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Abstract. In this paper, we introduce a new algorithm for solving the split equality common null point
problem and the equality fixed point problem for an infinite family of Bregman quasi-nonexpansive map-
pings in reflexive Banach spaces. We then apply this algorithm to the equality equilibrium problem and
the split equality optimization problem. In this way, we improve and generalize the results of Takahashi
and Yao [22], Byrne et al [9], Dong et al [11], and Sitthithakerngkiet et al [21].

1. Introduction

Let Hy, H, and Hj3 be real Hilbert spaces, C € H; and Q € H; be nonempty closed convex subsets, and
A :H; — Hz and B : H, — Hj be bounded linear operators. The split equality problem (SEP) which was first
introduced by Moudafi [13] is to find

xeC yeqQ such that Ax = By. (@)

The SEP (1) is actually an optimization problem with weak coupling in the constraint. The problem has
numerous applications in the decomposition of domains for PDEs, game theory, and intensity-modulated
radiation therapy. To see more applications of the SEP in optimal control theory, surface energy and
potential games whose variational form can be seen as a SEP, we refer the reader to Attouch [2]. For solving
the SEP (1), Moudafi [13] introduced the following alternating CQ algorithm:

Xn+l = PC(xn - ynA*(Axn - Byn))/

Yn+1 = PC(xn - ,BnB*(Axn - B]/n))/
where y,,, B, € (¢, min(t, %B) —¢), A4 and Ap are the spectral radii of A*A and B*B, respectively. If B = I (the
identity mapping) and H, = Hj3, the problem (1) is equivalent to the well-known split feasibility problem
(SFP).
In [8], Byrne et al considered the following problem: Let A; : Hy — 2Hi 1 <i<m, and Bj:Hy — 2H
1 < j < n, be set-valued mappings, and T; : H; — H, 1 < j < n, be bounded linear operators. The split
common null point problem is to find a point z € H; such that

z € (NI AT0) N (N, T;'(B;10)) 2)
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where A710 and B]T10 are the null point sets of A; and Bj, respectively.

Let A : H — 2 be a multivalued mapping with graph G(A) = {(x, y) : y € Ax}, domain D(A) = {x e H :
Tx # 0} and range R(A) = U{Ax : x € D(A)}. The mapping A is said to be monotone if (x — y,x* — y*) > 0 for
all (x, x%), (y,y*) € G(A). A monotone operator A C H X H is said to be maximal if its graph is not properly
contained in the graph of any other monotone operator. One of the most important methods for solving (2)
in a Hilbert space setting is to replace (2) with the fixed point problem for the operator R : H — 2 defined
by R4 := (I+A)~L.

To tackle the problem in the Banach space setting, Teboulle [23] introduced a new type of resolvent.
Let f : E — (—o0,+0] be a proper, convex, lower semicontinuous and Gateaux differentiable function on
intdomf, and let A be a maximal monotone operator such that intdomf N domA # 0. Then the operator

Res£ : E — 2F where E* is the dual of E, is defined by
Res£ = (Vf+A)loVf.

Note that the fixed points of Resﬁ are solutions of (2).
In 2015, Takahashi and Yao proposed the following iterative method to solve the problem (2): Letx € H
and {x,} be a sequence generated by

zn = Ja, (6 = AT Jr(Tx, — Qy,, Txy)),

Yn = QpXy + (1 = an)zy),

Co={z€H:|ly,—zll < llx, — zll}, 3)
D,=1{z€H:{x,—z,x1—x,) >0},

Xu+1 = Pc,np,x1.

Observe that in the above algorithm, the determination of the step-size A,, depends on the operator (matrix)
norm [|T]|. This means that in order to implement the algorithm, first one has to compute the operator norm
of T, which in general is not an easy task.

Here we consider the following split equality common null point problem:

find xenli'0, yeni,g;'0 suchthat Ax=By, (4)

where Hy, Hy, H3 are real Hilbert spaces, h; : Hy — 2 and gj:Hy — 22 are set-valued maximal monotone
mappings, and A : Hy — Hjz and B : H, — Hj3 are bounded linear operators.

We propose a new algorithm for solving the split equality common null point problem and the equality
fixed point problem for an infinite family of Bregman quasi-nonexpansive mappings in reflexive Banach
spaces. In this way, we extend the result of Takahashi and Yao [22]. At the same time, we present a
useful method for estimating the step-size sequence (y,) which does not require any prior knowledge of
the operator norms [|Al| and ||B||. As application, we consider the algorithm for the equality equilibrium
problem and the split equality optimization problem. In this way, we improve and generalize the results of
Takahashi and Yao [22], Byrne et al [9], Dong et al [11], and Sitthithakerngkiet et al [21].

