 5, we
have the following family of recurrence formulas for B(6):

B(6) = zB(0) + (−24z + 121)B(1) + (50z − 274)B(2)
+ (−35z + 225)B(3) + (10z − 85)B(4) + (−z + 15)B(5).

Proposition 3. Formula (7) holds.

Proof. Both sides of (7) are (n + k)-th degree polynomials in the variable b. We shall prove that the values of
these polynomials are equal when b is a non-negative integer, implying that the polynomials are equal. We
proceed by induction on b. When b = 0, formula (7) is exactly the same as Spivey’s formula (4). Suppose
that the result is valid for b ∈N. Then we have

n+k∑
j=0

(
n + k

j

)
a j (b + 1)n+k− j B

(
j
)

=

(
b + 1

b

)n+k n+k∑
j=0

(
n + k

j

) (
ab

b + 1

) j

bn+k− jB
(
j
)

=

(
b + 1

b

)n+k k∑
m=0

n∑
j=0

k∑
l=0

j∑
i=0

(
n
j

)(
k
l

)(
j
i

) (
ab

b + 1

)n+l+i− j

bk+ j−l−imn− jS (l,m) B (i)
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=

k∑
m=0

n∑
j=0

k∑
l=0

j∑
i=0

(
n
j

)(
k
l

)(
j
i

)
an+l+i− j (b + 1)k+ j−l−i mn− jS (l,m) B (i) ,

as desired.

When n = 0, (7) is
k∑

j=0

(
k
j

)
a jbk− jB

(
j
)

=

k∑
m=0

k∑
l=0

(
k
l

)
albk−lS (l,m) . (14)

When a = 1 and b = 0, (14) is reduced to the definition (1). In addition, by using the relation∑k
l=0

(k
l
)
S (l,m) = S (k + 1,m + 1), we see that (14) becomes B (k + 1) =

∑k
m=0 S (k + 1,m + 1) when a = b = 1,

which is essentially the definition (1). When k = 1, (7) becomes

n+1∑
j=0

(
n + 1

j

)
a jbn+1− jB

(
j
)

=

n∑
i=0

(
n
i

)
aibn+1−iB (i) +

n∑
j=0

j∑
i=0

(
n
j

)(
j
i

)
an+1+i− jb j−iB (i) . (15)

When a = 1 and b = 0, (15) is the recurrence (2), and when a = b = 1, it becomes the recurrence

B (n + 2) = B (n + 1) +

n∑
j=0

(
n
j

)
B
(
j + 1

)
. (16)

Formula (7) can be written as the following generalized recurrence for Bell numbers:

B (n + k) =

k∑
m=0

k∑
l=m

n∑
i=0

n∑
j=i

(
n
j

)(
k
l

)(
j
i

)
zk+ j−l−imn− jS (l,m) B (i) −

n+k−1∑
j=0

(
n + k

j

)
zn+k− jB

(
j
)
, (17)

where z = a−1b is an arbitrary complex number. Moreover, some elementary algebra gives us the following
more interesting form for (17):

B (n + k) =

n∑
j=0

(
n
j

)
Pk, j (z) B

(
j
)

+ zk
n+k−1∑

j=0

((
n
j

)
−

(
n + k

j

))
zn− jB

(
j
)
, k ≥ 1, (18)

where the polynomial Pk, j (z) is given by

Pk, j (z) =

k∑
m=1

k∑
l=m

(
k
l

)
S (l,m) zk−l (z + m)n− j . (19)

When z = 0, (18) is reduced to Spivey’s formula (4). Furthermore, if k = 1, we have P1, j (z) = (z + 1)n− j,
so (18) becomes

B (n + 1) =

n∑
j=0

(
n
j

)
(z + 1)n− j B

(
j
)
−

n−1∑
j=0

(
n
j

)
zn− jB

(
j + 1

)
, (20)

which contains the recurrence (2) if z = 0, and the inverse relation (3) if z = −1. When k = 2, formula (18)
looks as follows:

