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On k-circulant Matrices with the Lucas Numbers

Biljana Radičića

aSingidunum University, Belgrade, Serbia

Abstract. Let k be a nonzero complex number. In this paper, we determine the eigenvalues of a k-circulant
matrix whose first row is (L1,L2, . . . ,Ln), where Ln is the nth Lucas number, and improve the result which
can be obtained from the result of Theorem 7. [28]. The Euclidean norm of such matrix is obtained. Bounds
for the spectral norm of a k-circulant matrix whose first row is (L−1

1 ,L
−1
2 , . . . ,L

−1
n ) are also investigated. The

obtained results are illustrated by examples.

1. Introduction

In this paper, for an arbitrary positive integer n and a nonzero complex number k, symbols ψ and ω
denote any nth root of k and any primitive nth root of unity, respectively. For A ∈Cn×n, where Cn×n is the
set of all complex matrices of order n, the symbols λ j(A), j = 0, n − 1, | A |, ‖A‖E, ‖A‖2 and A◦−1 are used
to designate the eigenvalues, the determinant, the Euclidean norm, the spectral norm and the Hadamard
inverse of A, respectively. Let us recall that, for A=

[
ai, j

]
∈Cn×n,

‖A‖E =

√√√ n∑
i, j = 1

|ai, j |
2, ‖A‖2 =

√
max

1≤ i≤n
λi(A∗A), (1)

where A∗ is the conjugate transpose of A, and A◦−1 =
[
a−1

i, j

]
.

The Lucas numbers {Ln} satisfy the following recursive relation:

Ln =Ln−2 + Ln−1, n ≥ 2, (2)

with initial conditions L0 =2 and L1 =1.

Let α and β be the roots of the equation x2
− x − 1 = 0 i.e.

α=
1 +
√

5
2

, β=
1 −
√

5
2

, αβ=−1, α + β=1 and α − β=
√

5 . (3)
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Binet’s formula for the Lucas numbers is:

Ln =αn + βn =

(
1 +
√

5
2

)n

+

(
1 −
√

5
2

)n

. (4)

The following identities hold for the Lucas numbers:
n∑

i = 0

Li = Ln+2 − 1 and
n∑

i = 0

L2
i = LnLn+1 + 2 [= L2n+1 + (−1)n + 2] . (5)

For more information about these numbers we recommend: [3], [4], [13], [16], [17] and [26].

A matrix C of order n with the first row (c0, c1, c2, . . . , cn−1) is called a k-circulant matrix if C has the
following form:

C =



c0 c1 c2 · · · cn−2 cn−1
kcn−1 c0 c1 · · · cn−3 cn−2
kcn−2 kcn−1 c0 · · · cn−4 cn−3
...

...
...

. . .
...

...
kc2 kc3 kc4 · · · c0 c1
kc1 kc2 kc3 · · · kcn−1 c0


(6)

i.e. C satisfies the following conditions:

ci, j =

{
c j−i, i ≤ j

k cn+ j−i, otherwise , i = 2,n, j = 1,n . (7)

If C is a k-circulant matrix with the first row (c0, c1, c2, . . . , cn−1), then we shall write C=circn{k(c0, c1, c2, . . . , cn−1)}.
The designation for the order of a matrix can be omitted if the order of a matrix is known. Circulant (skew
circulant) matrices are k-circulant matrices for k = 1 (k = −1). R. E. Cline, R. J. Plemmons and G. Worm pre-
sented, in the paper [2], necessary and sufficient conditions for a complex square matrix to be a k-circulant
matrix (Lemma 2.[2] and Lemma 3.[2]).

It is important to point out that k-circulant matrices play important role in many areas (coding theory,
probability, statistics, numerical analysis, signal and image processing, engineering model etc.). There are
many papers devoted to k-circulant matrices (especially to circulant and skew circulant matrices). Let us
mention some of them: [5], [6], [10]−[12], [14], [15], [18]−[22], [27]−[32]. For example, the paper [11] is
devoted to skew circulant matrices involving the sum of Fibonacci and Lucas numbers. The four kinds of
norms (the Euclidean norm, the spectral norm, the maximum column sum matrix norm, the maximum row sum
matrix norm), and bounds for the spread of these matrices were given in that paper. Norms of circulant and
semicirculant matrices with Horadam’s numbers were considered in the paper [14]. In the paper [15], the
authors considered the spectral norms of k-circulant matrices whose entries are the biperiodic Fibonacci and
biperiodic Lucas numbers and obtained bounds for the spectral norms of such matrice. They also obtained
bounds for the spectral norms of Kronecker and Hadamard products of such matrices. The paper [27] is
devoted to circulant matrices involving the generalized r-Horadam numbers {Hr,n} which are defined as
follows:

Hr,n+2 = f (r)Hr,n+1 + 1(r)Hr,n, n ≥ 0,

where r∈R+, Hr,0 =a, Hr,1 =b, a, b∈R and f 2(r)+41(r) > 0. Except for the eigenvalues and the determinants of
such matrices, the authors also investigated their spectral norms. In the paper [28], the authors investigated
k- circulant matrices with the generalized r-Horadam numbers and determined the upper and lower bounds
for the spectral norms of such matrices. The formulae for the eigenvalues and determinant of a k-circulant
matrix with the generalized r-Horadam numbers were also derived in that paper.