2. Preliminaries

Let E be a real Banach space with the norm ||.|| and the dual space E*, and let f : E — (—o0, +00] be a
proper convex and lower semicontinuous function. We denoted by dom f, the domain of f, that is the set
{x € E: f(x) < +0o}. Let x € int domf, the subdifferential of f at x is the convex set defined by

Af(x) ={x"€eE: f(x) +{y—xx) < f(y), YyeEL

The Fénchel conjugate of f is the convex function f* : E* — (—oo, +o0] defined by

f1(x*) = sup{{x”, x) — f(x) : x € E}.
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It is known that f satisfies the Young-Fénchel inequality
X, x)y < flx)+ f"(x") xe€eEx" eE,

moreover, the equality holds if x* € df(x).
Given x € intdomf and y € E, the right-hand derivative of f at x in the direction of y is defined by

flx+ty) - f(x)
p :

fox,y) = lim (5

The function f is said to be Gateaux differentiable at x if lim,_,g w exists for any y. In this case, the
gradient of f at x is the linear function V f(x) defined by (y, Vf(x)) := f°(x,y) for all y € E. The function f
is said to be Gateaux differentiable if it is Gateaux differentiable at each x € int domf. When the limit as
t — 0in (5) is attained uniformly for any y € E with ||y|| = 1, we say that f is Fréchet differentiable at x. The
function f : E — (—o0, +00] is called Legendre if it satisfies the following two conditions:

(L1) fis Gateaux differentiable, int domf # 0 and domV f = int domf,

(Ly) f*is Gateaux differentiable, int domf* # @ and domV f* = int dom f*.

Remark 2.1. If E is a real reflexive Banach space, and f is a Legendre function, then we have
(i) fisa Legendre function if and only if f* is a Legendre function,

G @) =9f,

Gii) Vf = (Vf), ranVf = domVf* = int(domf*), ranV f* = domV f = int(domf),

(iv) f and f* are strictly convex on the interior of their respective domains.

Remark 2.2. If f : E — R s Gateaux differentiable and convex, then

Wy, V@) =, y) = lim w

1 f(A-Hx+Hx+y)) - fx) I (I-Df() +tflx+y) - f(x)
_tliro1 t Stli% t

= flx+y) = f(2).

The Bregman distance with respect to f, (see [4]), is the bifunction Dy : domf X intdomf — [0, +o0) defined
by
Dr(x,y) = f0) = f(y) = x =y, VI(y))-

We mention in passing that Dy is not a distance in the usual sense; but it enjoys the following properties:
(i) D¢(x,x) =0, but Df(x, y) = 0 may not imply x = y,
(ii) Dy is not symmetric and does not satisfy the triangle inequality,

(iii) for x e domf and vy, z € int domf, we have

D¢(x,y) + D(y,2) = Df(x,2) <(Vf(2) = Vf(y), x - ),

(iv) for each z € E, we have Dy(z, Vf*(Zfil EVE(x) < Zf\il tiD¢(z, x;), where {x,-}f\il C E and {ti}fil c (0,1
satisfies Y, t; = 1.
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Bregman distances have been studied by many researchers (see for instance [3, 5, 10]). We shall make use
of the function V¢ : E X E* — [0, +oo] associated with f, which is defined by (see [7]):

Vilx,x") = f(x) = (x,x") + f(x), VYxe€Ex €E".
Then V¢(x,x*) = D(x, V. f*(x")) for all x € E and x* € E*. Moreover, by the subdifferential inequality, we have
Vi@, X)) +(VF () —x,y) < Vi, X" + ),

forall x € E and x*, y* € E*(see [14]).
The modulus of total convexity at x is the bifunction vy : int domf x [0, +00) — [0, +00), defined by

vr(x, t) := inf{D¢(y, x) : y € domf, |ly — x|| = t}.

The function f is called totally convex at x € int domf if v¢(x, t) is positive for any ¢ > 0. This notion was first
introduced by Butnariu and Iusem in [7]. Let C be a nonempty subset of E. The modulus of total convexity
of f on Cis the bifunction v : int domf X [0, +c0) — [0, +00), defined by

ve(C 1) = {vp(x, t) : x € CNint domf}.

The function f is called totally convex on bounded subsets if v¢(C,t) is positive for any nonempty and
bounded subset C and any ¢ > 0.

Proposition 2.3. [19] If x € int domf, then the following statements are equivalent:
(i) the function f is totally convex at x,
(ii) for any sequence {y,} C domf,

lim D¢(y,,x) =0 = lim ||y, — x|| = 0.

n—oo

Recall that the function f is called sequentially consistent (see [6]) if for any two sequences {x,} and {y,} in
E such that the first one is bounded,

lim D¢(yy, xu) = 0 = ’}ggo Iy, — xull = 0.

n—o0

Proposition 2.4. [7] If domf contains at least two points, then the function f is totally convex on bounded sets if
and only if the function f is sequentially consistent.

Proposition 2.5. [17] Let f : E — R be a Gateaux differentiable and totally convex function. If xo € E and the
sequence {D¢(x,, xo)} is bounded, then the sequence {x,} is also bounded.

Definition 2.6. Let C be a nonempty subset of int domf. An operator T : C — int domf is said to be:
(i) Bregman firmly nonexpansive (BFNE) if
(Tx =Ty, Vf(Tx) = Vf(Ty)) < Tx =Ty, Vf(x) = Vf(y)),
forany x,y € C, or equivalently,
D¢(Tx,Ty) + De(Ty, Tx) + D(Tx, x) + Df(Ty, y) < D¢(Tx,y) + D¢(Ty, x).
(ii) Bregman quasi firmly nonexpansive (BQFNE) if F(T) # 0, and
(Tx —p,Vf(x)=Vf(Tx)) =20, VxeCpeFT),

or equivalently,
Df(p, Tx) + Df(Tx, x) < Df(p, X).
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(iii) Bregman quasi-nonexpansive (BQNE) if F(T) # 0, and
D¢(p, Tx) < Df(p,x), VYx€C,pe€F(T).

Definition 2.7. A point u € C is said to be an asymptotic fixed point of T : C — C if there exists a sequence {x,} in
C such that x, — u and ||x, — Tx,|| — 0. We denote the asymptotic fixed point set of T by F(T).

