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Abstract. In this paper, we are concerned with the eigenvalue inclusion sets for tensors. Some new S-type
eigenvalue localization sets for tensors are employed by dividing N = {1, 2, ..., n} into disjoint subsets S and
its complement. Our new sets, are proved to be tighter than that newly derived by Huang et al. (J. Inequal.
Appl. 2016 (2016) 254). As applications, we can apply the proposed sets for determining the positive
(semi-)definiteness of even-order symmetric tensors. Some examples are given to show the sharpness of
our new sets in contrast with the known ones, and verify the effectiveness of those in identifying the positive
(semi-)definiteness of tensors.

1. Introduction

Let R(C) be the real (complex) field. For a positive integer 1, N denotes the set {1,2,...,n}. An m-order
n-dimensional tensor A consists of n™ entries, which is defined as follows:

A = airiy..i)r Biriy.iy € R(C), 1 <y, 00,000, 0y S 1

A is called nonnegative (positive) if a;_;, > 0 (a;,;, > 0). As usually, we denote the set of all m-order n-
dimensional real (complex) tensors by RI™ (CI"1). Moreover, a real tensor A = (a;, _;,) is called symmetric
[1-6] if

Aiy.ivy = An(iy..in), VT E I,

where I1,, is the permutation group of m indices. And a tensor of m-order n-dimension I = (6;,.;,) is called
the unit tensor [7], where

5 1, ifij=---=1i,,
1m0, otherwise.
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Let A € R™ and x = (x1,...,x,)" be an n-dimensional vector, real or complex, where xT denotes the
transpose of x. We define the n-dimensional vector

n

m=1 _ Z Ly ey
ﬂx - ( a”Z-nlmle xlm)

; 1<i<n
12eeftm=

and x[m71 =yt =1, T

Qi [1] and Lim [8] independently introduced the following definition.
Definition 1.1. A pair (A, x) € C X (C"\{0}) is called an eigenpair of A if
Axt = Axlml,
In particular, we call (A, x) an H-eigenpair if they are both real.

The eigenvalue problems of tensors have a wide range of practical applications such as automatical
control [9], spectral hypergraph theory [10, 11], magnetic resonance imaging [12], high order Markov
chains [13], best rank-one approximations in statistical data analysis [14] and so on.

For an m-degree homogeneous polynomial of n variables f(x) denoted as

fR =Y @i %, M)

where x = (x1,...,x,)T € R". When m is even, f(x) is called positive definite if
f(x) >0, forany x e R", x # 0.

The homogeneous polynomial f(x) in (1) is equivalent to the tensor product of an m-order n-dimensional
symmetric tensor A and x™ defined by

fE=A" = Y @i,

where x = (x1,...,x,)T € R". The positive definiteness of multivariate polynomial f(x) plays an important
role in the stability study of nonlinear autonomous systems via Lyapunov’s direct method in automatic con-
trol, such as the multivariate network realizability theory [15], a test for Lyapunov stability in multivariate
filters [16], and the output feedback stabilization problems [17].

One of many practical applications of eigenvalues of tensors is that one can identify the positive
(semi-)definiteness for an even-order real symmetric tensor by using the smallest H-eigenvalue of a tensor,
consequently, can identify the positive (semi-)definiteness of the homogeneous polynomial f(x) determined
by this tensor, for details, see [1, 6, 7].

However, as mentioned in [4, 7, 18], it is not easy to compute the smallest H-eigenvalue of tensors when
the order and dimension are very large. It is noteworthy that it is difficult to determine a given even-order
multivariate polynomial f(x) is positive semi-definite or not because the problem is NP-hard when n > 3
and m > 4 [19]. With this in mind, we shall try to derive a set including all eigenvalues in the complex. In
particular, if one of these sets for an even-order real symmetric tensor is in the right-half complex plane,
then we can conclude that the smallest H-eigenvalue is positive, consequently, the corresponding tensor is
positive definite.

For convenience’s sake, throughout this paper, for A = (a;,_;,) € Cclmnl g j € N, j #iand a nonempty
proper subset S of N, we denote

AN ={(ia, i3, ...,in) : eachij € N for j =2,3,...,m},

AS = {(ia, i3, ..., im) : each i € S for j = 2,3,...,m}, AS = AN\AS
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and

ri(A) = Z |ii,...i, |, T{(ﬂ) = Z laiiy...i,| = 7i(A) = laij._j1,

Oiiy...im =0 Oiiy..im =0,
Ojiy...im=0
Vl]-/As(ﬂ) = Z laii,..i,,| — laij..jl, ffﬁ(ﬂ) = Z liiy..i,,| = laij...jl-
(iz,‘...,im)EAS, (iZ/--vinl)EE/
bziz...im:O iy i =0

Up till now, many people have focused on locating eigenvalues of tensors and using obtained eigenvalue
inclusion theorems to determine the positive (semi-)definiteness of an even-order real symmetric tensor
or to derive the lower and upper bounds for the spectral radius of nonnegative tensors and the minimum
H-eigenvalue of M-tensors. For details, see [1, 3-7, 18, 20-22]. In this paper, we will continue the study
of this topic. Our results, which are related to the order of tensors and the nonempty proper subset of N,
improve the set given in [20] in the sense that the eigenvalue inclusion sets are sharper compared with that
in [20]. As applications of these new sets, we can utilize them to determine the positive (semi-)definiteness
of an even-order real symmetric tensor. Several numerical examples are implemented to illustrate these
facts.

