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Abstract. In 1987 Harris proved-among others-that for each 1 < p < 2 there exists a two-dimensional
function f € L, such that its triangular partial sums S}, f of Walsh-Fourier series does not converge
almost everywhere. In this paper we prove that subsequences of triangular partial sums SﬁA My fing €
{1,2,...,ms — 1} on unbounded Vilenkin groups converge almost everywhere to f for each function f € L,.

Let IP denote the set of positive integers, IN := P U {0}. Let m := (1, m,, ...) denote a sequence of positive
integers not less than 2. Denote by Z,,,, := {0, 1, ..., m; — 1} the additive group of integers modulo m. Define
the group G, as the complete direct product of the groups Z,,;, with the product of the discrete topologies
of Z;y;’s. The direct product u of the measures

. 1 .
el =2 (G € Zm)
is the Haar measure on G,, with u(G,) = 1. The elements of G, can be represented by sequences x :=
(x0, x1, s Xjy ) (x]- € Zm].). The group operation + in G, is given by
x+y = (xo + yo (modmy), ..., X + yx (modmy), ...),

where x = (x, ..., Xk, ...) and ¥ = (Yo, ..., Yk, --.) € G. The inverse of + will be denoted by —.
It is easy to give a base for the neighborhoods of G, :

IO(x) = Gm1

In(x) = {_1/ € Gml]/O = X0 Yn-1= xn—l}

for x € Gy, n € IN. Define I, := [,,(0) for n € IN. The sets I,,(x) are called (m-adic) intervals.
Define Ay the o-algebra generated by rectangles I4(x!) X Ip(x?) as x = (x!,x?) rolls over G, X G,. Let
E4 g be the conditional expectation operator with respect to o-algebra Ay 5. That is,

Eapf(x!,x*) = MaMjp f O yau?, ).

La(x)xIp(x?)
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If A = B, then we simple write A4 and E4 instead of Ay 4 and Ea 4.
If we define the so-called generalized number system based on m in the following way: My := 1, M1 :=
mMy(k € IN), then every n € N can be uniquely expressed as n = }. n;M;, where n; € Z,, (j € N) and only
j=0
a finite number of n;’s differ from zero.

Next, we introduce on G, an orthonormal system which is called the Vilenkin system [1]. At first, define
the complex valued functions #(x) : G,, — C, the generalized Rademacher functions in this way

271X

Pi(x) == exp (*=-1, x€G,, ke N).

Now define the Vilenkin system ¢ := (¢, : n € IN) on G, as follows.

Un(x) = H pl()  (neN).
k=0

Specifically, we call this system the Walsh-Paley one if m = 2.
Dirichlet kernels are defined as follows

-1

¢% (H € EJ)
k=0

=

Recall that [7]

| M, ifxel,
D, (x) = { 0, ifxeGu\l. M

It is well known that (see ([7]))
wnZDM Z pl. 2)
a= }17] Vll
The norm of the space L, (G, X G;) is defined by (u is the product measue u X )

1/p

|fH f’fxx du(x', )| <o, 1<p<oo.

mXGm

The rectangular partial sums of the double Vilenkin-Fourier series are defined as follows:

—_
,_n

n—1 m—

Sum(fi !, 2) = FG o () e (),

i j=0

Iy
o
—.

where the number
Fan= [ ()55, () du (e ).
GuXGyy

is said to be the (i, j)th Vilenkin-Fourier coefficient of the function f.
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The triangular partial sums are defined as

k-1 k—i-1
S, x%f) =) Xfo i () (+2).
i=0 j=0
Set
SAx!, 2% ) i= Spa(x, % f).
It is evident that
Sy (xl,xz;f) = (f*D,f) (xl,xz)
= f F(vh v?) D (¢ = ' =) du (v, 1),
GuXGy
() = (7402) ()
= f FWLv) DR (=o' 2 =) du (v ),

GuXGy
where
k=1 k—i-1
Dy (xl, xz) = Y (xl) Ux (xz)
i=0 j=0
and
k=1 k-1
D/ (xl,xZ) = Vi (xl) Ux (xz) .