The concept of an asymptotic fixed point was introduced by Reich in [15].

Proposition 2.8. [16] Let f : E — R be a Legendre function, and let C be a nonempty closed and convex subset of
E. If T: C — Eisa BQNE operator, then F(T) is closed and convex.

The gauge of uniform convexity of a function f : E — R is defined by

1-A A -f(1-A A
Pr(f)Zinf{( P y):IIxII,IIyIISr,AE(O,l),IIx—yIIZt}-

A function f is said to be uniformly convex on bounded subsets if p,(t) > 0 for all r, £ > 0.
The gauge of uniform smoothness of f is defined by

o,(t) = sup { k) (G, Aﬁg’_};«l “OYE D il < 7A€ 0, 1) I — il = t} .

Then the function f is said to be uniformly smooth on bounded subsets if lim,_,g o’t(t) =0forallr>0.

Definition 2.9. A function f : E — R is said to be super coercive if

o 10

x—eo ||x|

+00

Definition 2.10. Let C be a nonempty subset of a real Banach space E, and let {T,} " | be a sequence of mappings from
C into E such that N> F(T,) # 0. Then {T,}’ | is said to satisfy the AKTT-condition (see [1]) if for each bounded
subset K of C,

)

Y sup (ITz - Tzl : z € K) < oo,

n=1

Lemma 2.11. [1] Let C be a nonempty subset of a real Banach space E, and let {T,} | be a sequence of mappings
from C into E which satisfies the AKTT-condition. Then, for each x € C, {T,x};’ | is convergent. Furthermore, if we
define a mapping T : C — E by

Tx:=1lim T,x, VYxeC(C

n—oo

then, for each bounded subset K of C,

lim sup{||T,z — Tzl : z € K} = 0.
n—oo

In the sequel, we write ({T,,};” |, T) satisfies the AKTT-condition if {T,} ", satisfies the AKTT-condition and
E(T) = N3 F(Ty).

Proposition 2.12. [18] If f : E — R is uniformly Fréchet differentiable and bounded on bounded subsets of E, then
Vf is uniformly continuous on bounded subsets of E.

Theorem 2.13. [25] Let f : E — R be a continuous convex function which is super coercive. Then the following are
equivalent:

(i) f is bounded and uniformly smooth on bounded subsets of E,
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(ii) f is Fréchet differentiable and V f is uniformly norm-to-norm continuous on bounded subsets of E,

(iii) domf* = E*, f* is super coercive and uniformly convex on bounded subsets of E*.

Theorem 2.14. [25] Let f : E — R be a continuous convex function which is bounded on bounded subsets of E.
Then the following are equivalent:

(i) f is super coercive and uniformly convex on bounded subsets of E,
(ii) domf* = E*, f* is bounded and uniformly smooth on bounded subsets of E*,

(iii) domf* = E*, f* is Fréchet differentiable and V f* is uniformly norm-to-norm continuous on bounded subsets of
E*.

Theorem 2.15. [10] Suppose that f : E — (—oo,+o0] is a Legendre function. The function f is totally convex on
bounded subsets if and only if f is uniformly convex on bounded subsets.

Lemma 2.16. [24] Let {y,} be a sequence in (0, 1) and {5,,} be a sequence in R satisfying

Q) Yol Vn =,
(ii) (2) limsup, . vn <00r X2 [yndul < co.

If {a,} is a sequence of nonnegative real numbers such that

Ap+1 < (1 - Vn)an + 7/71671/

for each n > 0, then lim, o a, = 0.

Lemma 2.17. [12] Let {s,} be a sequence of real numbers that does not decrease at infinity, in the sense that there
exists a subsequence {s,,} of {s,} such that s, < s, foralli > 0. For every n > ny, define an integer sequence {t(n)} as

T(n) = max{k < n: sg < Sgp1}-

Then t(n) — oo and max{Sz(n), Su} < Sr(n)+1-

3. The Main Result

We start this section by proving a strong convergence theorem for an infinite family of Bregman quasi-
nonexpansive mappings.

Theorem 3.1. Let Eq, E; and E3 be reflexive Banach spaces, let C C Eq and Q C E; be two nonempty closed convex
sets, let A : Ey — Ez and B : E; — Ej3 be two bounded linear operators and let f1 : Ey — Rand f, : E; — R be
super coercive Legendre functions which are bounded, uniformly Fréchet differentiable and totally convex on bounded
subsets of E1 and Ej, respectively, and f3 : E3 — R be convex, continuous and one-to-one on E3 such that f;*'
is continuous. Let, fori = 1,2,..,N, h; : E; — 2 and git E; — 2E: be maximal monotone mappings with
dom(hy) € C and dom(gn) C Q. Assume that forn € N, T, : C — Eq and S, : Q — E; are an infinite family
of Bregman quasi-nonexpansive mappings such that ({T,,})" |, T) and ({S,}",,S) satisfy the AKTT-condition, and
F(T) = F(T) E(S) = F(S). Put

Q= {(x, y): xen FT,)nN (ﬂfilhi_lo), y € NS, F(Sy) N (MY, g7 10) such that Ax = By} #0.

i=



A. Abkar, E. Shahrosvand / Filomat 32:11 (2018), 3917-3932
Let {x,,} be the sequence generated by:

zZy = Resjf%o - ORBSthlfo (A= yw)Viixy = yuA'V f3(Axy = Byn)),
Xn+l = fo(ﬁnvflzn +(1- ﬁn)vflTnZn)/

