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Categorical Properties of L-Fuzzifying Convergence Spaces
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Abstract. In this paper, categorical properties of L-fuzzifying convergence spaces are investigated. It is
shown that (1) the category L-FYC of L-fuzzifying convergence spaces is a strong topological universe; (2) the
category L-FYKC of L-fuzzifying Kent convergence spaces, as a bireflective and bicoreflective subcategory
of L-FYC, is also a strong topological universe; (3) the category L-FYLC of L-fuzzifying limit spaces, as a
bireflective subcategory of L-FYKC, is a topological universe.

1. Introduction

In the realm of the theory of topological spaces, natural function spaces cannot be discussed in a
satisfactory way, i.e., continuous convergence cannot be described via a topology. This leads to the result
that the category of topological spaces and continuous mappings is not Cartesian closed. Kowalsky and
Fischer independently enlarged the setting of topological spaces to limit spaces, where the continuous
convergence could be always induced by a limit structure. Moreover, the resulting category of limit spaces
and continuous mappings is not only Cartesian closed, but also a strong topological universe, which means
that it is Cartesian closed, extensional and has the property that quotient mappings are productive.

With the development of fuzzy mathematics, many researchers generalized convergence theory to the
fuzzy setting [1, 6, 7, 10, 20–22, 24, 38, 40]. In 2001, Jäger [10] introduced a definition of stratified L-
generalized convergence spaces by means of stratified L-filters and showed that the resulting category
SL-FCS is Cartesian closed, which can embed the category of stratified L-topological spaces as a reflective
full subcategory. Afterwards, so many researchers investigated stratified L-generalized convergence spaces
from different aspects [1, 2, 11–19, 28, 40]. In [41], Yao made use of L-filters of ordinary subsets to introduce
the concept of L-fuzzifying convergence spaces and also showed that the resulting category is Cartesian
closed, which can embed the category of L-fuzzifying topological spaces as a reflective full subcategory. In
a more general sense, Pang and Fang [22, 23] proposed the notion of L-fuzzy Q-convergence structures and
established its relationship with L-fuzzy topologies. In this direction, Pang further introduced (L,M)-fuzzy
convergence structures [24, 29], enriched (L,M)-fuzzy convergence structures [25] and stratified L-prefilter
convergence structures [33], and investigated their categorical properties and topological properties.

In the above-mentioned works, researchers mainly concerned on the categorical relationship between
fuzzy convergence spaces and fuzzy topological spaces, and the Cartesian closedness of fuzzy convergence
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spaces. Actually, categorical properties are important spatial properties in many different mathematical
research areas. By this motivation, researchers explored the categorical properties of fuzzy filter spaces,
fuzzy (semi, pre, quasi) uniform convergence spaces and fuzzy convex spaces, such as Yang and Li [39],
Pang et al. [26, 27, 30–32, 34], Fang [3–5], Xiu et al. [36, 37]. Besides the Cartesian closedness, extensionality
and the productivity of quotient mappings also are important categorical properties. In this paper, we
will make a systematic investigation on categorical properties of L-fuzzifying convergence spaces. That is,
we will explore the Cartesian-closedness, extensionality and the productivity of quotient mappings in the
category of L-fuzzifying convergence spaces as well as its subcategories.

This paper is organized as follows. In Section 2, we recall some necessary concepts and notations. In
Section 3, we show the category L-FYC of L-fuzzifying convergence spaces is a strong topological universe.
In Section 4, we propose the concept of L-fuzzifying Kent convergence spaces and prove that the resulting
category L-FYKC, as a bireflective and bicoreflective subcategory of L-FYC, is also a strong topological
universe. In Section 5, we show the category L-FYLC of L-fuzzifying limit spaces, as a a bireflective full
subcategory of L-FYKC, is a topological universe.

2. Preliminaries

Throughout this paper, let (L,
∨
,
∧
,→) be a complete Heyting algebra unless otherwise statement. The

smallest element and the greatest element of L are denoted by ⊥ and >, respectively. For a given set X, let
2X denote the powerset of X and let LX denote the set of all L-subsets on X.

Definition 2.1. ([9]) A mapping F : 2X
−→ L is called an L-filter of ordinary subsets on X if it satisfies:

(F1) F (∅) = ⊥,F (X) = >,
(F2) A ⊆ B implies F (A) 6 F (B),
(F3) F (A ∩ B) > F (A) ∧ F (B).

The family of all L-filters of ordinary subsets on X will be denoted byFL(X).An order onFL(X) is defined
as follows: ∀F ,G ∈ FL(X),F 6 G ⇐⇒ ∀ A ∈ 2X,F (A) 6 G(A).

For every x ∈ X, [x] ∈ FL(X) defined by

∀A ∈ 2X, [x](A) =

{
>, x ∈ A,
⊥, otherwise,

is an L-filter of ordinary subsets on X.
The following conclusions with respect to L-filters of ordinary subsets parallel to those stratified L-filters

possess, we will omit the proofs. For more details we refer to [8, 10].

Proposition 2.2. For a nonempty family {Fλ}λ∈Λ of L-filters of ordinary subsets on X, there exists an L-filter of
ordinary subsets F such that Fλ 6 F (∀λ ∈ Λ), if and only if

Fλ1 (A1) ∧ · · · ∧ Fλn (An) = ⊥ whenever A1 ∩ · · · ∩ An = ∅,

for n ∈N, A1, · · · ,An ∈ 2X, {λ1, · · · , λn} ⊆ Λ. In the case of existence, the supremum
∨
λ∈Λ Fλ of a nonempty family

{Fλ}λ∈Λ of L-filters of ordinary subsets is given by∨
λ∈Λ

Fλ

 (A) =
∨
n∈N

∨
{Fλ1 (A1) ∧ · · · ∧ Fλn (An) | A1 ∩ · · · ∩ An ⊆ A}

for all A ∈ 2X.

