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Einstein Statistical Warped Product Manifolds

Hiilya Aytimur®, Cihan Ozgiir®

?Balikesir University, Department of Mathematics, 10145, Balikesir, TURKEY

Abstract. We consider Einstein statistical warped product manifolds I x #N, M X N and M Xy I, where I,
M and N are 1, m and n dimensional statistical manifolds, respectively.

1. Introduction and Preliminaries

A Riemannian manifold (M, g), (n > 2), is said to be an Einstein manifold if its Ricci tensor S satisfies the
condition

S=Ag, )

where A = * and 7 denotes the scalar curvature of M. It is well-known that if n > 2, then A is a constant.
Let V be an affine connection on a Riemannian manifold (M, g). An affine connection V* is said to be dual
or conjugate of V with respect to the metric g if

Xg(Y,2) = g(VxY,Z) + g (Y, VyZ). )

Given an affine connection V on a Riemannian manifold (3, g), there exists a unique affine connection dual
of V, denoted by V*. So a pair of (V, V*) is called a dualistic structure on M (see [1], [11]).
If V is a torsion-free affine connection and for all X,Y,Z € TM

Vxg(Y,Z) = Vyg (X, Z)

then, (M, g, V) is called a statistical manifold, in this case a pair of (V, g) is called a statistical structure on M [1].
Denote by R and R* the curvature tensor fields of V and V*, respectively.
A statistical structure (V, g) is said to be of constant curvature c € R (see [2], [7]) if

RX,Y)Z=clg(¥,2)X-g(X,2)Y}. 3)
The curvature tensor fields R and R* satisfy

gR X, V) ZW) = -g(ZR(X, V)W), (4)
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(see [4]).

Let V? be the Levi-Civita connection of g. Certainly, a pair (VO, g) is a statistical structure, which is called
Riemannian statistical structure or a trivial statistical structure (also see [4]).

An n-dimensional, (n > 2), statistical manifold (M, g, V) is called an Einstein statistical manifold if the
scalar curvature 7 is a constant and the equation (1) is fulfilled on M ([6]).

3

Example 1.1. [8] Let (1R3, g) be a statistical manifold with Riemannian metric g = ), de;de; and V an affine connection
i=1

defined by

b
Vee1 =bei, Ve,e0 = ze1, Ve,e3 =

7 =€1,

2
b b
Veer = Ve = 62 Ve ez = Ve = 563 Ve, = Vee3 =0,

where {eq, e, e3} is an orthonormal frame field and b is a constant. Then, (]R3, g) is a statistical manifold of constant

curvature ¢ = Z—z > 0 and it is an Einstein statistical manifold with A = %

In [10], Todjihounde defined dualistic structures on warped product manifolds. It is known that
(M,V, gm) and (N, v, gN) are statistical manifolds if and only if (B =MX¢N,D, g) is a statistical manifold
(see [10] and [3]). In [5], A. Gebarowski studied Einstein warped product manifolds. He considered
Einstein warped products I X¢ F, dimI = 1, dimF = n—1 (n > 3), B X7 F of a complete connected r-
dimensional (1 < r < n) Riemannian manifold B and (1 — r)-dimensional Riemannian manifold F and B X [
of a complete connected (n — 1)-dimensional Riemannian manifold B and one-dimensional Riemannian
manifold I. Motivated by the studies [5] and [10], in the present study, we consider Einstein statistical
warped product manifolds.

2. Dualistic Structures on Warped Product Manifolds

Let (M, gp) and (N, gn) be two Riemannian manifolds of dimension m and n, respectively and f € C* (M)
be a positive function on M. The warped product of (M, gu) and (N, gn) (see [9]) with warping function f
is the (m X n)-dimensional manifold M X N endowed with the metric g given by:

g=:7"gm + (f o M)*0"gn, (5)

where " and ¢* are the pull-backs of the projections 7 and ¢ of M X N on M and N, respectively. The
tangent space T(p, 9 (M x N) at a point (p,q) € M X N is isomorphic to the direct sum T,M ® T;N. Let LyM

(resp. LyN) be the set of all vector fields on M X N, each of which is the horizontal lift (resp. the vertical lift)
of a vector field on M (resp. on N). We have:

T(MXN)=LgM@LyN;
and thus a vector field A on M X N can be written as
A=X+U withXelLyMand U € LyN.
Obviously,
7. (LyM) = TM and 0. (LyN) = TN.

For any vector field X € LyM, we denote 7, (X) by X, and for any vector field U € LyN, we denote by o. (U)
by U [9].
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Let(V, V), (5, 5) and (D, D*) be dualistic structures on M, N, and MXN, respectively. Forany X, Y € LyM
and U, V € LyN we put [10]

m. (DxY) = VxY, and 7, (DyY) = VLY,
and
0.(DuV) = V3V, and o, (D}, V) = Vi.V.