U, = Resfﬁ,gNo e oResﬁglsz*((l — V)V faxy, + yuB*V f3(Ax, — Byy)),

Yni1 = VBV fatn + (1 = Bu)V f2Suttn),

where the step-size v, is chosen as follows:

|f3(Axy — Byn)l |f3(Axy, — Byn)|

Y= owmin { (A = Byn)l+ 1fiCon)l” (A%, = Byl + | faly)

3923

(6)

where o, € (0,1) is defined in such a way that ), y, = 0. Assume that the sequences (AL}, {Bn} € (0,1) satisfy the

following conditions:
() liminf, e Bu(1—Bn) >0,

(i) liminf,_e A}, > 0.
Then the sequence {(x,, yn)} converges strongly to (X, i) € Q.

Proof. It follows from Proposition 2.8 that Q) is closed and convex. Let
Wy = (1 = yu)Vfixn = ynA'V f3(Axy — Byn)
and (%, 7) € Q. Note that

Dy, (%, V fiwn) = Dy (£, V(1 = yn)Vfxu = YAV f3(Axy — Byn)))
= fi(®) + f{(wn) — (X, wn)
<A@ + A =y f{(VAxn) + vufi (=AY f3(Axy = Byn))
-1~ Vn)vfxn - VnA*Vf3(Axn - Byn»
< @) + f{(VAXR) =RV fixn) + yul fi (=A"V f3(Axy — Byy))
+ (&, Vfx, + A"V f3(Ax,, — Byn))]
= Dy (R, xu) + yulsup{{—x, A"V f3(Ax,, — Byn)) — fi(x)}

xeX
+ (32/ fon> + (ffA*va(Axn - Byn»]
< Dp (%, xn) + Vn[su;(){(—x, AV f3(Axy — Byn)) — f1(x)}

+ filxn + %) = f1(xn) + (£, A"V f3(Axy — Byn))]

< Dg (R, xn) + yul—Cn + £, A"V f3(Axy, — Byn)) — f1(xn + %)
+ filn + %) — fi(xn) + (X, A"V f3(Axy — Byn))]

= Dg (R, xn) + yul—(Axn, V f3(Axy — Byn)) — f1(xn)]

< Dg (%, xu) + yul f3(=Byn) = f3(Axn = Byn) = f1(xn)]

= Dy, (%, xn) = yul f5(Axn = Byn) + f1(x) — f5(=Byn)l.

Therefore, we have

Dy, (%,z0) = Dp (%, Resﬁltho . HORESJ/?},M Vfiw,) < Dg (%, V fiw,)
< Dﬁ (%, x,) — Vn[fB(Axn - Byn) + fl(xn) - fS(_Byn)]-

Following a similar argument as above, we obtain

sz(]?/ u,) < sz(]?/ ]/n) - Vn[fB(Axn - Byn) + fZ(]/n) - fS(Axn)]-

(7)
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From (7), (8) and the convexity of f;, we obtain

Dy (%,20) + Dp(§, un) < Dg (R, x0) + D5, (§, Yn) — vaul2f3(Axn — Byn)
+ fi(xn) + f2(yu) = f3(Axy) = f3(=Bya)] )
< Dfl(-f/ Xn) + sz(]?/ yn) - 7n[f3(Axn - B]/n) + fl(xn) + fZ(]/n)]

Also from (6), by using (9), we obtain

Dfl (& xp41) + sz(?; Yn+1) < ﬁn[Dfl (X, z4) + sz (@, uy)] + (1 - ,Bn)[Dfl (&, Tz,) + sz(?/ Suy)]
< BulDp (R, zn) + Dy (§, un)l + (1 = Bu)Dg (£, 20) + D (9, un)] (10)
< Dp (%, xn) + Dg (7, yn) = yn(1 = Bu)l f3(Axn — Byu) + f1(xn) + f2(yn)]-

On the other hand, suppose that there is no x, such that |f;(x,)| 2 |f2(y,)| for all n > ng. It follows that

s |f3(Axn - B]/n)|
V= O Ay — Byl + 11 (n)]

and

Vulfs(Axn = Byn) + fo(yn) + fr(xn)] = =yl f3(Axn — Byn) + f2(yn) + fr(xn)l
2 =yull f2(yn)l = |f3(Axn — Byn)| = | fi(xn)l]
= Vulll f3(Axn — Byn)l + | ()l = [ f2(yn)I] (11)

) ) ~ If2(yn)l
= |f3(Ax, — Byy)lo,[1 If3(Ax, — Byl + |fi(xa)l”

Conversely, suppose there exists n; such that |f1(x,)| < |f2(y)| for all n > ny. From (11) and B, € (0,1), we
have

Df1 (5&/ xn+1) + sz(]/)/ ]/n+1) < Df1 (5&/ xl’l) + sz(]/)/ yi’l)

Now we use induction to obtain
Df1 (92'/ xn+1) + sz(yr yn+1) S Df1 (92/ xl) + sz(y/ yl) (12)