1]
[}
1]
[=}

i

j

In 1971 Fefferman proved [3] the following result with respect to the trigonometric system. Let P be an
open polygonal region in R?, containing the origin. Set

AP = {(/\xl,/\xz) : (xl,xz) € P}
for A > 0. Then foreveryp > 1,f €L, ([—n, n]z) it holds the relation

Y Al ) exp(i(n'y! + ) > £ (4 17) asd o oo

(nl,nz)e/\P

for a. e. (yl,yz) € [-m,m]*. That is, Sypf — f a. e. Sjolin gave [6] a better result in the case when P is

a rectangle. He proved the a. e. convergence for the class f € L(log" L)3 log™ log" L and for functions
feL(log" L)2 log" log" L when P is a square. This result for squares is improved by Antonov [2]. There is
a sharp constrant between the trigonometric and the Walsh case. In 1987 Harris proved [5] for the Walsh
system that if S is a region in [0, o) X [0, c0) with piecewise C! boundary not always paralled to the axes and
1 < p <2, then there exists an f € L, (G2 X Gy) such that S;pf does not converges a. e. and in L, norms as
A — oo, In particular, from theorem of Harris it follows that forany 1 < p < 2 there existsan f € L, (G2 X G3)
such that S, f does not converges a. e. as A — co.
In this paper we prove that the following is true.
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Theorem 1. Letny € {1,2,...,ma — 1} and f € Ly (G X Gy). Then subsequences of triangular partial sums S, ., f
of two-dimensional Fourier series on unbounded Vilenkin group converges almost everywhere to f .

Proof. We can write

HAMA—l HAMA —i-1

Dian () = ) ), wil)wi() @

i=0 =0
HAMA—l
1 2
= Z l,bz (x )DHAMA—i (x )
i=0
}’IA—l MA—l
_ . 1 D X 2
- I#1"”1‘/[,«; X naMy—i—rMy \ X
r=0 i=0
na— -1 —1
2
= Z P;& Z D(nA NMa~ ,(x)
i=0
nap—. -2 MA

= Z p;x Z D(n/\ -Ma— 1(x2)

i=0
+pZXA 1 Z IP, DMA l

= :Tg)( , X )+T1(42)(x,x).

Let n4 = 1. Since (see [4])
Di,—i (x) = D, (x) = Py, -4 (%) Di (=) (4)

for Tff) (xl, xz) we can write

My-1
Tf) (x1 xz) = Z l,bi(xl)DMA_i(xz) (5)
i=0

= D ()2 ()

_ Mu-1
Fr () X )i
i=0
Since (see [7])

DrMA—l (X) + IPTMA—I (x) D; (x) ’
1,..., ma—1 — 1, i= O,...,MA_l -1

DTMA,] +i (x)
r
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then we have

r=1 i=0
Ma_q—1
= : llil (Xl) Di (_x2>
l;ifl—l
+ pis () D (x) Do, ()
=1
m/\r 1—1 My -1
+ Phq (xl) Phq (—xz) Y, (xl) D; (—xz)
=1 i=0
My :—1 ma1-1 1
- Vi (xl) D; (—xz) oLy (x1 - xz)
i=0 r=0
ma_1—1
+ pg—l (.X )DrMA,l (_x2) DMA—l (xl)
r=1
Iterating this equality we obtain
Ma-1
> i) Di(=)
Al_:i) mj—1
i z[[ () D (—xZ)]DM/ (xl)]
j=0 r=1
A-1 my—1
X pi (xl - xz)
s=j+1 1=0

Tf) (xl, xz) = Dy, (xl) D, (xz)

A-1 (mj-1
EMA—l (_xz)z p; (xl)DrM/( xz)]
=0 \ r=1
A-1 ]ms—l
XD () [ 2 o2 (' =)