Letϕ : X −→ Y be a mapping and letF be an L-filter of ordinary subsets on X. Letϕ→(A) = {ϕ(x) | x ∈ A}
for all A ∈ 2X and ϕ←(B) = {x ∈ X | ϕ(x) ∈ B} for all B ∈ 2Y. Then the mapping ϕ⇒(F ) : 2Y

−→ L defined
by ϕ⇒(F )(A) = F (ϕ←(A)) for each A ∈ 2Y, is an L-filter of ordinary subsets on Y, which is called the image
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of F under ϕ. Given a mapping ϕ : X −→ Y and an L-filter of ordinary subsets F on Y, the mapping
ϕ⇐(F ) : 2X

−→ L defined by
∀A ∈ 2X, ϕ⇐(F )(A) =

∨
ϕ←(B)⊆A

F (B)

is an L-filter of ordinary subsets if and only if F (B) = ⊥ whenever ϕ←(B) = ∅ for all B ∈ 2Y. In case
ϕ⇐(F ) ∈ FL(X), it is called the inverse image of F under ϕ.

Proposition 2.3. Let F ∈ FL(X) and let ϕ : X −→ Y be a mapping. Then the following statements are equivalent:
(1) ϕ⇐(F ) is an L-filter of ordinary subsets.
(2) F (B) = ⊥ whenever ϕ←(B) = ∅ for all B ∈ 2Y.
(3) F (Y − ϕ→(X)) = ⊥.

Let {Xλ}λ∈Λ be a family of nonempty sets and Fλ ∈ FL(Xλ) for each λ ∈ Λ. Define
∏

λ∈Λ Fλ as follows:

∏
λ∈Λ

Fλ :=
∨
λ∈Λ

p⇐λ (Fλ) ∈ FL

∏
λ∈Λ

Xλ

 ,
where for each λ ∈ Λ, pλ :

∏
µ∈Λ Xµ −→ Xλ is the projection mapping. We call

∏
λ∈Λ Fλ the product of

{Fλ}λ∈Λ. For two L-filters of ordinary subsets F and G, their product is usually denoted by F × G.

Proposition 2.4. Let {Xλ}λ∈Λ be a family of nonempty sets, pλ :
∏

µ∈Λ Xµ −→ Xλ be the projection mapping,
Fλ ∈ FL(Xλ) (∀λ ∈ Λ) and F ∈ FL (

∏
λ∈Λ Xλ). Then the following statements hold:

(1)
∏

µ∈Λ p⇒µ (F ) 6 F .

(2) p⇒λ
(∏

µ∈Λ Fµ

)
> Fλ, ∀λ ∈ Λ.

(3) p⇒λ
(∏

µ∈Λ p⇒µ (F )
)

= Fλ, ∀λ ∈ Λ.

Definition 2.5. ([41]) An L-fuzzifying convergence structure on X is a mapping lim : FL(X) −→ LX satisfying
(LFY1) ∀x ∈ X, lim[x](x) = >,
(LFY2) ∀F ,G ∈ FL(X), F 6 G implies limF 6 limG.

The pair (X, lim) is called an L-fuzzifying convergence space.

A continuous mapping between two L-fuzzifying convergence spaces (X, limX) and (Y, limY) is a mapping
ϕ : X −→ Y such that for each F ∈ FL(X) and x ∈ X, limXF (x) 6 limYϕ⇒(F )(ϕ(x)). Let L-FYC denote the
category with L-fuzzifying convergence spaces as objects and with continuous mappings as morphisms.

From a categorical aspect, initial structures, final structures and power structures in L-FYC can be easily
described as follows:

Initial structures: Let (ϕλ : X −→ (Xλ, limλ))λ∈Λ be a source. Then

limF (x) =
∧
λ∈Λ

limλ(ϕ⇒λ (F ))(ϕλ(x))

is the initial L-fuzzifying convergence structure on X [41].
Final structures: Let (ϕλ : (Xλ, limλ) −→ X)λ∈Λ be a sink and define for each F ∈ FL(X) and x ∈ X,

limF (x) =

{
>, if F > [x],∨

λ∈Λ

∨
ϕλ(xλ)=x

∨
ϕ⇒(Fλ)6F limλFλ(xλ), if F � [x].

Then lim is final with respect to the given sink. In particular, for a surjective mapping ϕ : (X, limX) −→ Y
as a sink, the final structure limY with respect to the sink is called the quotient structure, and the surjective
mapping ϕ : (X, limX) −→ (Y, limY) is called the quotient mapping.

The product space, subspace and quotient space are formed in the natural way.
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Power structures: Let (X, limX) and (Y, limY) be L-fuzzifying convergence spaces. We define the L-
fuzzifying convergence structure of continuous convergence on the set of morphisms from X to Y (C(X,Y))
as follows:

c- limF (ϕ) =
∧

H∈FL(X)

∧
x∈X

(
limXH(x)→ limYev⇒(F ×H)(ϕ(x))

)
,

where F ∈ FL(C(X,Y)) and ev : C(X,Y) × X −→ Y, (ϕ, x) 7−→ ϕ(x) is the evaluation mapping.

3. L-FYC is a Strong Topological Universe

Recall in a topological category C, a partial morphism from X to Y is a C-morphism ϕ : Z −→ Y whose
domain is a subobject of X. A topological category C is called extensional provided that every C-object Y
has a one-point extension Y∗, in the sense that every C-object Y can be embedded via the addition of a single
point∞Y into a C-object Y∗ such that for every partial morphism ϕ : Z −→ Y from X to Y, the mapping ϕ∗:
X −→ Y∗ defined by

ϕ∗(x) =

{
ϕ(x), if x ∈ Z;
∞Y, if x < Z.

is a C-morphism.
Several categorical properties for a topological category are proposed by Preuss in the book [35], namely:
(CP1) It is Cartesian-closed,
(CP2) It is extensional,
(CP3) It is closed under formations of products of quotient mappings.
According to the terminology of [35], a topological category C is called:
(1) strongly Cartesian-closed provided that C fulfills (CP1) and (CP3),
(2) a topological universe provided that C fulfills (CP1) and (CP2),
(3) a strong topological universe provided that C fulfills (CP1)–(CP3).

Theorem 3.1. ([41]) The category L-FYC is a Cartesian closed topological category.