In what follows are some existing results that relate to the eigenvalue inclusion sets for tensors are
reviewed. In 2005, Qi [1] generalized Gersgorin eigenvalue inclusion theorem from matrices to real su-
persymmetric tensors, which has been extended to general tensors by Yang and Yang [2]. To get sharper
eigenvalue inclusion sets, Li et al. [5] extended the Brauer’s eigenvalue localization set of matrices [23, 24]
and proposed the following Brauer-type eigenvalue localization set for tensors.

Lemma 1.2. [5] Let A = (a;,..;,) € C"", n > 2. Then

oA cKA) = | ] KA,

i,jeN, j#i
where o(A) is the set of all the eigenvalues of A, and
Kif(A) = {2 € C: (12 = ai.il = )Pz = aj. | < laiy ().

In addition, in order to reduce computations of determining the set K(A), Li et al. [5] also presented the
following S-type eigenvalue localization set by breaking N into disjoint subsets S and S, where S = N\S.

Lemma 1.3. [5] Let A = (a;,;,) € CI™™, n > 2, and S be a nonempty proper subset of N. Then
o(A) € K5(A) = [ U (Kz‘,j(ﬂ)] U[ U %,j<ﬂ>],
i€S,jes i€§, jeS
where K j(A) (i€ S,jeSori€§,jeS)isdefined as in Lemma 1.2.

To further improve the eigenvalue inclusion set in Lemma 1.3, Huang et al. [20] employed a new S-type
eigenvalue localization set for tensors as follows.

Lemma 1.4. [20] Let A = (a;, ;) € C"" with n > 2. And let S be a nonempty proper subset of N. Then

U Y |UJ| U i

i€S, jeS i€§, jes

o(A) C Y(A) =

7

where

Y1]:(52{) = {Z €C:|z—ai.i)(z—aj.;)—aj. ajiil <|lz— aj...j|75(~7{) + |ﬂz‘j...]‘|7;-(~7‘)}-
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Very recently, Zhao and Sang [21] gave a sharper eigenvalue inclusion set for tensors without considering
the selection of S compared with that in Lemma 1.4.

Lemma 1.5. [21] Let A = (a;, ;) € C"" with n > 2. Then
o(A) € A°(A) = | ﬂ Y)(A),

ieN jeN,j#i

where Y‘{ (A) is defined as in Lemma 1.4.

2. Some New S-type Eigenvalue Inclusion Sets for Tensors and Their Comparison Theorems

The main focus of this section is to study the eigenvalue inclusion sets for tensor A. Some new S-type
eigenvalue sets for tensors as well as the comparisons between the proposed sets with some existing ones
are established.

Theorem 2.1. Let A = (a;,_;,) € C"" with n > 2. And let S be a nonempty proper subset of N. Then
o(A) C EX(A) = { U af;j(ﬂ)} U [ U 8;3-(&20], (2)
ieS, jes i€5,jeS
where
Sfj(ﬂ) = {z eC: [l(z —a;.i)(z—a;.;) — aij.jaji.il — |z - aj“.jlrl];ﬁ(ﬂ) - |uij4..j|7’;,§(ﬂ)]
Nz —ai.i)z —aj._ ;) — aij._jaji.il < [IZ - a]ﬂ..]'lrl]-"Ag (A) + |aij...j|7’j-,A§ (ﬂ)]
: [|Z - ﬂi...il”j’(ﬂ) + |aji4..i|r,]-'(~7{)] },
& =z €T [Ie -0z - a1.) — i = 2= 0y () = lag. (D)
1z = a0z = aj.) = aijjaji.il < [l = alr! () + lai_jIr, o (A)]
[l = (A + laji bl ()] .
Proof. For any A € o(A), letx = (x1,..., x,)T € C"\{0} be an eigenvector corresponding to A, i.e.,
Ax1 = Axlm1, (©)

Let |x,| = m%x{lxil} and |x,| = max{|x;|}. We prove this theorem by distinguishing two cases as follows.
ic i€S

@) lxpl = |x41, s0 |2 = r%%x{lxil} and |x,| > 0. It follows from (3) that

n

R
E Apiy..inXiy * ** Xiy, = AXG,

. s e e e . = m_l
Z aqiz...zmxzz Xi,, = qu .

We can reformulate the above equations in (4) after straightforward derivations

_ m—1 m—1
Z Apiy iy Xiy *** Xiyy = (A = aP~-P)xp ~ Apg.qXg
5}11‘2...1',,,:0,
Ogiy..im=0 (4)
— m—1 m—1
Z aqiz...i,,,xiz s X, = (/\ - aq...q)xq - aqp...pxp
Ogiy...im=0,

Opiy...im=0
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Premultiplying by (A — a,.,) in the first equation of (4) results in

-1 -1
A=0gq) Y iy iy XX, = (A = g ) (A = @ )X~ =y g(A = 2y ™. (5)
Opiy...im=0
Ogiy..im=0
Combining (5) and the second equation of (4) derives
(A - aqq) Z apfz-uimxiz T xim + apqq Z ain---inzxiZ e xim
5Fi2...i,n:o, Ogiy...im=0,
bqiz...lm:() bpiz...xmzo
(6)

= [(A — llp__.p)(A - aﬂ]..,l]) - apq,__qaqp...p]x;;n_l'