Namely, the results obtained in [28] are:
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Theorem 1.1. (Theorem 5. [28]) Let H=circ{k(Hr,0,Hr,1, . . . ,Hr,n−1)}.
a) If |k| ≥ 1, then √√√n−1∑

i = 0

H2
r,i ≤ ‖H‖2 ≤

√√√a2(1 − |k|2) + |k|2
n−1∑
i = 0

H2
r,i


1 − a2 +

n−1∑
i = 0

H2
r,i

 (8)

b) If |k| < 1, then

|k|

√√√n−1∑
i = 0

H2
r,i ≤ ‖H‖2 ≤

√√√
n

n−1∑
i = 0

H2
r,i . (9)

Theorem 1.2. (Theorem 7. [28]) Let H=circ{k(Hr,0,Hr,1, . . . ,Hr,n−1)}. The eigenvalues of H are:

λ j(H) =
kHr,n −Hr,0 + (1(r)kHr,n−1 − b + a f (r))ψω− j

1(r)(ψω− j)2 + f (r)ψω− j − 1
, j=0,n − 1 . (10)

Theorem 1.3. (Theorem 8. [28]) Let H=circ{k(Hr,0,Hr,1, . . . ,Hr,n−1)}. The determinant of H is:

|H| =
(Hr,0 − kHr,n)n

− (1(r)kHr,n−1 − b + a f (r))nk
(1 − kαn)(1 − kβn)

, (11)

where α and β are the roots of the equation x2
− f (r)x−1(r)=0 .

From the previous theorems, the results for the matrix
L = circ{k(L1,L2, . . . ,Ln)} (12)

can be obtained. In this paper, we shall improve the result in relation to the eigenvalues of (12) which can
be obtained from (10) because the authors did not consider the case when the denominator is equal to zero.
Also, the Euclidean norm of (12) and bounds for the spectral norm of a k-circulant matrix with the first row
(L−1

1 ,L
−1
2 , . . . ,L

−1
n ) will be determined. Before we present our results, let us mention that, in [1], the authors

presented bounds for the Euclidean norm and the spectral norm of a circulant matrix with the first row
(L1,L2, . . . ,Ln). Also, bounds for the Euclidean norm and the spectral norm of the Hadamard inverse of
such matrix were obtained in that paper. In [23], the author considered circulant matrices whose first rows
are (L0,L1, . . . ,Ln−1) and (F0,F1, . . . ,Fn−1), where Fn is the nth Fibonacci number, and obtained some bounds
for the spectral norms of such matrices (see also [24] and [25]). The results presented in the paper [23] were
improved, in [9], by A. Ipek. Namely, A. Ipek computed the spectral norms of circulant matrices with the
first rows (L0,L1, . . . ,Ln−1) and (F0,F1, . . . ,Fn−1). The paper [7] is devoted to k-circulant matrices with the
Fibonacci and Lucas numbers. In that paper, an upper bound estimation of the spectral norms for such
matrices was given.

Our main results will be presented in the next section.

2. Main Results

Throughout this section, α and β are the roots of the equation x2
− x − 1 = 0. First, we shall determine

the eigenvalues of (12). Before that, let us recall that ψ is any nth root of a nonzero complex number k and
ω is any primitive nth root of unity. We use the following lemma.

Lemma 2.1. (Lemma 4. [2]) The eigenvalues of C=circ{k(c0, c1, c2, . . . , cn−1)} are:

λ j(C)=

n−1∑
i = 0

ci(ψω− j)i, j=0, n − 1 . (13)

Moreover, in this case:

ci =
1
n

n−1∑
j = 0

λ j(C)(ψω− j)−i, i=0, n − 1 . (14)
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Theorem 2.2. Let L be the matrix as in (12). The eigenvalues of L are given by the following formulae:

1) If ψω− j = 1
α , then

λ j(L) = nα −
1 − (−1)nβ2n

√
5

, (15)

2) If ψω− j = 1
β , then

λ j(L) =
1 − (−1)nα2n

√
5

+ nβ, (16)