For convenience, in the sequel, we suppose that X is a nonempty set and ∞X < X. Put X∗ = X ∪ {∞X}

and i : X −→ X∗ be the inclusion mapping. By Proposition 2.3, we know for each F ∈ FL(X∗), i⇐(F ) exists
if and only if F ({∞X}) = ⊥. Then we have the following proposition.

Proposition 3.2. Let (X, lim) be an L-fuzzifying convergence space and define lim∗ : FL(X∗) −→ LX∗ as follows:

lim∗F (x) =

{
>, x = ∞X or F ({∞X}) , ⊥;
lim i⇐(F )(x), x , ∞X and F ({∞X}) = ⊥.

Then lim∗ is an L-fuzzifying convergence structure on X∗.

Proof. It suffices to verify that lim∗ satisfies (LFY1) and (LFY2). Indeed,
(LFY1) For each x ∈ X, it follows from [x]({∞X}) = ⊥ that

lim∗[x](x) = lim i⇐([x])(x) = lim[x](x) = >.

Further, if x = ∞X, then lim∗[x](∞X) = >.
(LFY2) Take F , G ∈ FL(X) with F 6 G. If x = ∞X, then lim∗F (x) = > = lim∗G(x). Now suppose that

x , ∞X. If F ({∞X}) , ⊥, then G({∞X}) , ⊥. Thus we have lim∗F (x) = > = lim∗G(x). If F ({∞X}) = ⊥, then
there are two cases.

Case 1: G({∞X}) = ⊥, we have

lim∗F (x) = lim i⇐(F )(x) 6 lim i⇐(G)(x) = lim∗G(x).

Case 2: G({∞X}) , ⊥, the conclusion lim∗F (x) 6 lim∗G(x) follows from the fact that lim∗G(x) = >.
As a result, lim∗ is an L-fuzzifying convergence structure on X∗.
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Theorem 3.3. The category L-FYC is extensional.

Proof. Suppose that (X, limX) is an L-fuzzifying convergence space. By Proposition 3.2, we obtain an L-
fuzzifying convergence space (X∗, lim∗X). It suffices to show that (X∗, lim∗X) is the one-point extension of
(X, limX).

Firstly, we show that (X, limX) is a subspace of (X∗, lim∗X). Let limX be the initial structure on X with
respect to the inclusion mapping i : X −→ X∗, i.e., limXF (x) = lim∗X i⇒(F )(x) for all F ∈ FL(X) and x ∈ X.
Since i⇒(F )({∞X}) = F (i←({∞X})) = F (∅) = ⊥, we have

lim∗Xi⇒(F )(x) = limXi⇐ ◦ i⇒(F )(x) = limXF (x).

Thus, limX = limX. That is to say, (X, limX) is a subspace of (X∗, lim∗X).
Next, we show that (X∗, lim∗X) is the one-point extension of (X, limX). Let (Y, limY) be an L-fuzzifying

convergence space, (Z, limZ) be a subspace of (Y, limY) and ϕ : (Z, limZ) −→ (X, limX) be a continuous
mapping. Let k : Z −→ Y denote the inclusion mapping andϕ∗ : Y −→ X∗ denote the extensional mapping of
ϕ, i.e.,ϕ∗(y) = ϕ(y) for all y ∈ Z, andϕ∗(y) = ∞X otherwise. In order to prove thatϕ∗ : (Y, limY) −→ (X∗, lim∗X)
is continuous, it suffices to verify that limYG 6 lim∗X(ϕ∗)⇒(G) for all G ∈ FL(Y), which will be shown in the
following cases.

Case 1: k⇐(G) does not exist, i.e., G(Y − k→(Z)) = G(Y − Z) , ⊥. In this case, it follows from Y − Z =
(ϕ∗)←({∞X}) that

(ϕ∗)⇒(G)({∞X}) = G((ϕ∗)←({∞X})) = G(Y − Z) , ⊥.

Hence, lim∗X(ϕ∗)⇒(G)(ϕ∗(y)) = > > limYG(y).
Case 2: k⇐(G) exists. First of all, we prove the following conclusions:
(1) i←((ϕ∗)→(B)) = ϕ→(k←(B)) for all B ∈ 2Y,
(2) ϕ⇒(k⇐(G)) 6 i⇐((ϕ∗)⇒(G)) for all G ∈ FL(Y).
For (1), take any x ∈ X. Then

x ∈ i←((ϕ∗)→(B)) ⇐⇒ x = i(x) ∈ (ϕ∗)→(B)
⇐⇒ ∃y ∈ B, s.t. x = ϕ∗(y) (x ∈ X)
⇐⇒ ∃y ∈ B ∩ Z, s.t. x = ϕ∗(y) = ϕ(y)
⇐⇒ ∃y ∈ k←(B), s.t. x = ϕ(y)
⇐⇒ x ∈ ϕ→(k←(B)).

For (2), take any G ∈ FL(Y) and A ∈ 2X. Then

ϕ⇒(k⇐(G))(A) = k⇐(G)(ϕ←(A)) =
∨

k←(B)⊆ϕ←(A)

G(B)

6
∨

ϕ→(k←(B))⊆A

G((ϕ∗)← ◦ (ϕ∗)→(B))

=
∨

i←((ϕ∗)→(B))⊆A

G((ϕ∗)←((ϕ∗)→(B))) (by (1))

6
∨

i←(B∗)⊆A

G((ϕ∗)←(B∗))

=
∨

i←(B∗)⊆A

(ϕ∗)⇒(G)(B∗)

= i⇐((ϕ∗)⇒(G))(A).
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Now we show that ϕ∗ : (Y, limY) −→ (X∗, lim∗X) is continuous. Take any y ∈ Y. If y ∈ Z, then

limYG(y) 6 limYk⇒(k⇐(G))(y)
= limZk⇐(G)(y)
6 limXϕ

⇒(k⇐(G))(ϕ(y))
6 limXi⇐((ϕ∗)⇒(G))(ϕ∗(y))
= lim∗X(ϕ∗)⇒(G)(ϕ∗(y)).