It follows from (6) that
A —ay.q) Z Apiy..in Xiy * ** Xiy, + Apg..q Z Agiy..ingXiy * " Xiy,

Opiy...im=0. Ogiy...im=0,
iy .im=0 Opiy...im=0

= (A—ag.) Z Apis i Xip "+ Xiy, + Z Apis...in Xy ** Xiy
(i2,--rim)EAS,

(iz,...,im)€AS,
Ogiy...im=0

6;71'2 =0

+apg..q E Agiy...iXiy * ** Xiy, + E Agiy..igXiy * ** Xiy, | +
(ia-wsim)EAS,

(iz,...,i,,,)EAS,
Ogiy...im=0

piy...im=0

Taking absolute values and using the triangle inequality in the above equation yield

-1
(A - ap...p)(/\ - aq...q) - apq“.qqu“.p”xﬂm

< A= aq.“ql [rzlﬁ(ﬂ)lxplm_l + rZ,Ag (ﬂ)lqum_l] + |apq...q| [rzlﬁ(ﬂ)lxplm_l + rZ,Ag (ﬂ)lqum_l] ’

which can be rewritten as

[l(/\ - ap‘..p)(/\ - aq‘..q) - apq.‘.qaqp..ﬂ - M - aq...qqu 7(\‘}7{) - |apq...q|rp(ﬂ)] prlm_l
pAS q.6°

)

< [M - aq...qh’Z,Ag (A + |apq...q|r;Ag (ﬂ)] |xq|m_1~
If |x4| = 0. Note that |x,| > 0, then it follows from (7) that

(A - ap...p)(A - ﬂq.“q) - apq...qﬂqpi..p| —lz- aq...qqu T(ﬂ) - |apq...q|7pfs(ﬂ) <0.
pA 7.4

It is evident that z € & (A) ¢ U Sfj(?l) C &(A). Otherwise, |xy| > 0. Under this condition, by
ieS,je5
premultiplying by (A —aj, ;) in the second equation of (4), we obtain

(8)

-1 -1
(A - ap...p) Z Agiy..inXiy * ** Xy = (A - ap...p)(A - aq...q)x’qﬂ -(A- ap...p)aqp...px? .

Oyiy...im=0,
Opiy..im=0
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Multiplying the first equation of (4) with a4, , and adding it to (8) give

(A =ap.p) Z Agiy...inyXiy *** Xiyy + Agp.p Z Apiy..inyXiy *** Xy,

6p12...iyy,:()/ 6p12...iyy,:()/
Ogiy..im=0 Ogiy..im=0
-1
= [()L - ap..‘p)()L - aq‘..q) - apq‘..qaqp.‘.p]xg1 . )]

Taking absolute values and using the triangle inequality in (9) lead to
(A — ap...p)()\ - aq...q) - apq...qaqp...p||xq|m_1 <[r- ap...p|r5(ﬂ) + |aqp...p|7?;(ﬂ)]|xp|m_1- (10)

Since |x,| > |xy| > 0, we multiply (7) with (10) and derive

[m = g = ) = ) = A = g gl () |a,,q...q|r;’/As<ﬂ>]
A = YO = ) = Bt < [IA = gl () + gl ()
[ = @ ol () + lagy_plri ()]
which means that A € 82#(\?() < U _Sis,j(ﬂ) C E(A).
(i1) fxp| < Ix4l, sO || = rg%x{lxille}sgflsd x| > 0. By utilizing the similar method in (i), it holds that
0= 8000 = 8.5) = . = A = 17 () = gyl (Tt
e A G R | [ (1)
and
(A = Bp.p)A = 8g..q) = g qgp.p " < (A = ag_glF)(A) + lapg..qlrh ()]l (12)

If |x,| = O, then it follows from (11) that
P q
(A - aq...q)()L - ap...p) - ﬂqp...papq...q| o ap...p|7’q/E(ﬂ) - |aqp...p|7p/E(ﬂ) <0

by |x,| > 0. Obviously, A € &8 (A) € U Sfj(ﬂ) C E5(A). If |x,| > 0, then combining (11) and (12) leads to
i€5,jes

I:l(/\ _ aq...q)(A _ ﬂp...p) — aqupapqmql - |A - ﬂp,,.plrz,ﬁ(ﬂ) - |ﬂqp~~-p|rz,ﬁ(ﬂ)]
A —ag.9)(A = ap._p) — Agp..plipg..ql < [M - “Pmplrz,AS (A) + |”‘W~~p|TZ,As (ﬂ)]
[I = g g3 (A) + lapy._qglrh(A))].

This means that z € 8§,p(ﬂ) c U ij(ﬂ) C E5(A). This completes our proof of Theorem 2.1. []
i€5,jes

Next, we establish a comparison theorem for the new S-type eigenvalue inclusion set derived in Theorem
2.1 and those in Lemmas 1.2-1.4.