3773
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We can write
T(2,1) ( 1 xz)

mA 1-1
= EMA Z P 1 YMA 1 _xz) DMA—1 (xl) (8)
r=1
A-2 (mj—1
+¢MA x2) { P )
j=0 \ r=1
A=2
XDM( ) p x —x)
s=j+1 1=0

X1+ Z‘_ pA1 xt— ]
= .Tf“( )+T212)(x x)

The properties of the m-adic number system and the Vilenkin functions give My —1 = Z‘f:_ol(m i — DM;
and then

A-1 )
g = [ [ o] @
j=0

A-1 A-1 Al
exp(2mu(m; — D)x;/m;) = exp(—2mx;j/mj) = H 1/1M/,(x).
=0 =0 =0
That is, since
r—1
Dim,, (x) = [Z Pl ()| Dy, (%) 9
q=0
and
Pt () = Por, ) Ppr, () P ) (10)
we get
T¢ (x',2%) (11)

Y (=57 s (7). WO( )

ma1—1 rl
X[ZpAl P

I
<
£

|

=
N
~—
<
S
\/T\
=
)
~
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where function Cl)gll (xl, xz) is A,_1 measurable.
From (10) we have

TAle)(x x)

@S’)_l (xl, xz) ,

mu_1—1 my_1—1
L8 )L o )

=1 1=1

where functions q)gjzl xl x2) ,j = 2,3 are A,_; measurable.

Combining (8), 11 and (12) we have
Tg,l) (xll 2)

ma-1—1
= [Z 10211 ZPA 1 ](D(l) x! xz)
r=1
+pa-1 (— )(Df)_l (x ,X )

ma-1—1 mAl -1
! l+1
H L () 2 et (e
=1

)09 (1,2).
Set
tf’l) (yl, yZ;f) = (f % TS’D) (yl, yz).
Then it is evident that

99 (9 = 55, (137 (1) = £ (55, (9)-

On the other hand, from (13) we conclude that

(G0 (S5, () =

3775

(12)

(13)
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Hence,
(50 () = €57 (S5, () = Siw, (D) (14)
Since

I (Ol <

from (14) and Bessel’s inequality for two dimensional L, functions and the two dimensional Vilenkin system
we obtain

2 oo
swl V| < LIl as)
A 2 A=0
= Y e (s -5 ),
A=0
< e lIsk (D=5, O,
A=0
< <|lA:-
Now, we suppose that 14 > 1. Then we have
Ma-1
) = o) L )P
i=0

— p;llA—l (xl) cD(4) (xl xz)
where function fD(4) ( 1 2) is A4 measurable. Then we can write
1 (F) = f+T =5, (82 () =12 (S5, (D),
(9 (85, (N) =0,
1 (F) = 13 (S, (F) = S5, ().

Since for any fixed A

I (A, <

then as above we can prove that

Sjptf) NI < c”sz (16)

Since

sup |y, (D <ellfll,-
A 2

from (5) we obtain that

sup 2| el a7)
A 2
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Since

Dy—nmip=i (X) = Dguy—r—1ymy+m,—i (%)
= D(HA—?’—l)MA (x) + IP(HA—?—l)MA (x) DMA—i (x) 7

using (9) for Tg) (xl, xz) we have

Tixl) (xll xz)

na—2
Z pA D(HA —r=1)Ma ( 2) D, (xl)
np—2 1

M/\
+ Z PA Z 4’1 DMA z 1)b(nA -r= 1)MA( 2)
i=0

D1, ()2, ()

+Du, (xl) D, (xz){ PZ; (x2> + A (xl)
X ;@Z‘z n/i2 qu (xz) o, (xl)}

W <xl>}

r=1 g=1

na—2
[Etr i

3777

where functions CDI(q]) (x , X ), j = 5,6 are Ay measurable. Then analogously, as above we can prove that

sup |f>eTS)|
A

=elil.

mbining (3), (17) and (18) we conclude that

0O
Q

sup |55, (F)

SC“f”z (fELZ(GmXGm))-
2

By the well-known density argument we complete the proof of Theorem 1.

O

(18)
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