If y ∈ Y − Z, then ϕ∗(y) = ∞X. It follows from lim∗X(ϕ∗)⇒(G)(∞X) = > that limYG(y) 6 lim∗X(ϕ∗)⇒(G)(ϕ∗(y)).
This implies the continuity of ϕ∗ : (Y, limY) −→ (X∗, lim∗X).

As a consequence, the category L-FYC is extensional.

By Theorems 3.1 and 3.3, we obtain

Theorem 3.4. The category L-FYC is a topological universe.

In the sequel, we will show that the category L-FYC satisfies (CP3). To this end, the following lemma is
necessary.

Lemma 3.5. Let {Fλ}λ∈Λ be a family of L-filters of ordinary subsets with Fλ ∈ FL(Xλ) (λ ∈ Λ). Then for each
A ∈ 2

∏
λ∈Λ Xλ ,∏
λ∈Λ

Fλ

(A) =
∨
n∈N

∨∧n
i=1Fλi (Bλi ) | Bλ = Xλ when λ < {λi}

i=n
i=1 ,

∏
λ∈Λ

Bλ ⊆ A


Proof. For each A ∈ 2

∏
λ∈Λ Xλ , we have∏

λ∈Λ

Fλ

 (A)

=

∨
λ∈Λ

p⇐λ (Fλ)

 (A)

=
∨
n∈N

∨
{∧

n
i=1p⇐λi

(Fλi )(Aλi ) | ∩
n
i=1Aλi ⊆ A} (by Proposition 2.2)

=
∨
n∈N

∨
∧n

i=1Aλi⊆A

∧
n
i=1

∨
p←λi

(Bλi )⊆Aλi

Fλi (Bλi )

=
∨
n∈N

∨
∧n

i=1Aλi⊆A

∨
p←λ1

(Bλ1 )⊆Aλ1

· · ·

∨
p←λn

(Bλn )⊆Aλn

∧
n
i=1Fλi (Bλi )

=
∨
n∈N

∨
∧n

i=1p←λi
(Bλi )⊆A

∧
n
i=1Fλi (Bλi )

=
∨
n∈N

∨∧n
i=1Fλi (Bλi ) | Bλ = Xλ when λ < {λi}

i=n
i=1 ,

∏
λ∈Λ

Bλ ⊆ A

 .
This proves the conclusion.

Proposition 3.6. Let {ϕλ : Xλ −→ Yλ} be a family of surjective mappings and let {Fλ}λ∈Λ be a family of L-filters of
ordinary subsets with Fλ ∈ FL(Xλ). Then∏

λ∈Λ

ϕλ


⇒ ∏

λ∈Λ

Fλ

 =
∏
λ∈Λ

ϕ⇒λ (Fλ).
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Proof. Let∏
λ∈Λ Xλ

∏
λ∈Λ ϕλ
−−−−−−→

∏
λ∈Λ Yλ

pλ
y qλ

y
Xλ

ϕλ
−−−−−→ Yλ

be the product commutation diagram. Firstly, the inequality∏
λ∈Λ

ϕλ


⇒ ∏

λ∈Λ

Fλ

 >∏
λ∈Λ

ϕ⇒λ (Fλ)

can be verified as follows:∏
λ∈Λ

ϕλ


⇒ ∏

λ∈Λ

Fλ


>

∏
λ∈Λ

q⇒λ


∏
λ∈Λ

ϕλ


⇒ ∏

λ∈Λ

Fλ


 (by Proposition 2.4 (1))

=
∏
λ∈Λ

qλ ◦
∏
λ∈Λ

ϕλ


⇒ ∏

λ∈Λ

Fλ


=

∏
λ∈Λ

(
ϕλ ◦ pλ

)⇒ ∏
λ∈Λ

Fλ


=

∏
λ∈Λ

ϕ⇒λ

p⇒λ

∏
λ∈Λ

Fλ


 (by Proposition 2.4 (2))

>
∏
λ∈Λ

ϕ⇒λ (Fλ).

Conversely, for all A ∈ 2
∏

λ∈Λ Yλ , by Lemma 3.5, we have∏
λ∈Λ

ϕλ


⇒ ∏

λ∈Λ

Fλ

 (A)

=

∏
λ∈Λ

Fλ



∏
λ∈Λ

ϕλ


←

(A)


=

∨
n∈N

∨{
∧

n
i=1 Fλi (Bλi ) | Bλ = Xλ when λ < {λi}

i=n
i=1 ,

∏
λ∈Λ

Bλ ⊆

∏
λ∈Λ

ϕλ


←

(A)
}

and ∏
λ∈Λ

ϕ⇒λ (Fλ)

 (A)

=
∨
n∈N

∨∧n
i=1Fλi (ϕ

←

λi
(Eλi )) | Eλ = Yλ when λ < {λi}

i=n
i=1 ,

∏
λ∈Λ

Eλ ⊆ A

 .
Take each n ∈N and Bλ ∈ 2Xλ (λ ∈ Λ) such that Bλ = Xλ when λ < {λi}

i=n
i=1 and

∏
λ∈Λ Bλ ⊆

(∏
λ∈Λ ϕλ

)← (A).
Let Eλ = ϕ→λ (Bλ) for all λ ∈ Λ. Then

∧
n
i=1Fλi (ϕ

←

λi
(Eλi )) = ∧n

i=1Fλi (ϕ
←

λi
(ϕ→λi

(Bλi ))) > ∧
n
i=1Fλi (Bλi ).
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Since ϕλ is surjective, we have Eλ = Yλ when λ < {λi}
i=n
i=1 . Further, we have

∏
λ∈Λ

Eλ =
∏
λ∈Λ

ϕ→λ (Bλ) =

∏
λ∈Λ

ϕλ


→ ∏

λ∈Λ

Bλ

 ⊆
∏
λ∈Λ

ϕλ


→ 

∏
λ∈Λ

ϕλ


←

(A)

 ⊆ A,

Thus, we obtain
(∏

λ∈Λ ϕλ
)⇒ (

∏
λ∈Λ Fλ) (A) 6 (

∏
λ∈Λ ϕ

⇒

λ (Fλ))(A) for all A ∈ L
∏

λ∈Λ Yλ , as desired.