From Theorem 2.13, f;and f; are bounded on bounded subsets of E] and E;, respectively. Hence V£ and Vf;
are alsobounded on bounded subsets of E] and EJ, respectively. From (12) and Proposition 2.4, the sequences
1w,y AV fiz0, V)t and {(Tyzn, Spun)l;, are bounded. So by the boundedness of Vf; and V£,
on bounded subsets of E1 and E;, respectively, {(V fix,, V 2y}, {(zn, un)} and {(V 1Tz, V f2S0un)l | are
bounded. In view of Theorem 2.11 and Theorem 2.12, dom f; = Ej, f; is super coercive and uniformly
convex on bounded subsets of E}. Let

s 2 sup{lizall, IV A(Tuz)Il IV fizull - 1 € N}

be large enough and let p; : [0, o) — [0, o0) be the gauge of uniform convexity of f;. Now we have

Dy, (%, xn41) = D (R, VL (BaV fizn + (1 = Bu)V f1Tuzn))
= @) + f{(BnV fizn + (1 = Bu)V fiTuzu) — X, BuV fizn + (1 = Bu)V fiTnzn)
< Bufi(®) + (L= Bu) A(R) + B fi(Viza) + (1 = Bu) f{(V 1T uzn)
= Bn(1 = Bu)ps(IV fizu = V ATyzull) = (%, BV fizn + (1 = Bu)V fiTuzn)
= ,BnDﬁ (&, zn) + (1 - ﬁn)Dﬁ &, Tuzn) — Bn(1 = Bu)ps(IV f1zn = V fiTuzull)
< DR, z0) = Bu(1 = Bu) PV f1zn = V fiTyzall)
< Dg (R xn) = Bu(L = Bu)ps(IV fizn = V fiTuzall).
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It follows from the above inequality that
Bn(1 = Bu)ps(IV fizn = V/iTuzull) < Dy, (£, x0) — Dp (£, Xpa1). (13)

Let v > sup, n{lluall, IV £2Suunll, IV f2u,ll} be large enough, p; : [0,00) — [0, o) be the gauge of uniform
convexity of f;. We use a similar argument to obtain

Bu(1 = Bu)pr(IV fruy = V f1Spunll) < Dﬁ(?, Yn) — Dﬁ (@, Yn+1)- (14)

Also from (10), we obtain

Yu(1 = Bl f3(Axn = Byn) + f1(xn) + fo(yn)] < [D5 (£, X0) + D, (9, yn)]

15
- [Dfl(frxnﬂ) + sz(?, yn+1)]- (15)

For all n € IN, we have

Dg (&, xn41) + D5, (9, yus1) = D (&, VA (BaV fizn + (1 = Bu)V f1Tnzu))
+ D5 (9, VLBV friin + (1 = Bu)V f2Sutin))
< Dg(X,zy) + D9, un)
=Va & A = y)Vfixn + yn(=A"V f3(Axy, — Byn)))
+ Ve, (X =)V fayn + yu(B'V f35(Ax,, — Byy)))
SViE@ Q= yn)Vaxe + yu(=A"V f3(Axy — Byn)) + yu(A'V f3(Axy — Byn)))  (16)
= (VA = yn)VAixy + yu(=A"V f3(Axy = Byn))) = £, yu(A™V f3(Axy — Byn)))
+ sz(?, (1 =yu)Vfayn + yuB'V f3(Axy — Byn) — yuB*V f3(Ax, — Byn))
- <Vf;((1 - Vn)vayn + ynB*va(Axn - Byn)) -7, _VHB*Vf3(Axn - Byn»
< (1 =ywIDx(E, x2) + Dp (9, yu)] + ynl(® = 20, AV f3(Axy — Byn))
+ (uy — 9, B*va(Axn - Byn»]

To prove that {x,} and {y,} converge in norm, we consider the following two cases.

Casel. Assume that the sequence {Dy (%, x,) + D, (), y1)} is a monotonically decreasing sequence. Then
{D£ (%, x1) + D, (, yn)} is convergent. Clearly, we have

(D, (%, xn) + D (§, ya)}] = UD g, (£, Xn41) + Dy (8, Yns1)}] = 0.
Therefore, from (15) and B, € (0, 1), it follows that
Vn(f3(Axy = Byn) + fi(xn) + fo(yn)) = 0, 1 — 0.
Suppose that there exists 1y such that |f1(x,)| > |f2(y)| for all n > 1y, which implies that

_ Un|f3(Axn - Byn)l
V= (A% — Bya) + 1 Gon)

Thus A B
lim 0n|f3( Xn — yn)l

n—co | f3(Ax,; — Byn)| + | f1(xn)
On the other hand, we consider

|f2(yn)| - |f3(Axn - Byn)| - |f1(xn)| < |f3(Axn - B]/n) +f1(xn) +f2(yn)|-

||f3(Axn = Byn) + f1(xn) + f2(yn)| = 0.

So, we have

fz(]/n) _
|f3(Axn = Byn)l + |f1(xn)|

lim 0,/ f3(Ax, — By)I( 1)=0.
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This together with the condition on ¢, and (m —1) > 0 implies that

lim f5(Ax, — Byn) = 0. (17)
Since f; is continuous, we have

lim [|Ax, — By, = 0. (18)

Conversely, suppose there exists 111 such that |fi(x,)| < |f2(y)| for all n > n;. Following the above process,
again we come to the same conclusion. Also, from (13), (14) and the condition (i), we obtain

lim p:(IV fizy = VAT, z) = 0

lim i1V fott =V foSutinll) = 0.