3) If ψω− j, 1
α and ψω− j, 1

β , then

λ j(L) =
kLn+1 − 1 − (2 − kLn)ψω− j

(ψω− j)2 + ψω− j − 1
. (17)

Proof. Based on Lemma 2.1. and (4), it follows:

1) Suppose that ψω− j = 1
α . Then,

λ j(L) =

n−1∑
i = 0

Li+1(ψω− j)i =

n−1∑
i = 0

(
αi+1 + βi+1

)
(

1
α

)i =α
n−1∑
i = 0

1 + β
n−1∑
i = 0

(
β

α
)i

= nα + β
1 − ( βα )n

1 − β
α

=nα −
1 − (−1)nβ2n

√
5

,

2) Suppose that ψω− j = 1
β . Then,

λ j(L) =

n−1∑
i = 0

Li+1(ψω− j)i =

n−1∑
i = 0

(
αi+1 + βi+1

)
(
1
β

)i =α
n−1∑
i = 0

(
α
β

)i + β
n−1∑
i = 0

1

= α
1 − (αβ )n

1 − α
β

+ nβ=
1 − (−1)nα2n

√
5

+ nβ ,

3) Suppose that ψω− j, 1
α and ψω− j, 1

β . Then, λ j(L) follows from (10) .

The following example illustrates the results of the previous theorem.

Example 2.3. Let

L=circ{9+4
√

5(1, 3, 4, 7, 11, 18)}

i.e.

L =



1 3 4 7 11 18

18(9 + 4
√

5) 1 3 4 7 11

11(9 + 4
√

5) 18(9 + 4
√

5) 1 3 4 7

7(9 + 4
√

5) 11(9 + 4
√

5) 18(9 + 4
√

5) 1 3 4

4(9 + 4
√

5) 7(9 + 4
√

5) 11(9 + 4
√

5) 18(9 + 4
√

5) 1 3

3(9 + 4
√

5) 4(9 + 4
√

5) 7(9 + 4
√

5) 11(9 + 4
√

5) 18(9 + 4
√

5) 1


.

Since n = 6 and k = 9 + 4
√

5 i.e. ψ = −α and ω = 1
2 + i

√
3

2 , based on Theorem 2.2., it follows that
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F: ψω0 = 1
β , so λ0(L) is obtained based on 2) of Theorem 2.2.: λ0(L)=−69 − 35

√
5;

F: ψω− j , 1
α and ψω− j , 1

β , for j = 1, 5, so λ j(L), for j = 1, 5, are obtained based on 3) of Theorem 2.2.:

λ1,5(L)=− 1
2

[
115 + 51

√
5 ± i

√
3(65 + 29

√
5)

]
, λ2,4(L)=15 + 7

√
5 ∓ i

√
3(65 + 29

√
5), λ3(L)=160 + 72

√
5.

Since | L |=
n−1∏
j = 0

λ j(L), it follows that

| L |= −31 367 216 640 000 − 14 027 845 734 400
√

5 .

Let us remark, in relation to the previous example, that the determinant of L= circ{9+4
√

5(1, 3, 4, 7, 11, 18)} is
not possible to obtain using the result of Theorem 1.3.

Now, we determine the Euclidean norm of (12). The formula
n−1∑
i = 1

ixi =
x − nxn + (n − 1)xn+1

(1 − x)2 , (18)

which holds for all x, will be used.

Theorem 2.4. Let L be the matrix as in (12). The Euclidean norm of L is:

‖L‖E =

√
n (L2n+1 + (−1)n − 2) + (|k|2 − 1)

(
−L2n + (n − 1)L2n+1 +

7
2

+
2n − 1

2
(−1)n

)
. (19)

Proof. From the definition of the Euclidean norm of a matrix, using (4), (5) and (18), we obtain:

(‖L‖E)2 =

n∑
i, j = 1

| li, j |2

= nL2
1 +

(
(n − 1) + |k|2

)
L2

2 +
(
(n − 2) + 2|k|2

)
L2

3 + · · · +
(
1 + (n − 1)|k|2

)
L2

n

=

n−1∑
i = 0

(n − i)L2
i+1 + |k|2

n−1∑
i = 1

iL2
i+1

= n
n−1∑
i = 0

L2
i+1 + (|k|2−1)

n−1∑
i = 1

iL2
i+1

= n (L2n+1 + (−1)n
− 2) + (|k|2−1)

n−1∑
i = 1

i
(
α2i+2 + 2(αβ)i+1 + β2i+2

)
= n (L2n+1 + (−1)n

− 2) + (|k|2−1)
(
α2 α

2
− nα2n + (n − 1)α2n+2

α2

−2
−1 − n(−1)n + (n − 1)(−1)n+1

4
+ β2 β

2
− nβ2n + (n − 1)β2n+2

β2

)
= n (L2n+1 + (−1)n

− 2) + (|k|2−1)
(
−nα2n + (n − 1)α2n+2 +

7
2

+
n
2

(−1)n

+
n − 1

2
(−1)n

− nβ2n + (n − 1)β2n+2
)

= n (L2n+1 + (−1)n
− 2) + (|k|2−1)

(
−nL2n + (n − 1)L2n+2 +

7
2

+
2n − 1

2
(−1)n

)
= n (L2n+1 + (−1)n

− 2) + (|k|2−1)
(
−L2n + (n − 1)L2n+1 +

7
2

+
2n − 1

2
(−1)n

)
.