Theorem 3.7. Suppose that L is a completely distributive lattice. If {ϕλ : (Xλ, limXλ ) −→ (Yλ, limYλ )} is a family of
quotient mappings in L-FYC, then the product mapping

∏
λ∈Λ

ϕλ :

∏
λ∈Λ

Xλ,
∏
λ∈Λ

limXλ

 −→
∏
λ∈Λ

Yλ,
∏
λ∈Λ

limYλ


is a quotient mapping in L-FYC.

Proof. Suppose thatϕ :=
∏

λ∈Λ ϕλ, (X, limX) :=
(∏

λ∈Λ Xλ,
∏

λ∈Λ limXλ

)
and (Y, limY) :=

(∏
λ∈Λ Yλ,

∏
λ∈Λ limYλ

)
.

Let

(X, limX)
ϕ

−−−−−→ (Y, limY)

pλ
y qλ

y
(Xλ, limXλ )

ϕλ
−−−−−→ (Yλ, limYλ )

be the product commutation diagram. Since ϕλ : (Xλ, limXλ ) −→ (Yλ, limYλ ) is a quotient mapping, i.e.,
limYλ is the final structure with respect to the sink ϕλ : (Xλ, limXλ ) −→ Yλ, we have

∀Gλ ∈ FL(Yλ), yλ ∈ Yλ, limYλGλ(yλ) =
∨

ϕ⇒λ (Fλ)6Gλ

∨
ϕλ(xλ)=yλ

limXλFλ(xλ).

In order to show that ϕ is a quotient mapping, it suffices to prove:
(1) ϕ is surjective.
(2) limY is the final structure with respect to the sink ϕ : (X, limX) −→ Y.
(1) is true since {ϕλ}λ∈Λ are all surjective. For (2), let limY denote the final structure with respect to the

sink ϕ : (X, limX) −→ Y. Then

∀G ∈ FL(Y),∀y ∈ Y, limYG(y) =
∨

ϕ⇒(F )6G

∨
ϕ(x)=y

limXF (x).

Next, we will show limY = limY.
On one hand, for each G ∈ FL(X) and y ∈ Y with ϕ⇒(F ) 6 G and ϕ(x) = y, we have

limXF (x) 6 limXλp⇒λ (F )(pλ(x))
6 limYλϕ

⇒

λ (p⇒λ (F ))(ϕλ(pλ(x)))
= limYλq⇒λ (ϕ⇒(F ))(qλ(ϕ(x)))
6 limYλq⇒λ (G)(qλ(y))

for all λ ∈ Λ. Then it follows that limXF (x) 6
∧
λ∈Λ limYλq⇒λ (G)(qλ(y)) = limYG(y). Thus, we obtain

limYG(y) 6 limYG(y).
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On the other hand, for each G ∈ FL(X) and y ∈ Y, by the completely distributive law, we have

limYG(y) =
∧
λ∈Λ

limYλq⇒λ (G)(qλ(y))

=
∧
λ∈Λ

∨
ϕ⇒λ (Fλ)6q⇒λ (G)

∨
ϕλ(xλ)=qλ(y)

limXλFλ(xλ)

=
∨

φ∈
∏

λ∈Λ Φλ

∧
λ∈Λ

∨
ϕλ(xλ)=qλ(y)

limXλφ(λ)(xλ) (where Φλ = {Fλ ∈ FL(Xλ) | ϕ⇒λ (Fλ) 6 q⇒λ (G)})

=
∨

φ∈
∏

λ∈Λ Φλ

∨
ψ∈

∏
λ∈Λ Ψλ

∧
λ∈Λ

limXλφ(λ)(ψ(λ)) (where Ψλ = {xλ ∈ Xλ | ϕλ(xλ) = qλ(y)})

6
∨

φ∈
∏

λ∈Λ Φλ

∨
ψ∈

∏
λ∈Λ Ψλ

∧
λ∈Λ

limXλp⇒λ

∏
λ∈Λ

φ(λ)


pλ

∏
λ∈Λ

ψ(λ)




=
∨

φ∈
∏

λ∈Λ Φλ

∨
ψ∈

∏
λ∈Λ Ψλ

limX

∏
λ∈Λ

φ(λ)

∏
λ∈Λ

ψ(λ)


6

∨
ϕ⇒(F )6G

∨
ϕ(x)=y

limXF (x)

= limYG(y),

where the last inequality holds from

ϕ

∏
λ∈Λ

ψ(λ)

 =
∏
λ∈Λ

ϕλ(ψ(λ)) =
∏
λ∈Λ

qλ(y) = y

and

ϕ⇒
∏
λ∈Λ

φ(λ)

 =

∏
λ∈Λ

ϕλ


⇒ ∏

λ∈Λ

φ(λ)


=

∏
λ∈Λ

ϕ⇒λ (φ(λ)) (by Proposition 3.6 )

6
∏
λ∈Λ

q⇒λ (G) (since φ(λ) ∈ φλ)

6 G. (by Proposition 2.4(1))

As a consequence, we obtain limY = limY, as desired.

By Theorems 3.4 and 3.7, we obtain the main result in this section.

Theorem 3.8. Let L be a completely distributive lattice. Then the category L-FYC is a strong topological universe.

4. L-Fuzzifying Kent Convergence Spaces

In [11], Jäger proposed the concept of stratified L-Kent convergence structures by means of stratified
L-filters and established its relationship with stratified L-generalized convergence structures. In this section,
we will adopt a similar way to propose the concept of L-fuzzifying Kent convergence spaces and study its
relationship with L-fuzzifying convergence spaces. Moreover, we will show that the category of L-fuzzifying
Kent convergence spaces is also a strong topological universe.
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Definition 4.1. An L-fuzzifying convergence structure lim : FL(X) −→ LX satisfying the following condition

(LFYK) ∀F ∈ FL(X), ∀x ∈ X, limF (x) = lim(F ∧ [x])(x)

is called an L-fuzzifying Kent convergence structure. The pair (X, lim) is called an L-fuzzifying Kent
convergence space. Let L-FYKC denote the full subcategory of L-FYC consisting of all L-fuzzifying Kent
convergence spaces.