B (n + 2) =

n∑
j=0

(
n
j

) (
(2z + 1) (z + 1)n− j + (z + 2)n− j

)
B
(
j
)

+ z2
n+1∑
j=0

((
n
j

)
−

(
n + 2

j

))
zn− jB

(
j
)
. (21)

If we set z = −1 in (21), the recurrence can be written as follows:

B (n + 2) = (n + 3)B(n + 1) −
(
n + 2

2

)
B (n) +

n−1∑
j=0

((
n
j

)
−

(
n + 2

j

))
(−1)n− jB

(
j
)
.
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3. Some Additional Identities

In this section, we shall consider the Fibonacci sequence Fn, defined recursively by Fn+2 = Fn+1 + Fn
(n ≥ 0) with F0 = 0 and F1 = 1, and the Lucas sequence Ln, defined by Ln+2 = Ln+1 + Ln (n ≥ 0) with L0 = 2
and L1 = 1. Recall that Fn = 1

√
5
(αn
− βn) and Ln = αn + βn, where α = 1

2 (1 +
√

5), β = 1
2 (1 −

√
5).

Formula (6) can be seen as an identity of two n-th degree polynomials in the variable b, namely,

n∑
j=0

c j(n, a)bn− j =

n∑
l=0

l∑
i=0

dl,i(n, k, a)bi, (22)

where c j(n, a) =
(n

j
)
a jB( j) and dl,i(n, k, a) =

(n
l
)(l

i
)
(−k)l−ian−i ∑k

j=0(−1)k+ js(k, j)B(n − l + j). If we set b = α in (22),
by using the known identity αn = αFn + Fn−1 (see [6, Lemma 5.1, p. 78]), we get

n∑
j=0

c j(n, a)(αFn− j + Fn− j−1) =

n∑
l=0

l∑
i=0

dl,i(n, k, a)(αFi + Fi−1). (23)

Both sides of (23) are of the form A
√

5 + B, where A and B are integers. By equating the coefficients of
√

5 in both sides of (23), we get

n∑
j=0

c j(n, a)Fn− j =

n∑
l=0

l∑
i=0

dl,i(n, k, a)Fi, (24)

and by equating the other (independent) coefficients of (23), we get

n∑
j=0

c j(n, a)(Fn− j + 2Fn− j−1) =

n∑
l=0

l∑
i=0

dl,i(n, k, a)(Fi + 2Fi−1). (25)

Since Ft + 2Ft−1 = Ft+1 + Ft−1 = Lt (see, e.g., [6, Formula 5.14, p. 80]), we can write (25) as

n∑
j=0

c j(n, a)Ln− j =

n∑
l=0

l∑
i=0

dl,i(n, k, a)Li. (26)

Thus, by substituting the powers bn− j on the left-hand side and bi on the right-hand side in formula (22),
by Fn− j (or Ln− j) and Fi (or Li), respectively, we can obtain the identity (24) (or the identity (26)), respectively.

Formula (22) is still useful, by using [11, Theorem 1], we obtain

n∑
j=0

c j(n, a)Bn− j(b) =

n∑
l=0

l∑
i=0

dl,i(n, k, a)Bi(b), (27)

where Bn(b) is the n-Bernoulli b-polynomial. By setting b = 0 in (27), we obtain the following identity
involving Bernoulli numbers B∗:

n∑
j=0

c j(n, a)Bn− j =

n∑
l=0

l∑
i=0

dl,i(n, k, a)Bi. (28)

By using some known relations between Bernoulli polynomials Bn (x) and Euler polynomials En (x),
including En(x) = 2n+1

n+1

(
Bn+1

(
x+1

2

)
− Bn+1

(
x
2

))
, together with [11, Theorem 1], we can see that the identity

(27) is also valid for Euler polynomials:

n∑
j=0

c j(n, a)En− j(b) =

n∑
l=0

l∑
i=0

dl,i(n, k, a)Ei(b). (29)
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By setting b = 1
2 in (29), as En = 2nEn