Next, we show that lim,_, ||V fizy, — V fiTuz,l| = 0. If not, there exists ¢y > 0 and a subsequence {x,,} of {x,}
such that ||V fiz,, — VfiTazyll = € for all i € IN. Since p} is nondecreasing, we have 0 > p;(go). But this
statement contradicts the uniform convexity of f on bounded sets. According to Theorems 2.13 and 2.14,
\Y fl* is uniformly continuous on bounded subsets of E;, hence we have

31_1)1;10 llzw — Tyzall = 0. (19)

By a similar argument, we have
lim ||u, — Spu,|| = 0.
n—o0o

Since ({Tx}",, T) and ({S,})7,, S) satisfy the AKTT-condition, we conclude that

“Zn - Tzn” < ”Zn - nzn” + “Tnzn - TZn“

20
< lzn = Tuzull + sup{l|Tx — Tx|| : x € kq} (20)

and

“un - S“n” < “”n - Sn”n” + “Snun - S”n“

21
< luy — Sputnll + sup{l|Spx — Sx|| : x € ky} 1)

where ky =sB ={z € E; : |zl £ s} and k; = rB = {z € E; : ||z|| < s}. By using Lemma 2.10, (20) and (21), we
get
lim 1z, = Tz, )| = 0 (22)
lim [l — Suy|l = 0. (23)
From (20), the boundedness of V f; and the uniform continuity of f; on bounded subsets of E;, we have
D¢ (Tuzn, zn) = fi(Tuzu) = fi(zn) = {Tuzn = 20,V izy) = 0, n — oo, (24)
This implies that

Df1 (Tnzn/ xn+1) = Df1 (Tnzn/ vff(ﬁnvflzn + (1 - ﬁn)vflTnZn))

25
< ﬁanl (Tuzn, zn) + (1 = ﬁn)Dﬁ(TnZn/ Tyzy) = 0, @)

as n — oo. From Proposition 2.3, (25) and (19), we obtain

Hm [lx41 = zull = 0. (26)
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By the same argument as above, we have
Hm lyner — uall = 0. (27)

On the other hand, by the boundedness of Vf; and V f, on bounded subsets of E; and E,, respectively, we
have

Dg (xns1,%n) = {xp = X, V1% = Vfixps1) + D (x4, X) = Dg (x041,%) = 0
Dp,(yns1, Yn) = Yn = 9,V L9 = Voyna) + D (Yn, §) = Dg, (Y1, §) = 0,
as n — oo. From Proposition 2.3, we have
Bim e = xll =0, Tim [lyer — yall = 0.
So from (26) and (27), we obtain
lim [l2, = %0l =0, lim llu, =y, = 0. 8)

Since the sequence {(x,, )} is bounded, there exists a subsequence {(x,,, ynkZ} of {(xy, yn)} such ttlat Xy — X
and y, — %. Thus z,, = ¥ and u,, — ¥ and so by (22) and (23), x € F(T) = F(T) and i € F(S) = F(S). Now,

we show that ¥ € N 1i71(0). Writing 09 = and 0}, = Res/;nhio e oResJ;},hl, we observe that

Dy,(2,20) = Dpy (2, OY (V£ (1 = yu)V fixn = YnA*V f3(Axy = By,))
=D (%, Resf,z,vhNO o ORESJ;M (VA = yu)V fixy — yuA'V fs(Ax, — By,)))
= Dfl % fo((l = V)V fixy — ynA'V f3(Ax, — Byn))

< D&, %) = yulf3(Axu — Byu) + fi(xn) — f3(=Byn)]
< Dfl(ﬁ,xn) < Dfl(fc,x,,_l).

Since % € h;\,l(O) =F (ResthN) and Resth is a BQFNE operator, it follows that for all n > 1, we have

n'tn

D (zy, Gﬁ"lVfl*w,,) < Dg (%, 95‘1fown) —Dg (&, z4)
< Dfl(je/ xi’l) - Dfl (5&/ xn+1) - O/ n — oo,

Therefore by Proposition 2.3, the uniform continuity of Vf; on bounded subsets, and the boundedness of
{ON1x,}, we get

lim ||z, - 0 'VAw,l =0, lim [Vfiz, ~ VAOY |l = 0. (29)
Again since X € h;,l_l(O) =F (Resﬁlﬁ,_1 hm) and Resﬁlznv_1 v is a BQFN operator for each n > 1, we have

D5 (637 fiwy, 072V fiwy) < D4 (R, 6572V fiwy,) — Dy (£, 65 7'V fiw,)
< D (&, x0) — Dg, (%, 077V fyw,)
< Dx R, x4) — Dg (%, 20)
< Dg (%, x4) = Df (R, x041), n— 00,

Hence lim,, o |03V fiw, — 0372V frwy|| = 0 and limy o [[VAOY 'V frw, — VAOY 2V frw,|| = 0. Similarly,
we can verify that

lim 1632V fiw, = 0,7V flw,l| = -+ = iij?ollg-};vf;wn — Vfiwall =0,
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lim IVAOY 2V fiw, — VAOY PV fiw,| = = lim IV AOLV fiw, — wyl| = 0.
Therefore for any i = 1,2, ..., N, we have
lim |0,V fiw, = 01V fiw, | =0 and  lim VALV fw, - VAO IV faw, = 0. (30)
From (29) and (30), fori =1,2,..., N we have
lim |lz, = Vfwll =0 and im0,V fiw, =V fiwll = 0. (31)

From the definition of the f;-resolvent, we have
VA0, 'V fiw,) € (VA + Ayhi) 6,V fiw,).