Next let us explore deeper relationship between L-FYKC and L-FYC.

Theorem 4.2. The category L-FYKC is a full and bireflective subcategory of L-FYC.

Proof. For an L-fuzzifying convergence space (X, lim), we define

lim∗F (x) =
∨

F>G∧[x]

limG(x).

Then we claim that idX : (X, lim) −→ (X, lim∗) is the L-FYKC-bireflector. For this it suffices to prove:

(1) lim∗ is an L-fuzzifying Kent convergence structure on X.
(2) For (Y, limY) ∈|L-FYKC| and each mapping ϕ : X −→ Y, the continuity of ϕ : (X, lim) −→ (Y, limY)

implies the continuity of ϕ : (X, lim∗) −→ (Y, limY).

(1) (LFY1) and (LFY2) are obvious. For (LFYK), we first have

{G : F > G ∧ [x]} = {G : F ∧ [x] > G ∧ [x]}.

Thus it follows that

lim∗F (x) =
∨

F>G∧[x]

limG(x) 6
∨

F∧[x]>G∧[x]

limG(x) = lim∗(F ∧ [x])(x).

That is, lim∗F (x) = lim∗(F ∧ [x])(x).
(2) Since ϕ : (X, lim) −→ (Y, limY) is continuous, it follows that for each F ∈ FL(X) and each x ∈ X,

limF (x) 6 limYϕ⇒(F )(ϕ(x)).

Then

lim∗F (x) =
∨

F>G∧[x]

limG(x)

6
∨

ϕ⇒(F )>ϕ⇒(G)∧[ϕ(x)]

limYϕ⇒(G)(ϕ(x))

=
∨

ϕ⇒(F )>ϕ⇒(G)∧[ϕ(x)]

limY(ϕ⇒(G) ∧ [ϕ(x)])(ϕ(x))

6 limYϕ⇒(F )(ϕ(x)).

The continuity of ϕ : (X, lim∗) −→ (Y, limY) is proved, as desired.

By Theorem 4.2, we obtain the following result.

Corollary 4.3. The category L-FYKC is closed under formation of subspaces and product spaces in L-FYC.

Theorem 4.4. The category L-FYKC is a full and bicoreflective subcategory of L-FYC.



B. Pang / Filomat 32:11 (2018), 4021–4036 4031

Proof. For an L-fuzzifying convergence space (X, lim), we define

lim∗F (x) = lim(F ∧ [x])(x).

Then we claim that idX : (X, lim∗) −→ (X, lim) is the L-FYKC-bicoreflector. For this it suffices to prove:

(1) lim∗ is an L-fuzzifying Kent convergence structure on X.
(2) For (Y, limY) ∈|L-FYKC| and each mapping ϕ : Y −→ X, the continuity of ϕ : (Y, limY) −→ (X, lim)

implies the continuity of ϕ : (Y, limY) −→ (X, lim∗).

(1) Obvious.
(2) Since (Y, limY) ∈|L-FYKC|, it follows that for each G ∈ FL(Y) and each y ∈ Y,

limYG(y) = limY(G ∧ [y])(y).

By the continuity of ϕ, we have

limY(G ∧ [y])(y) 6 lim(ϕ⇒(G) ∧ [ϕ(y)])(ϕ(y)) = lim∗ϕ⇒(G)(ϕ(y)).

This implies limYG(y) 6 lim∗ϕ⇒(G)(ϕ(y)). The continuity of ϕ : (Y, limY) −→ (X, lim∗) is proved, as de-
sired.

Since L-FYC is a topological category and L-FYKC is a full and bicoreflective subcategory of L-FYC, we
obtain

Corollary 4.5. The category L-FYKC is a topological category.

In order to show that L-FYKC is a strong topological universe, the following preparations are necessary.

Definition 4.6. A continuous mapping ϕ : (X, limX) −→ (Y, limY) in the category L-FYC is called an iso-
morphism provided that ϕ : X −→ Y is bijective and that its inverse mapping ψ : (Y, limY) −→ (X, limX)
is continuous. We say that an L-fuzzifying convergence space (X, limX) is isomorphic to an L-fuzzifying
convergence space (Y, limY) if there exists an isomorphism between them.

In the following, we say that a subcategory D of a category C is isomorphism-closed in C if each C-object
C that is isomorphic to a D-object must be a D-object.

Lemma 4.7. The category L-FYKC is a full and isomorphism-closed subcategory of L-FYC.

Proof. Let ϕ : (X, limX) −→ (Y, limY) be an isomorphism in L-FYC and (X, limX) be an L-fuzzifying Kent
convergence space. To verify (Y, limY) is an L-fuzzifying Kent convergence space, it is necessary to show that
limY satisfies (LFYK). Now let ψ denote the inverse mapping of ϕ. Then for F ∈ FL(Y), by the continuity
of ϕ and ψ, we have

limYF (y) 6 limXψ
⇒(F )(ψ(y))

6 limYϕ
⇒(ψ⇒(F ))(ϕ(ψ(y)))

= limY(ϕ ◦ ψ)⇒(F )(ϕ(ψ(y))) = limYF (y).

Hence, limYF (y) = limXψ⇒(F )(ψ(y)). Further, since (X, limX) is an L-fuzzifying Kent convergence space,
we obtain

limY(F ∧ [y])(y) = limX(ψ⇒(F ∧ [y]))(ψ(y))
= limX(ψ⇒(F ) ∧ [ψ(y)]))(ψ(y))
= limXψ

⇒(F ))(ψ(y)) = limYF (y).

Thus, limY satisfies (LFYK), as desired.



B. Pang / Filomat 32:11 (2018), 4021–4036 4032

Lemma 4.8. ([35]) Let A be a topological category.
(1) If B is a bicoreflective (full and isomorphism-closed) subcategory of A which is closed under formation of finite

products in A, then B fulfills (CP1) whenever A fulfills (CP1) and the power objects in B arise from the corresponding
power objects in A by applying the bicoreflector.

(2) If B is a bicoreflective (full and isomorphism-closed) subcategory of A which is closed under formation of
subspaces in A, then B fulfills (CP2) whenever A fulfills (CP2) and the one point extensions in B arise from the
corresponding one point extensions in A by applying the bicoreflector.