(
1
2

)
, we obtain the following identity involving Euler numbers E∗.

n∑
j=0

c j(n, a)2−(n− j)En− j =

n∑
l=0

l∑
i=0

dl,i(n, k, a)2−iEi. (30)

In fact, (30) can be simplified. Set b = 2b1 in (22). Then, similarly to (29), using the argument above, we
obtain an identity involving Euler polynomials,

n∑
j=0

c j(n, a)2n− jEn− j(b1) =

n∑
l=0

l∑
i=0

dl,i(n, k, a)2iEi(b1),

and setting b1 = 1
2 , we obtain

n∑
j=0

c j(n, a)En− j =

n∑
l=0

l∑
i=0

dl,i(n, k, a)Ei. (31)

4. More Variations

In the previous section, by replacing the powers br by Fr, Lr,Br or Er in the polynomial identity (22), we
obtain new identities. Moreover, the corresponding identities (24), (26), (28) and (31) are, in turn, identities
between two a-polynomials, so we can use the same ideas to obtain identities replacing the powers at by Ft,
Lt, Bt or Et.

Including the constant sequence 1, 1, . . . , we can have 25 identities of the form

n∑
j=0

(
n
j

)
X jYn− jB( j) =

k∑
j=0

n∑
l=0

l∑
i=0

(
n
l

)(
l
i

)
(−1)k+ js(k, j)(−k)l−iXn−iYiB(n − l + j).

That is, both X∗ and Y∗ can be any of the 5 sequences of numbers: constant 1, Fibonacci F∗, Lucas L∗,
Bernoulli B∗ and Euler E∗. All of these identities involve the Stirling numbers of the first kind and the Bell
numbers, and all of them have some “Gould-Quaintance formula flavor”.

The previous discussion can be also applied to formula (7). We have 25 identities of the form

n+k∑
j=0

(
n + k

j

)
X jYn+k− jB

(
j
)

=

k∑
m=0

n∑
j=0

k∑
l=0

j∑
i=0

(
n
j

)(
k
l

)(
j
i

)
mn− jXn+l+i− jYk+ j−l−iS (l,m) B (i) ,

where both X∗ and Y∗ can be any of the 5 sequences of numbers: constant 1, Fibonacci F∗, Lucas L∗, Bernoulli
B∗, Euler E∗. All these identities involve the Stirling numbers of the second kind and the Bell numbers, and
all of them have some “Spivey’s formula flavor”.

Finally, we mention that if we set simultaneously a = α and b = β in (6), it is possible to obtain two new
identities:

n∑
j=0

(
n
j

)
(−1) j F2 jB( j) =

k∑
j=0

n∑
l=0

l∑
i=0

(
n
l

)(
l
i

)
(−1)n+l+k+ js(k, j)kl−iF2(n−i)B(n − l + j),

and
n∑

j=0

(
n
j

)
(−1) j L2 jB( j) =

k∑
j=0

n∑
l=0

l∑
i=0

(
n
l

)(
l
i

)
(−1)n+l+k+ js(k, j)kl−iL2(n−i)B(n − l + j).
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Similarly, from (7) one can obtain the following identities:

n+k∑
j=0

(
n + k

j

)
(−1) jF2 jB

(
j
)

=

k∑
m=0

n∑
j=0

k∑
l=0

j∑
i=0

(
n
j

)(
k
l

)(
j
i

)
(−1)n+l+i+ jmn− jF2(n+l+i− j)S (l,m) B (i)

and
n+k∑
j=0

(
n + k

j

)
(−1) jL2 jB

(
j
)

=

k∑
m=0

n∑
j=0

k∑
l=0

j∑
i=0

(
n
j

)(
k
l

)(
j
i

)
(−1)n+l+i+ jmn− jL2(n+l+i− j)S (l,m) B (i) .
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