Hence foranyi=1,2,..,N
. 1 . . .
8, = (VA IV Fiw) = VAV fiw,) € O,V fw,). (32)

It follows form (30), (32) and the condition (ii) that lim,,_, ||\9§;||‘ =0foranyi=1,2,..,N. Since x,, — X, it
follows from (29) that z,, — X. Also from (31), we obtain that 0} (Vf;w,) — %, for eachi=1,2,...,,N. Note
that from the monotonicity of i;, we have

(n=9,z= 0, (Vfiwy)) >0,

for all (z,n) € G(A;) and for all i = 1,2,..,N. This implies that (n,z — ¥) > 0 for all (z,17) € G(h;) and
for any i = 1,2,...,N. Therefore by using the maximal monotonicity of A;, we obtain ¥ € hl.‘l(O) for any
i=1,2,..,N. Thus ¥ € N} 1;'(0). The same argument as above, reveals that £ € NYY, g7'(0). Furthermore,

Ax, — By, — AX — Bjj and by using the lower semicontinuity of f;, we have
f3(Ax — Byj) < liminf f3(Ax, — By,) = 0. (33)

From (33) and the fact that f3 is a one-to-one function, we have Ax = Bjj. Hence (X, #) € Q2. Now we show
that
lim sup[(£ — z,, A"V f3(Ax, — By,)) + (un, — §, B'V f3(Ax,, — By,)] < 0.

n—o0

From (18) and the fact that V f3 is uniformly continuous on bounded subset of E;, we have

lim sup[(% — z,, A"V f3(Axy, — Byn)) + Cun — §, B’V f3(Axy, — Byy)]
n—oo 34
= lim [(% - Zityr A*va(Axnm - Bynm» + <unm -1, B*Vf3(Axnm - B]/nm)]- G4

Since {(xy,,, ¥, )} isbounded, there exists a subsequence {(x,,ml ' Yy, )} of {(xn,,, Yun, )} such that (xnm,- , y,,ml) - (%, 7)
and from (28), we have (zn,, , tn,,) = (%, 7) where (¥, 7) € Q. It now follows that

lim [(% — Zityr A*Vf3(Axnm - B]/nm» + <unm -1, B*Vf.’»(Axnm - Bynm)]

m—o0

= lim[(% - anl./A*Vf?)(Axnmi - B]/nmi» + <unmi -1, B*Vf?’(Axnmi - Bynmi)] =0.

1—00

(35)

Thus from (16), (35), Y.p-; ¥» = o and Lemma 2.15, we have x, — X and y, — .
Case2. Suppose {Dy, (%, x,)+Dp,(, y»)} is not a monotone decreasing sequences. Thensetl', = D, (%, x,,)+
Dg,(§,yn) and let T : N — IN be a mapping defined for n > Ny, for some sufficiently large No, by

7(n) = max{k € N : k < n, T < Tl
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Then 7 is a non-decreasing sequence such that 7(1) — oo as n — oo and I't(y) < I'y(ur)+1 for n > Np. Using the
condition § € (0,1) in (15), we obtain

Ve (f3(Axem) = BYrw) + fi(xea) + f2(Yz)) = 0, 1 — 0.
Also, from (13), (14) and the condition (i), we obtain

&g{}o P;(”Vflzf(n) - VflTT(n)ZT(n)“) =0,

1}1_1}20 p:(HVquT(n) - VfZST(Tl)uT(Vl)H) =0.
Following the same argument as in Case 1, we have

’}1_{1(}0 1Xz(ny+1 = Zemll =0 and r}g{}o 1Y cey+1 — tzmll = 0,

I}I_I)IOIO ||xT(n)+1 - xT(n)H =0 and r}glc}o ||]/T(n)+1 - ]/T(n)” =0.

As in the Case 1, we also obtain that x;(;) = ¥ and y;(») — ¥ as n — oo, where (X, j) € Q. Furthermore, for
all n > Ny, we deduce from (16) that

D (R, xemy+1) + D (0, Yey+1) < Ve [D g (R, Xemy) + D g (4, Yoin)]
+ Ve [Y = Zen), AV f3(AXz(r) = BYz(n)) (36)
+ (Ueny — Y, BV f3(Axr(n) — BYzmy)]-

It now follows from (36) that

D (&, Xe(n) + D (0, Yew)) < Y = Zewy, AV f3(AXe(n) = BYe(ny))
ey — Y, BV f5(Axe(n) = BYeny))) = 0, 1 — oo.

Thus

lim 1—‘T(n) = 1}1_13;10 1—"r(n)+1~

n—oo

Furthermore, for n > No, we have I’y < T'y(y41 if n # 7(n) (i.e., T(n) <n), since I'; > T'jq for t(n) + 1 < j < n.
It then follows that for all n > Ny we have

0<T, < max{r’[(n)/ 1—‘T(n)+1} = FT(V[)+1'
This implies that lim,—,c I';(s) = 0, and hence x, — ¥ and y, — # as n — oo, where (¥,7) € Q. [
In some special cases, our result reduces to the result already obtained by others.

Remark 3.2. When forn € N, T, = S, = 0, Theorem 3.1 improves and extends the results of Sitthithakerngkiet et
al [21] and Byrne et al [9].

Remark 3.3. When h; = doc, and g; = dog, are the subdifferential of the indicator function of C; and Q;, respectively,
and T, = S, = 0, Theorem 3.1 improves and extends the result of Dong et al [11].