Given fields X, Y € LyM and U,V € LyN then:

1. DxY = VY,
. DxlU =DyX =2,
. DyV = —Mgmdf + Fﬁap\;,

* _ * — Xf
. DyU =DyX = 7,

2
3
4. DyY = VY,
5
6 grad f + 55\7,

[iCAY)
f

where we use the notation by writing f for f o w and grad f for grad (f o ) and denote by g the inner
product with respect to M X N. Obviously, D and D’ define dual affine connections on T (M x N) [10].

The Hessian function Hé of f with respect to connection D is a (0, 2)-tensor field such that

. D,V =-

HL(X,Y) = XY(f) - (DxY)f. (6)

Let M be an n-dimensional Riemannian manifold, D an affine connection, {e1, e, ..., ¢,} an orthonormal
frame field. Then the Laplacian AP f of a function f with respect to connection D is defined by

n

APf = div(grad f) = ) g (Degrad f,e). 7)

i=1

Let MR,N R and R be the Riemannian curvature operators w.r.t. V,V and D respectively. Then Todji-
hounde [10] gave the following lemma:

Lemma 2.1. Let (gm, V, V*) and (gN,FVV, FVV) be dualistic structures on M and N, respectively, B = M Xy N a warped
product with curvature tensor R. For X,Y,Z € LyM and U, V, W € LyN,

(R(X,Y)Z=MR(X,Y)Z),

(ii) R(V,Y) Z = =XHL(Y, Z)V,

(iii) R(X,Y)V=R(V, W)X =0,

(i) R(X, V)W = =29 (V,W) Dx (grad f),

(0 RV, W)U = ("R, WD) + % grad £][" (¢ (VL)W — g (W) V).

For the calculations of the Ricci tensors of the warped product B = M X f N, by a similar way of [9], we
can state the following lemma:

Lemma 2.2. Let (gp,V, V*) and (gN,g, %) be dualistic structures on M and N, respectively, B = M X N a warped
product with Ricci tensor BS. Given fields X,Y € LyM and U,V € LyN, then

D BS(X,Y) =M S(X,Y) - ;Hg (X,Y), where d = dim N,

(i) BS (X, V) = 0, .

(i) BS (U, V) =N S (U, V) - g (U, V) [ATf i Lt g ).
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3. Einstein Warped Products in Statistical Manifolds

In this section, we consider Einstein statistical warped product manifolds and prove some results
concerning these type manifolds.
Now, let (g, D, D*) be a dualistic structure on M X rN. So we can state the following theorems:

Theorem 3.1. Let (B =1 Xy N, D, D", g) be a statistical warped product with a 1-dimensional statistical manifold I
with trivial statistical structure and an (n — 1)-dimensional statistical manifold N.

i) If (B, g) is an Einstein statistical manifold, then N is an Einstein statistical manifold with scalar curvature
™ = —(n—1)(n—2)a?, f(t) = cosh(at + b) and a, b are real constants.

ii) Conversely, if N is an Einstein statistical manifold with scalar curvature T = —(n—1) (n — 2)a?, f(t) =
cosh(at+b) and a, b are real constants, then B is an Einstein statistical manifold with scalar curvature T = —n(n—1)a>.

Proof. Denote by (dt)z, the metric on I. Making use of Lemma 2.2, we can write

J a n-1[. P
'S5 5) =5 [f ‘fg(%@)]-

Since I is a 1-dimensional statistical manifold with trivial statistical structure, we have

Jd d

So the above equation reduces to

Jd d n-1_,
BS(EIE):_ f f . (9)

On the other hand, for U,V € LyN

Bsu,v)=Nsuv)

) (f” +f9(Ds% %) £
f

Then using (8) and the definition of warped product metric (5), we get

BSUV)=NSW V) - [ff +(n-2)f?| gy WL V). (10)

Since B is an Einstein statistical manifold, from (1), we have
d d Jd d
Be[2 9 _ g 9
S(at’ at) Agl(at’ at) (1)

'S V) = Afn (U, V). (12)

and

If we consider (11) and (9) together, then we find

n-1
f

Hence from (1), A is a constant.

A=-—

7. (13)
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Using (12) and (13) in (10) we obtain
NSUV)=(m-2)[-ff + ] on U V).

If —f”f + f* is a constant, then N is an Einstein statistical manifold. Since A is a constant, fT is also a

constant. Since f > 0, we get f(t) = cosh(at + b), where a and b are real constants. In this case, N is an
Einstein statistical manifold with scalar curvature ™ = — (n — 1) (n — 2)a?.

Conversely, assume that N is an Einstein statistical manifold with scalar curvature ™ = — (n — 1) (n—2)a?,
f(t) = cosh(at + b) and a4, b are real constants. Then

NG = —(n- 2)a2gN.