Theorem 2.2. Let A = (a;,_;,) € C!"" with n > 2 and S be a nonempty proper subset of N. Then
E°(A) C Y5 (A) C K°(A) € K(A).
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Proof. From Theorem 3.2 of [20], it can be seen that Y°(A) € K5(A) C K(A). Thus, we only need to prove
E5(A) C Y5(A). Let z € E5(A). Without loss of generality, we assume thatz € |J SI.Sj(ﬂ) (we can prove it
ieS,jeS
similarlyifze (J 81.5].(?()). Then there exist p € S and g € S such that z € 82,,1(?(), that is
ieS,jes

[|(Z = . p)Z = g..q) = Apgqgfgp. | = |2 = ag.glr" _(FA) ~ |“Pﬂ~~-ﬂ|rp;(ﬂ)]
pA AN

e = )2 = ) = O] < [ 2= el () + gl ()

1z = ap P (A) + lagp ol (A)],

thus
I(z - ap...p)(z - aq...q) - apq..iqaqp...pl —-lz— aq.__q|rq7§(ﬂ) - |apq...q|rpf5(ﬂ)
pA q.A
< Jz- ﬂq‘..qVZ, s (A + la’”q“'qu, (A (13)
or
(A = 8p.p)(A = g..q) = Bpg..qgp..pl < A = Byl (A) + lagy..p |} (A) (14)

hold. If Inequality (13) holds, then it has
Iz - ap...p)(z - aq...q) - apq...qﬂqp...pl
|z - aq...ql rZ,E(ﬂ) + erAS (ﬂ)) + |upq...q| (r’;,AS(ﬂ) + r:Ag (A

= |z- aq..,qlr;;(ﬂ) + |apq...q|r§(ﬂ)'

IA

This means that z € YZ(?() c U T{ (A) € Y5(A). In addition, if Inequality (14) holds, then it is evident
i€S,jeS

thatze Y/(A) € U YA C YS(A).
i€§,jeS
We summarize the above discussions and infer that E5(A) € Y5(A). This proof is completed. [

In the following theorem, another S-type eigenvalue localization set for tensors is established, which is
sharper than that in Theorem 2.1.

Theorem 2.3. Let A = (a;,_;,) € CI"™ withn > 2. And let S be a nonempty proper subset of N. Then
o(A) € WA = (W @A) | (WE (), (15)

where

7

W [ U Ww]u[ J (W el)

ieS, jes ieS, jes
WE () = [ U ‘Wijm)} U[ U (W) ®5<ﬂ>)]'
i€S,jesS i€S, jeS
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with
(Wil,]-(ﬂ) ={zeC : |z-ai.)(z—aj.;)—aij.jajii <|z- ﬂj.‘.j|f’iﬁ(~7{) + |aij.‘.j|7’j,,ﬁ(~7{)}/
WA =12 C ¢ &0z =a;)) = ay o < | = aj jlr () + bl (),
W},]-(ﬂ) = {Z eC : [l(Z —a;.i)(z —aj.j) — . jaji.il — |z — aj...j|7j/E(ﬂ) - |ﬂij...j|7’j,E(ﬂ)]
: [|(Z —aj.j)(z —ai.i) — aij._jaji.il — |z — ai...i|7'j-,A§ (A) - |11ji...i|7’f,Ag (ﬂ)]
<[ == a0+l (| |l = () + a0
(sz(ﬂ) = {Z eC : [l(z —a;.i)(z = aj_j) — aij._jaji.il — |z - aj...]’|7’j,§(ﬂ) - |aij..4j|rj./E(ﬂ)]
' [l(Z —aj. )z —ai.i)—aj ajiil—|z— ai...i|r§,As (A) - |aji...i|r{,As (ﬂ)]
< [lZ - ﬂj...j|rf/As (A + |ﬂij...j|7’;,As(ﬂ)] [IZ - ai...i|r;,E(~7{) + |aji...i|7’£E(~7{)] =,
65(?‘) ={zeC : |z-a.)(z—aj. ) —aj. ajii<l|z- ﬂj...j|7{(ﬂ) + |ﬂij...j|7§(ﬂ)}-
Proof. For any A € o(A), letx = (x1,..., x,)T € C"\{0} be an eigenvector corresponding to A, i.e.,
Ax™1 = A1,

Let |x,| = masx{lx,-l} and |x,| = max{|x;|}. There two situations stated as follows.
ie ieS

@) lxpl = |x41, s0 |xp| = nlg]x{lxil} and [x,| > 0. It follows from (16) that

Z Apiy...igXiy * * * Xiy, = (A= ap...p)x;;n_l - apqqugi—l’
Opiy..im=0,
Ogiy...im=0

Z Qgiy..iy Xy X,y = (A = g )Xy ™ = gy pxp ™"
Ogiy...im=0,
Opiy...im=0

Similar to the proof of Theorem 2.1, we can derive
[l(/\ - ap...p)(/\ - aqi..q) - apq...qaqp...p| —A= aq.“ql’ﬂ —(A) - |apq...q|7’pf(ﬂ) |xp|m_1
p,AS q,A%

< [M - aq...qh”Z/Ag (A + |apq...q|rZ/Ag(ﬂ) |xq|m_1-
If |x4| = 0, then from (18), it holds that

(A — ap...p)(A - aq...q) - apq...qaqp...p| <A- aq.“qqu fs(ﬂ) + |apqq|7’pfs(ﬂ)
pA 7.4

3906

(16)

(17)

(18)

Evidently, A € (W},/q(ﬂ) c U (Wllj(ﬂ) C WS (A). Otherwise, x| > 0. f A ¢ U W}](ﬂ), then for any

i€S,jeS ie§,jeS
i€ Sandje€S, wehave

(A —ai YA —aj.j) — aij._jaji.il > 1A = ﬂj...j|rl],E(~7‘) + |aij...j|7’;’E(ﬂ)‘
It follows from (18) that
|(A - ap...p)(/\ - aq...q) - apq...qaqp...p| < |A - aq...ql”Z(ﬂ) + |apq...q|rs(ﬂ)/
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ie, A€ @Z(ﬂ). Besides, it follows from (9) that