(3) If B is a bicoreflective (full and isomorphism-closed) subcategory of A which is closed under formation of
products in A, then B fulfills (CP3) whenever A fulfills (CP3).

By Theorems 3.1, 3.3, 3.7 and Lemmas 4.7, 4.8, we obtain

Theorem 4.9. The category L-FYKC is a topological universe.

Theorem 4.10. Let L be a completely distributive lattice. Then the category L-FYKC is a strong topological universe.

By Theorem 4.4 and Lemma 4.8, we can obtain the concrete forms of power objects and one point
extensions in L-FYKC as follows:

Proposition 4.11. (1) Let (X, limX) and (Y, limY) be L-fuzzifying Kent convergence spaces. Then the power structure
on C(X,Y) is defined as follows:

c- limF (ϕ) =
∧

H∈FL(X)

∧
x∈X

(
limX

H(x)→ limYev⇒((F ∧ [ϕ]) ×H)(ϕ(x))
)
.

(2) Let (X, lim) be an L-fuzzifying Kent convergence space. Then the one point extension (X∗, lim∗) is defined by

lim∗F (x) =

{
>, x = ∞X or (F ∧ [x])({∞X}) , ⊥;
lim i⇐(F ∧ [x])(x), x , ∞X and (F ∧ [x])({∞X}) = ⊥.

5. L-Fuzzifying Limit Spaces

In this section, we will adopt the method in [11] to introduce the concept of L-fuzzifying limit spaces and
study its relationship with L-fuzzifying Kent convergence spaces. Besides, we will study the categorical
properties of L-fuzzifying limit spaces and will show that the category of L-fuzzifying limit spaces is a
topological universe.

Definition 5.1. An L-fuzzifying convergence structure lim : FL(X) −→ LX satisfying the following condition

(LFYL) ∀F , G ∈ FL(X), ∀x ∈ X, lim(F ∧ G)(x) = limF (x) ∧ limG(x)

is called an L-fuzzifying limit structure. The pair (X, lim) is called an L-fuzzifying limit space. Let L-FYLC
denote the full subcategory of L-FYKC consisting of L-fuzzifying limit spaces.

The axiom (LFYL) implies the axiom (LFYK), hence every L-fuzzifying limit space is an L-fuzzifying
Kent convergence space, i.e., the category L-FYLC is a full subcategory of L-FYKC. Moreover, we have the
following result.

Theorem 5.2. The category L-FYLC is a full and bireflective subcategory of L-FYKC.

Proof. For an L-fuzzifying Kent convergence space (X, lim), we define

lim∗F (x) =
∨
n∈N

{
∧

n
i=1 limFi(x) : F1,F2, . . . ,Fn ∈ FL(X) s.t. ∧n

i=1 Fi(x) 6 F
}
.

Then we claim that idX : (X, lim) −→ (X, lim∗) is the L-FYLC-bireflector.
For this it suffices to prove:
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(1) lim∗ is an L-fuzzifying limit structure on X.
(2) For (Y, limY) ∈|L-FYLC| and each mapping ϕ : X −→ Y, the continuity of ϕ : (X, lim) −→ (Y, limY)

implies the continuity of ϕ : (X, lim∗) −→ (Y, limY).

(1) (LFY1) and (LFY2) are obvious. For (LFYL) we use the distributivity of finite meets over arbitrary
joins. For F , G ∈ FL(X) and x ∈ X, we find

lim∗F (x) ∧ lim∗G(x)

=
∨
n∈N

{
∧

n
i=1 limFi(x) : ∧n

i=1Fi 6 F
}
∧

∨
m∈N

{
∧

m
k=1 limGk(x) : ∧m

k=1Gk 6 G
}

=
∨

n,m∈N

{
∧

n
i=1 limFi(x) ∧ ∧m

k=1 limGk(x) : ∧n
i=1Fi 6 F ,∧

m
k=1Gk 6 G

}
=

∨
n∈N

{
∧

n
i=1 limHi(x) : ∧n

i=1Hi 6 F ∧ G
}

= lim∗(F ∧ G)(x).

Thus, we obtain lim∗(F ∧ G)(x) = lim∗F (x) ∧ lim∗G(x).
(2) Since ϕ : (X, limX) −→ (Y, limY) is continuous, it follows that for each F ∈ FL(X) and each x ∈ X,

limF (x) 6 limYϕ
⇒(F )(ϕ(x)).

Then

lim∗F (x) =
∨
n∈N

{
∧

n
i=1limFi(x) : ∧n

i=1Fi 6 F
}

6
∨
n∈N

{
∧

n
i=1limYϕ

⇒(Fi)(ϕ(x)) : ϕ⇒(∧n
i=1Fi) 6 ϕ⇒(F )

}
=

∨
n∈N

{limY(∧n
i=1ϕ

⇒(Fi))(ϕ(x)) : ϕ⇒(∧n
i=1Fi) 6 ϕ⇒(F )}

=
∨
n∈N

{
limYϕ

⇒(∧n
i=1Fi)(ϕ(x)) : ϕ⇒(∧n

i=1Fi) 6 ϕ⇒(F )
}

6 limYϕ
⇒(F )(ϕ(x)).

The continuity of ϕ : (X, lim∗) −→ (Y, limY) is proved, as desired.

Since L-FYKC is a topological category and L-FYLC is a full and bireflective subcategory of L-FYKC, we
obtain

Corollary 5.3. The category L-FYLC is a topological category.

Lemma 5.4. ([35]) Let A be a topological category.
(1) If B is a bireflective (full and isomorphism-closed) subcategory of A which is closed under formation of power

objects in A, then B fulfills (CP1) whenever A fulfills (CP1).
(2) If B is a bireflective (full and isomorphism-closed) subcategory of A which is closed under formation of one

point extensions in A, then B fulfills (CP2) whenever A fulfills (CP2).

Lemma 5.5. The category L-FYLC is a full and isomorphism-closed subcategory of L-FYKC.

Proof. The proof is similar to that of Lemma 4.7, so we omit it.