From Lemma 2.2 (iii), (i) and the definition of warped product metric (5), we have

BSU, V) = —(n-1)a*g(U,V) (14)
and

B Jd d — _(y — 2 ii

S(EIE)— (n—"1)a 9(at,at)- (15)

So B is an Einstein statistical manifold with scalar curvature t® = —n(n — 1)a?.
Hence we get the result as required. [

From Lemma 2.1, it can be easily seen that if (M, V, V*, gp1) and (N, FVV, FVV*, gN) are statistical manifolds of
constant curvatures ¢ and ¢, respectively,

Hg(X’ Y) = _Cfg(Xr Y)r DX (gmd f) = _CfX

and % ||gmd f ” is a constant, then (B =MXx¢N,D,D", g) is also a statistical manifold of constant curvature

¢, wherec =¢— %2 ”gmd sz

Theorem 3.2. Let (B =MX;N,D,Dr, g) be a statistical warped product of an r-dimensional (1 < r < n) statistical
manifold (M, V,V*, gm) and (n — r)-dimensional statistical manifold (N, AR gN) . Assume that (B, g) is a statistical
manifold of constant curvature c. Then

i) N is Einstein if cf? + ||gmd f”2 is a constant.

ii) M is Einstein if Agy (X, Y) = Hé (X,Y), where A is a differentiable function on M and % is a constant.
Proof. Assume that B is a statistical manifold of constant curvature c. So B is an Einstein statistical manifold
with scalar curvature 78 = 1 (n — 1) c. From (3), we can write

JgREWV,Y) = clgU,V)g(X,YV)-g(X,V)g(U,Y)} (16)
cg(U,V)g(X,Y),

where X,Y € LyM, U,V € LyN.
Since M Xy N is a warped product, then from Lemma 2.2 (iv), we have

gRXWVY)= —chg(ll, V)g (Dxgrad f,Y) 17)

for X,Y € LyM, U,V € LyN. If we choose a local orthonormal frame ej, ..., e, such that ey, ..., ¢, are tangent to
M and é,,4, ..., e, are tangent to N, in view of (16) and (17), then

Z g(R (ej,es) es,ej) = Z cg (es,es)g<ej,e]~) = —]lc Z gles, es)g (De/.gmd 1, ej).

1<j<r, r+1<s<n 1<j<r, r+1<s<n 1<j<r, r+1<s<n
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So we find

A
-

From Lemma 2.2 (iii), using (18), we get

cr. (18)

NSWV) = (== 1)(cf* + grad £ ) o U ),

. . . .. 2,
which means that N is Einstein if c¢f* + “ gradf “ is a constant.

Now assume that the Hessian of the affine connection D is proportional to the metric tensor gy, then
we can write

Agum (X, Y) = H (X, V), (19)

where A is a differentiable function on M. On the other hand, from Lemma 2.2 (i) and (19), we get
Mg(X,Y) = ((n e+ /\?) au(X,Y).

So M is Einstein if % is a constant.
This proves the theorem. [

Theorem 3.3. Let (B =MxsI,D,D, g) be a statistical warped product of an (n — 1)-dimensional statistical man-

ifold (M,V,V*, gm) and 1-dimensional statistical manifold 1. Assume that Agy (X, Y) = Hg (X,Y), where A is a
differentiable function on M.
i) If (B, g) is an Einstein statistical manifold, then (M, gyr) is an Einstein statistical manifold with scalar curvature

™=m-1) % - % , when % is a constant.

ii) Conversely, if (M, gm) is an Einstein statistical manifold when % is a constant, then (B, g) is an Einstein

APf

D
B= —nATf, when = is a constant.

statistical manifold with scalar curvature t

Proof. Since (B, g) is an Einstein statistical manifold, from Lemma 2.2 (i) and (iii), we have

’ n 4 f D\
and
B d o — f — 21

respectively. Since the Hessian of the affine connection D is proportional to the metric tensor gy, then using
(20) and (19), we have

Mg (X, Y) = (Tn—B + %)gM (X, Y). (22)

Since (B, g) is an Einstein statistical manifold, from (1), we get

7B AP
— = ——— = constant,
n
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where the scalar curvature 72 is a constant. Substituting the last equation in (22) we obtain
A APf
M
S(X/Y) = (_ - _) M(X/Y)
PV

APf

Since =~ is a constant, (M, gm) is an Einstein statistical manifold, if jA—( is also a constant.

Conversely, if (M, gu) is an Einstein statistical manifold with scalar curvature ™ = (n-1) (% - %),

when % is a constant, then

D
MS(X,Y):(%—ATJC)gM(X,Y).

So using Lemma 2.2 (i) and (iii), we have

and

AD
BS(XY) = —Tg(X, Y)

pg(9 9\__A% (9 2
arat) = F I\ ar)

APf APf

Hence (B, g) is an Einstein statistical manifold with scalar curvature 7% = —n 5 if 5 is a constant.
This proves the theorem. [
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