(A - app) Z aqlzlmxlz e xim + aqprl Z ap121mx12 e xim

Opiy...im =0, Opiy...im =0
Ogiy..im=0 Ogiy...im=0

=[(A - ap...p)()\ - aq...q) - apq...qaqp...p]xgl_l

It can be seen that

(/\ - app) Z aqiz-uimxiz e xim + aqr’l’ Z upiZNimxiZ Tt xim

6;112 im=0s 6q12 im=0s
5q12 =0 bpzz im=0
— . p) Agis...inXiy *** Xy, + E Agis...inXip * ** Xiy,
l,y,)EAS (iz{...,in,)EAS,
Opiy.cim=0 Ogiy..im=0

+agp..p Z Apiy...igXiy * ** Xiy, + Z Apiy...igXiy =+ Xiy |

bpiz...zm:o 6ﬂi2~--inx =0

then we apply the triangle inequality in (19) and obtain

-1
(A - ap.“p)(/\ - aq...q) - apq...qaqp...p||xq|m

<|A- ap...p| [r;Ag(ﬂ)lxﬂm_l + rZ/AS (ﬂ)lx:ﬂm_l] + |aqp...p| [T’Z,Ag(ﬂﬂxﬂm_l +

which is equivalent to

q m—1
et

[ = A = ) = gl = A = b () = b (D b

— q m—1
< [IA ap..‘p|rZ/As(ﬂ)+|aqp...p|rp/As(ﬂ)]|xp| .

Under the condition x| > |x,| > 0, we combine (18) with (20) and obtain

[|(A - ap...p)(A - aq..‘q) = Apg..qfgp..pl — 1A — aq...qh’q T(ﬂ) - |apq.4.q|rp5(~7[)]
pA q,A
: [|(A - aq.“q)(/\ - ap...p) - apq...qaqp...p| o ap...p|r;A§ (A) - |aqp.4.p|rZ/Ag(ﬂ)]

< [M - aq...q|rZ/Ag(ﬂ) + |apq...q|r;],Ag (ﬂ)] |:|A - app|rt;§(ﬂ) + |aqp...p|7’Z,Ag(ﬂ)} ’

which implies that
re (W@ (o) c | (W[ elw)c wi:.

i€S, jeS

(i1) [xp| < Ix4l, s0 || = m%x{ [xil} and |x,| > 0. Similar to the proof of (i), we can derive
1€

0= 81 = 80.0) = Ot = 1 = Bl () = gyl (T

< [ 1A= ! () + ] (O b

3907

(19)

(20)

(21)
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and
[ = )N = ) = Bl = N = el () = gl |
< [P =l )+ b (b (22)
If |x,| = O, then it follows from (21) that

(A — ap...p)(A - ﬂq..iq) - apq...qﬂqp...p| <A = ap...p|r;5(ﬂ) + |aqp...p|rzﬁ(ﬂ)/

then A € "W,?,p(ﬂ) c U w (A) € WE(A). Otherwise, |x,| > 0. IfA ¢ | (‘:VI.Z].(?(), then for any i € §
ieS,jes i€S,jes
and j € S, we have

Iz — aii)(z —aj.j) — aij._jaji.il > |z — ﬂj...jlrfﬁ(ﬂ) + |aij..4j|7'j.§(~7()-
It follows from (21) that
(A - ap...p)(A - aq...q) = Apg..qfgp..pl < 1A — ﬂp...p%’(ﬂ) + |aqp...p|rZ(~7{)/

ie, A€ @s (A). Based on |x,;| > |x,| > 0, multiplying (21) with (22) leads to

[|(Z - aq...q)(z - up.“p) - aqp...papq...ql —lz- app“‘i;ﬁ(ﬂ) - |aqp...p|rz E(ﬂ)]
' [|(Z - ap...p)(z - aq...q) - aqp...papq.“ql - |Z - aq“.q|rZ/A5 (ﬂ) - |apq.4.q|rZ,A5(~7l)]

<[ = sl A g (PO [l = el () + g (],
which means that

re(Wo@ &) | (W[ )ejwn) c wia.

€S, jes

This completes our proof in this theorem. [

Next, we turn to the relations between W*(A) and E°(A) in the following theorem. To this end, we
start with a useful lemma as follows.

Lemma 2.4. [4] Leta,b,c > 0and d > 0.
(D If 5555 < 1, then

a—(b+c)<a—b< a
d Tc4+d T btc+d

(ID If 3355 = 1, then

a—(b+c)>a—b> a
d “c+d " b+c+d

Theorem 2.5. Let A = (a;, ;) € C!"™ with n > 2 and S be a nonempty proper subset of N. Then

WS (A) C E5(A).
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Proof. Letz € W5(A), then
S S
ze (W) (W)

Without loss of generality, we assume that z € (M/l.sj(ﬂ) (we can prove it similarly if z € "ij(ﬂ)). That is,