Lemma 5.6. The category L-FYLC is closed under formation of power objects in L-FYKC.
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Proof. Let (X, limX) and (Y, limY) be L-fuzzifying limit spaces and let (C(X,Y), c- lim) be the power space in
L-FYKC. Next we show c- lim is an L-fuzzifying limit structure on C(X,Y). It suffices to show that c- lim
satisfies (LFY1), (LFY2) and (LFYL). (LFY1) and (LFY2) are obvious.

(LFYL) Take each F ,G ∈ FL(C(X,Y)) and ϕ ∈ C(X,Y). Then by Proposition 4.11, we have

c- limF (ϕ) ∧ c- limG(ϕ)

=
∧

H∈FL(X)

∧
x∈X

(
limXH(x)→ limYev⇒((F ∧ [ϕ]) ×H)(ϕ(x))

)
∧

∧
K∈FL(X)

∧
y∈X

(
limXK (x)→ limYev⇒((G ∧ [ϕ]) ×K )(ϕ(y))

)
6

∧
H∈FL(X)

∧
x∈X

(
(limXH(x)→ limYev⇒((F ∧ [ϕ]) ×H)(ϕ(x)))

∧(limXH(x)→ limYev⇒((G ∧ [ϕ]) ×H)(ϕ(x)))
)

=
∧

H∈FL(X)

∧
x∈X

(
limXH(x)→

(
limYev⇒((F ∧ [ϕ]) ×H)(ϕ(x))

∧limYev⇒((G ∧ [ϕ]) ×H)(ϕ(x))
))

=
∧

H∈FL(X)

∧
x∈X

(
limXH(x)→ limY(ev⇒((F ∧ [ϕ]) ∧ (G ∧ [ϕ])) ×H)(ϕ(x))

)

=
∧

H∈FL(X)

∧
x∈X

(
limXH(x)→ limY(ev⇒((F ∧ G ∧ [ϕ]) ×H))(ϕ(x))

)
= c- lim(F ∧ G)(ϕ),

as desired.

Since L-FYKC is Cartesian closed, it follows from Lemmas 5.4, 5.5 and 5.6 that

Theorem 5.7. The category L-FYLC is Cartesian closed.

Lemma 5.8. Let F , G ∈ FL(Y) and let ϕ : X −→ Y be a mapping. Then ϕ⇐(F ∧G) = ϕ⇐(F )∧ϕ⇐(G) whenever
ϕ⇐(F ) and ϕ⇐(G) exist.

Proof. By Proposition 2.3, it is easy to prove that ϕ⇐(F ∧ G) exists whenever ϕ⇐(F ) and ϕ⇐(G) exist. We
only need to show that ϕ⇐(F ∧ G) = ϕ⇐(F ) ∧ ϕ⇐(G). The inequality ϕ⇐(F ∧ G) 6 ϕ⇐(F ) ∧ ϕ⇐(G) holds
obviously. Conversely, for each A ∈ 2X, we have

(ϕ⇐(F ) ∧ ϕ⇐(G))(A) =
∨

ϕ←(B)⊆A

F (B) ∧
∨

ϕ←(C)⊆A

G(C)

=
∨

ϕ←(B)⊆A

∨
ϕ←(C)⊆A

(F (B) ∧ G(C))

=
∨

ϕ←(B∪C)⊆A

(F (B) ∧ G(C))

6
∨

ϕ←(D)⊆A

(F (D) ∧ G(D)) = ϕ⇐(F ∧ G)(A).

This proves ϕ⇐(F ∧ G) = ϕ⇐(F ) ∧ ϕ⇐(G).

Lemma 5.9. The category L-FYLC is closed under formation of one point extensions in L-FYKC.
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Proof. Let (X, lim) be an L-fuzzifying limit space and (X∗, lim∗) be the one point extension of (X, lim) in
L-FYKC. By Proposition 4.11, we have

lim∗F (x) =

{
>, x = ∞X or (F ∧ [x])({∞X}) , ⊥;
lim i⇐(F ∧ [x])(x), x , ∞X and (F ∧ [x])({∞X}) = ⊥.

Next we show that lim∗ is an L-fuzzifying limit structure on X∗. It suffices to prove that lim∗ satisfies
(LFYL). If x = ∞X, then lim∗(F ∧ G)(x) = > = lim∗F (x) ∧ lim∗G(x). If x , ∞X, then (F ∧ [x])({∞X}) =
(G∧ [x])({∞X}) = ⊥. By Proposition 2.3, we know i⇐(F ∧ [x]) and i⇐(G∧ [x]) exist. Further, by Lemma 5.8,
we obtain i⇐(F ∧ G ∧ [x]) = i⇐(F ∧ [x]) ∧ i⇐(G ∧ [x]). Hence, it follows that

lim∗F (x) ∧ lim∗G(x) = lim i⇐(F ∧ [x])(x) ∧ lim i⇐(G ∧ [x])(x)
= lim(i⇐(F ∧ [x]) ∧ i⇐(G ∧ [x]))(x)
= lim i⇐(F ∧ G ∧ [x]))(x)
= lim∗(F ∧ G)(x).

This proves lim∗ is an L-fuzzifying limit structure on X∗.

Since L-FYKC is extensional, it follows from Lemmas 5.4, 5.5 and 5.9 that

Theorem 5.10. The category L-FYLC is extensional.

Finally, we get the main result in this section.

Theorem 5.11. The category L-FYLC is a topological universe.

6. Conclusions

In this paper, we mainly demonstrated the categorical properties of several categories. Concretely,
we showed the categories of L-fuzzifying convergence spaces and L-fuzzifying Kent convergence spaces
possess Cartesian-closedness, extensionality and the productivity of quotient mappings. Hence they both
are strong topological universe in the sense of [35]. Further, we showed that the category of L-fuzzifying
limit spaces is Cartesian closed and extensional, whence it is a topological universe. Obviously, there is
a problem that has not been solved in this paper. That is, we are not sure if the category of L-fuzzifying
limit spaces satisfies (CP3). In the future, we will consider if the quotient mappings in the category of
L-fuzzifying limit spaces is productive.
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