4. Application

In this section, we shall provide some applications of our main result to the split equality equilibrium
problem, and to the split equality optimization problem.
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4.1. Split equality equilibrium problem

Let C be a nonempty closed convex subset of a Banach space E and let G : C x C — R be a bifunction.
For solving the equilibrium problem, let us assume that the bifunction G satisfies the following conditions:
(A1) G(x,x) =0forallx € C,
(A2) G is monotone, i.e., G(x,y) + G(y,x) <O forany x,y € C,
(As3) G is upper-hemicontinuous, i.e., for each x, y,z € C,

limsup G(fz + (1 — t)x, y) < G(x, v),
t—0*

(A4) G(x,0) is convex and lower semicontinuous for each x € C.

The equilibrium problem is to find x* € C such that:
G(x",y) =0 VyeC
The set of solutions to this problem is denoted by EP(G).

Lemma 4.1. [17] Let f : E — (—00, +00] be a super coercive Legendre function and G be a bifunction of C X C into
R satisfying (A1) — (A4) and let x € E. Define a mapping Sé : E — Cas follows:

Sé(x) ={zeC:Gz,y)+{y-2,Vfz-Vfx)y>20, VyeC}.
Then
@) domSL. = E,
(ii) Sé is single valued,
(iii) Sé is a BENE operator,
(iv) the set of fixed points of S’; is the solution set of the corresponding equilibrium problem, i.e., F(Sé) = EP(G),

(v) EP(G) is closed and convex,

(vi) forall x € E and for all u € F(Sé), we have
Df(u, SL(x)) + D4(SL(x), %) < Df(u, x).

Proposition 4.2. [20] Let f : E — (—co, +00] be a super coercive, Legendre, Fréchet differentiable and totally convex
function. Let C be a closed and convex subset of E and assume that the bifunction G : C X C — R satisfies the
conditions (A1) — (As). Let Ag be a set-valued mapping of E into 2F defined by:

(zeE:G(x,y) 2(y—x,2z) Yye(C} xe(

Ac(r) = 0 xeE-C.

Then Ac is a maximal monotone operator, EP(G) = Aél(O) and S{; = Resﬁc.
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Theorem 4.3. Let Eq, E; and E3 be reflexive Banach spaces, let C C E1 and Q C E; be two nonempty closed convex
sets, let A : E| — Ez and B : E; — Ej3 be two bounded linear operators and let f1 : Ey — Rand f, : E; — R be
super coercive Legendre functions which are bounded, uniformly Fréchet differentiable and totally convex on bounded
subsets of Ey and E, respectively, and f3 : E3 — R be a convex, one-to-one and continuous function on E3 with f;!
continuous, let fori=1,2,..,N,H; : Cx C — Rand G; : Q X Q — R be bifunctions satisfying (A1) — (As). Let

Q= {(x, y): xe€ ﬁfilEP(hi), ye ﬂf‘ilEP(gi) such that Ax = By} #0,
Let {x,} be the sequence generated by

{zn = 5t 0--08] VAL = yn)V fixs = yuA'V f(Ax, — By,), -

U, = SéZNO . OS§1Vf£((1 — yn)szxn + ')/nB*Vfg,(Axn - B]/n)),

where the step-size v, is chosen as follows:

— min{ |f3(Axy — Byn)l |f3(Axy — Byn)l }
Y=o |f3(Axn = Byu)| + | f1(xa)l” | f3(Axn = Byn)l + | f2(yu)l ) 7

where o, € (0,1) is defined such that Y, , v, = co. Then the sequence {(x,, y,)} converges strongly to (%, i) € Q.

Proof. For 1 <i < N and the bifunctions H; : CXC — Rand G; : Q X Q — R, we can define Ay, and Ag,
as in Proposition 4.2. Putting h; = Ap,, gi = Ag, and forn € N, T, = S, = 0 and $, = 0 in Theorem 3.1, we
obtain the desired result. O

4.2. Split equality optimization problem

_LetEy, E; and E3 be Banach spaces, D C E; and U C H;, be two nonempty closed convex subsets. Let
{hi} : D - Rand {gi} : U — R be two families of proper convex and lower semi-continuous functions.
The so-called general split equality optimization problem with respect to {k;},{g;}, D and U is to find

x* € D,y* € U such that
hi(x*) = min hi(x), gi(y") = 1;16151 gi(y) and Ax*=By", foreach i>1, (38)

where A : E; — E3, B : E; — Ej3 are two bounded linear operators. We denote the solution set of the
problem (38) by I

Theorem 4.4. LetEq,Ey, E3,C,Q,A,B, fi, foand f3 bethe sameas in Theorem 4.3. Let fori = 1,2,...,N, h:C—R
and g; : Q — R be two families of proper convex and lower semi-continuous functions. Let I # O and the step-size
Vn 1s chosen as follows:

s min{ |f3(Axy — Byn)| |f3(Axy — Byn)| }
Y= O |f3(Axn = Byn)l + | fiCxa)l” | f3(Axn = Byn)l + 1 f2(yn)l |/

where o, € (0,1) is defined such that Y, yn = 0o. Then the sequence {(x,, y»)} generated in Theorem 4.3 converges
strongly to (%, ) € I.

Proof. Put Hi(x,y) = Hi(y) — hi(x) and Gi(x, y) = gi(y) — §i(x),i = 1. It is easy to see that {H;} : Cx C — Rand
{Gi} : QX Q — R are two families of equilibrium functions satisfying the conditions (A;) — (A4). Thus the
desired result follows from Theorem 4.3. [
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