2 € Uses jes ‘Will].(.?l) or z € Uses jes (‘W}J(ﬂ) N @{(ﬂ)). If 2 € Uses jes (W,.l/j(ﬂ), then there existp € Sand g € S
such that

|(Z - ap...p)(z - aq.‘.q) - apq..‘qaqp...pl - |Z - aq‘..qlrz E(ﬂ) - |apq.‘.q|7’:§(ﬂ) <0,

then it can be easily obtained that
[KA - ap...p)(A - aq...q) = Apg..qfgp..pl — A — aq.‘.q“’q 7(\7{) - |apq...q|rps(ﬂ)]
pA q,A

1A —app)(A = aq.q) = apg..qgp..pl < [M - “‘f-ﬂ"iﬁ A+ lapq"'qer’AS (ﬂ)]
. [I/\ —ap I (A) + |‘14p~--l’|rz(ﬂ)] ’

which means that A € 82,[7 Ac U SI.Sj(ﬂ) C &°(A). Otherwise, z ¢ Ujes, jes (W} ]-(fﬂ), thus we have that
i€S,jes §

Iz —ai.i)(z — aj.j) — aij._jaji.il — |z — aj...j|rjﬁ(ﬂ) - |aij...j|7'j.,§(ﬂ) >0 (23)

holds forany i € Sand j € S, and z € Ues jes (W}J(ﬂ) N @{ (ﬂ)). Thus we can infer that there exist p € S
and g € S such that

[I(?\ —ap.p)(A = ag..q) = Apg.qgp..pl — A — aq.“q|r:E(ﬂ) - |apq..<q|r: ,As(ﬂ)]
[ = 803 =) = gl = = g () = gl ()
< |1 = a0ab? ) + bl () [M gl () + |aqp..,p|rZ,As(ﬂ>] @)
and
|z = ay..p)(z = 8g..q) = Apq..qbgp..p| < 12— g glPH(A) + |y .qlrh (A). (25)
The following analysis will be based on two cases:

(1) [IA -~ aq__.qer,Ag (A) + |ap,1__l,|r’;,Ag (ﬂ)] [IA — a,,__.,,|r’q’,ﬁ(ﬂ) + |aq,,__,p|rZ,As(ﬂ)] = 0, then combining (23) and
(24) leads to

(A = 0.g)A = ) = Apgg8gp. pl = 1A = ap " () = lagy_plr] ((A) < 0.
Then it holds that
A = 2 ) = Bp.p) = g gl <IN = @l (A) + gy, (),
it follows that
=)A= g_g) =gty ) = N =yl (F) = gyl ()

< A=yl (F) + lagplr) (A (26)
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Multiplying (25) with (26) yields
['(Z =y p)(Z —ag..q) = Agp._plpg.ql — |2 — ap...pVZE(ﬂ) - |aqp..4p|rz,ﬁ(ﬂ)]
1z = 4..9)(z = p.p) = Agp.plipg..ql < [|Z - aP---P|rZ,A5 (A) + |“qp--<p|rZ,As (ﬂ)]
[l = ag_gIF5 () + lapg. gl (D),

this follows that z € &5 (A) € U &° (A) CE(A).
i€S,jes

(ii) [|/\ - aq.,,qh’Z,A; (A) + Iapq.,‘qlrf;’Ag (ﬂ)] [IA - up.,‘plr:/ﬁ(ﬂ) + Iaqp.,‘plrzlm(ﬂ)] > 0. Dividing (24) by
[IA = g )+ bl (ﬂ)] [m —ay () + Iaqpmper,As(ﬂ)] yields

B q _
|(A _ ap_“p)(/\ _ aq...q) — apq...qallp~--l7| - |/\ aqmqhﬁp,ﬁ(ﬂ) |ﬂpli...q|”§,ﬁ(ﬂ)
A =gl (P + gl ()
(A —aq.g)(A = ap_p) — apg._qgp.pl — 1A = a”""’erng (A) - laqp"'per’Ag 0

q
A= ap...plr:ﬁ(ﬂ) + |aqp4..p|rplﬁ(ﬂ)

<0. (27)

Leta =11 = a5.9)(1 = 8p..p) = Byl 2 0, b = 1A = quperIAé(ﬂ) 20c¢= |ﬂqp...p|rZ,A§(~7{) >0and d =
- a,,,,_,,|r;’E(ﬂ) + Iaq,,...pvzﬁ(ﬂ) > 0. If

(A - aq...q)(/\ - ap...p) - ﬂpq...qaqp...p| —A= ap...p|7§/A§ (A) - |aqp...p|7Z,A5(ﬂ)

q
A - ap...p|rZ,E(ﬂ) + |aqp...p|rplﬁ(ﬂ)

>1

7

then by (II) of Lemma 2.4, it follows from (27) that
(A - ap...p)(/\ - aq.,.q) - apq“.qaqp“.p| —|A = aq...q|r:§(ﬂ) - |apq..4q|r:,5(ﬂ)
A= aq..Aqer/Ag (A + |apq...q|rZ,A§ A

) (A —ag.9)(A = ap.p) = Apg..qfgp...)|
A — ap...p|rs(~7{) + |aqp.‘.p|r?;(ﬂ)

— A = 1 —
(A - ap...p)(/\ - aq...q) - apq...qaqp...p| A aq...qh’prﬁ(ﬂ) |apq...q|7};,§(ﬂ)
A - aq...qer,Ag (A) + |apq...q|rZ,As (A
(A = ag_g)(A = ap_p) = apg._q8gp.pl = 1A = ”pAA-pV:;,As (A) - |’1ﬂv-~p|rzlA; (A)

q
A - apperE(ﬂ) + |qu...p|7”p,§(~?{)

<

straightforwardly leads to
|:|(A - ap...p)(}L - aq...q) - apq...qaqp..p| - M - aq...qVZ/E(ﬂ) - |apq.A.q|r:/A5(ﬂ)]

1A = ag.)(A = ap..p) = Apg..qlgp..pl < [M a “q~'-q"z,ﬁ )+ lapq"'qer’Ag (ﬂ)]
[IA = @l () + lagy_plri(AD)]
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which implies that z € &, ,(A) ¢ U 8?}(?() C E5(A). Additionally, if
ieS,je§ "

(A = a4.g)(A = ap_p) = apg._q8gp.pl = 1A = “v-~p|”Z,A; (A) - |”W-~P|”Z,A; (A)

q
A - appVSE(ﬂ) + |aqp...p|7prﬁ(ﬂ)

then it is not difficult to verify that (26) holds. Multiplying (25) with (26) leads to
[|(Z - ﬂq..‘q)(z - ap...p) - aqp‘..papq.‘.q| - |Z - ap..‘p|rZ,E(ﬂ) - |aqp...p|rzrﬁ(ﬂ)]

1z —ag..q)(z = ap.p) = Agp..plipg..ql < ['Z - “Pw?"rZ,AS (A) + |”qP~~~p|VZ,A5 (ﬂ)]
. [lz — .|y (A) + |ﬂpq-~-q|r5(ﬂ)] ’

which means that z € 8547(5'[) c U Sfj(.?() C E5(A). This completes the proof of this theorem. [
i€5,jes

According to Theorems 2.2 and 2.5, the comparisons among W*(A), E5(A), Y5(A) K°(A) and K(A)
are given as follows.

Theorem 2.6. Let A = (a;, ;) € C"™ with n > 2 and S be a nonempty proper subset of N. Then
WS (A) C E(A) C Y5 (A) € K5(A) € K(A).

In the sequel, we construct an example to compare the regions of Theorems 2.1 and 2.3 with those in
Theorem 3.1 of [20] and Theorem 4 of [21].

Example 2.7. Let the tensor A be defined as follows:
A=[AL:1),AQ2,:),AB,::), A, )] € RPA,

where
0100 0000
0010 0030
A(l,:,:) = ,AQ,:) = 2 ,
000 1| A 03 0 3
0001 001410
0001 0100
0100 1000
A@3,:,) = 1000 , A4, ) = 01011
0100 1000

By computations, we get that o(A) € A"(A) = {z € C : |z| < 5} (by Lemma 1.5), (A) C Y5(A) = {z € C:
|zl <5} forall SC Nand S # N (by Lemma 1.4), 6(A) € E(A) = {z € C: |z| <4.7200} (by Theorem 2.1) and
o(A) C WS(A) = {z € C : |z| < 4.6458} (by Theorem 2.3) as S = {3,4} and S = {1,2}. It noteworthy that the
localization sets E°(A) and W9 (A) are the sharpest as S = {3,4} and S = {1,2}. It can clearly be seen that
WS(A) C ES(A) C YS5(A) = A"(A) (see Figure 1).

Remark 2.8. Example 2.7 shows that the eigenvalue localization sets in Theorems 2.1 and 2.3 are sharper than that
in Theorem 3.1 of [20], and W*(A) outperforms E5(A). What we want to point out here is that: Although WS(A)
can capture all eigenvalues of A more precisely than E°(A), there are more computations to determine ‘W(A) and
its form is more complicated compared with E°(A).

Compare the eigenvalue localization sets exhibited in Theorems 2.1 and 2.3 with that in Theorem 3.1 of
[20], it is observed that the forms of those are different. In the following, based on Theorem 3.1 of [20], we
develop an S-type eigenvalue localization set, whose form is similar to that in Theorem 3.1 of [20].
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Figure 1: A"(A) and Y5(A) are filled by red color, E°(A) and W3 (A) are filled by blue and green colors, respectively.

Theorem 2.9. Let A = (a;,..;,) € Clmnl withn > 2. And let S be a nonempty proper subset of N. Then

Uune

ieS jes

o(A) € T5(A) = {U (vl , (28)

i€S je§

where Tg (A) is defined as in Lemma 1.4.

Proof. For any A € 0(A), letx = (x1,..., x,)T € C"\{0} be an eigenvector corresponding to A, i.e.,
Ax = Axlm=1,
Let |x,| = m%x{lxil} and |x,;| = max{lx;[}. Now, let us distinguish two cases to prove.
ic i€S

(@) Ixpl = |xgl, s0 |xp| = m%x{lxil} and [x,| > 0. For any j € S. In the same manner applied in the proof of
1€
Theorem 3.1 in [20], it holds that

(A —a;. )A—ap.p) - apj...j‘ljp...p”xplm_l
< A =aj (A" + |apj...j|r?(ﬂ)|xp|m_1-
Note that [x,| > 0, thus

(A —a; )A —ap._p) —apj._jajp.pl <IA = ﬂ]:..j|7’{;(ﬂ) + |ﬂpj...j|7?(ﬂ)/

which implies that A € Y{,(ﬂ). From the arbitrariness of j € §,ithas A € N T;; @ecun Yg (A) C Y5(A).

j€S i€S je§
(i) lxp| < lxyl, s0 x| = m%x{lxil} and |x;| > 0. For any i € S, with a quite similar strategy utilized in
1€

Theorem 3.1 of [20], we can obtain

[(A - a,,__,q)(/\ —a;.i) — ﬂiq...qaqi...i”qum_l
< A = a ilrg (g "+ lage ilr] (A"

Note that |x,| > 0, thus

(A = ag..0)(A = ai.3) = tig_ggi.il < 1A = a;_ilrh(A) + |agi_ilr](A).
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- 2 0 2 s 6
Figure 2: B(A), Y5(A) and T5(A) are filled by black, red and blue colors, respectively.
This means that A € Yg(ﬂ). It follows from the arbitrariness of i € S that A € N Yé(ﬂ) cun YZ (A)
jes ie§ jes
YS(A). Then the result of this theorem is immediately obtained. [J

The following theorem concentrates on comparing Theorem 2.9 with Theorem 3.1 of [20].
Theorem 2.10. Let A = (a;, ;,) € C"" with n > 2 and S be a nonempty proper subset of N. Then
T5(A) c Y5 (A).
Proof. It is not difficult to verify that
U e | Yieand [ (Y c | Y,
i€S jes i€s, jes ieS jes i€S jes
then we have T5(A) C Y5(A). This proof is completed. [

An example is given to compare the region of Theorem 2.9 with those of Lemma 1.4 and Theorem 3.1 of
[22].

Example 2.11. Let

A = 121 4122 @123 | G221 @222 4223 | A321 A322 4323

131 4132 @133 | 4231 @232 4233 | A331 0332 0333
1 1 0.511.50200]

[11111 d112 4113 | 4211 A212 213 | 4311 4312 ﬂ313]

0505 01(1 1 0|0 0
05 0 01]0 05 0|0 1

3
0
By Theorem 3.1 of [22], we obtain

0(A) CB(A) ={zeC:|z—1]| <4.6416}.
From Lemma 1.4, we obtain

o(A) S Y5 (A) = {z € C: |z - 1] < 4.6056}.
According to Theorem 2.9, we derive

o(A) C T (A) = {zeC:|z—1] <4.3723).
The comparative results are given in Figure 2. Clearly, T5(A) € YS(A) C B(A).
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Figure 3: E5(A) is fulled by green color.

3. Applications of the New S-type Eigenvalue Inclusion Sets for Tensors

The eigenvalue inclusion sets of Theorems 2.1 and 2.3 can be used to judge the positive definiteness of
the tensor A. The applications of those will be stressed by Examples 3.1 and 3.2.

Example 3.1. [4] Let A = (ajjq) € R¥3! be a real symmetric tensor with elements defined as follows:

an =5, axn =6, aszz = 3.3, aje = —0.1, a3 = 0.1,
ane = —0.2, ajp3 = 0.2, anzz =0, a1200 = —0.1, a1203 = 0.3,
a1233 = 0.1, agzsz = —0.1, 4203 = 0.1, az33 = —0.1, a2333 = 0.2.

After some calculations, we conclude that the tensor A can not meet the conditions of Theorem 3.2 in [7]
and Theorem 4.1 of [5], and for any nonempty proper subset S of N, Theorem 4.2 of [5] can not be applied
to determine the positive definiteness of A, while we choose S = {1,2}, S = {3}, and utilize Theorem 2.1, we
can obtain the eigenvalue localization set E°(A) in Figure 3.

As observed in Figure 3, all eigenvalues of A are located in right hand side of the complex plane, which
means that the smallest H-eigenvalue of A is positive, hence A is positive definite.

Example 3.2. Let A = (a;) € R™*3 be a real symmetric tensor with elements defined as follows:

an = 5.2, axpy» = 6.05, azszz = 3.3, a1z = —0.1, a1113 = 0.1,
anp = —0.2, ajp3 = —0.2, a3 =0, a1200 = —0.1, a1203 = 0.3,
a1233 = 0.1, agzsz = —0.2, 4203 = 0.1, az33 = —0.1, a2333 = 0.2.

By proper calculations, we confirm that the tensor A can not meet the conditions of Theorem 3.2 in [7] and
Theorem 4.1 of [5]. Theorem 4.2 of [5] and Theorem 7 of [4] can not be utilized to determine the positive
definiteness of A for any nonempty proper subset S of N. Besides, by using the methods in Theorems 1
and 2 of [25], we also can not determine the positive definiteness of A. Let S = {1, 2}, S =1{3). According to
Theorem 2.3, the eigenvalue localization set W*(A) is depicted in Figure 4.

From Figure 4, it can be seen that all eigenvalues of A are located in right hand side of the complex
plane, and therefore the smallest H-eigenvalue of A is positive, which implies that A is positive definite.
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Figure 4: W3(A) is fulled by green color.

4. Concluding Remarks

In this paper, some new S-type eigenvalue inclusion sets for tensors as well as their comparison theorems
are derived, which show that the proposed sets are sharper than the one in [20]. As applications, these
eigenvalue inclusion sets can be applied to determine the positive definiteness or positive semi-definiteness
of the even-order symmetric tensors.

However, the new S-type eigenvalue inclusion sets depend on the set S. How to choose S to make E°(A),
WS(A) and T5(A) established in this paper as tight as possible is very important and interesting, while
if the dimension of the tensor A is large, this work is still underdeveloped and very difficult. Therefore,
future work will include numerical or theoretical studies for finding the best choice for S.
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