B. Radičić / Filomat 32:11 (2018), 4037–4046 4042

Therefore,

‖L‖E =

√
n (L2n+1 + (−1)n − 2) + (|k|2−1)

(
−L2n + (n − 1)L2n+1 +

7
2

+
2n − 1

2
(−1)n

)
.

At the end of this paper, we obtain the upper and lower bounds for the spectral norm of L◦−1
k =

circ{k(L−1
1 ,L

−1
2 , L−1

3 , . . . ,L
−1
n )}. The well-known inequalities (see Theorem 1. [33] and Table 1. [33])

‖A‖E
√

n
≤ ‖A‖2 ≤ ‖A‖E, (20)

which hold for any complex matrix A of order n, will be used, and the following lemma.

Lemma 2.5. ([8]) Let A=
[
ai, j

]
and B=

[
bi, j

]
be matrices of order m × n. Then,

‖A ◦ B‖2 ≤ r1(A) · c1(B), (21)

where A ◦ B = [ai, jbi, j] is the Hadamard product (or the Schur product) of matrices A and B,

r1(A)= max
1≤ i≤m

√√√ n∑
j = 1

| ai, j |
2 and c1(B)= max

1≤ j≤n

√√
m∑

i = 1

| bi, j |
2.

Theorem 2.6. Let L◦−1
k =circ{k(L−1

1 ,L
−1
2 ,L

−1
3 , . . . ,L

−1
n )}.

1) If |k| ≥ 1, then √
n

L2n+1 + (−1)n ≤ ‖L
◦−1
k ‖2 ≤

√
n(1 + (n − 1)|k|2) , (22)

2) If |k| < 1, then

|k|
√

n
L2n+1 + (−1)n ≤ ‖L

◦−1
k ‖2 ≤n . (23)

Proof. From the definition of the Euclidean norm of a matrix, it follows that

‖L◦−1
k ‖

2
E =

n−1∑
i = 0

(n − i)
1

L2
i+1

+ |k|2
n−1∑
i = 1

i
1

L2
i+1

. (24)

1) If |k| ≥ 1, then

‖L◦−1
k ‖

2
E ≥

n−1∑
i = 0

(n − i)
1

L2
i+1

+

n−1∑
i = 1

i
1

L2
i+1

= n
n−1∑
i = 0

1
L2

i+1

= n
n∑

i = 1

1
L2

i

≥ n
n∑

i = 1

1
L2

n
= (

n
Ln

)2 >
n2

LnLn+1
=

n2

L2n+1 + (−1)n .

Therefore,

‖L◦−1
k ‖E
√

n
≥

√
n

L2n+1 + (−1)n .
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We conclude from (20) that

‖L◦−1
k ‖2≥

√
n

L2n+1 + (−1)n .

Now, we shall obtain the upper bound for the spectral norm of L◦−1
k . Let R and S be the following matrices:

R=



1
L1

1
L2

1
L3
· · ·

1
Ln

k 1
L1

1
L2
· · ·

1
Ln−1

k k 1
L1
· · ·

1
Ln−2

...
...

...
. . .

...

k k k · · ·
1
L1


and S=



1 1 1 · · · 1

1
Ln

1 1 · · · 1

1
Ln−1

1
Ln

1 · · · 1
...

...
...

. . .
...

1
L2

1
L3

1
L4
· · · 1


.

Then,

r1(R) = max
1≤ i≤n

√√√ n∑
j = 1

| ri, j |
2 =

√
1 + (n − 1)|k|2

and

c1(S) = max
1≤ j≤n

√√
n∑

i = 1

| si, j |
2 =
√

n .

Since L◦−1
k = R ◦ S, based on Lemma 2.5., we can write

‖L◦−1
k ‖2 ≤ r1(R) · c1(S) =

√
n(1 + (n − 1)|k|2) .

2) If |k| < 1, then

‖L◦−1
k ‖

2
E ≥

n−1∑
i = 0

(n − i)|k|2
1

L2
i+1

+

n−1∑
i = 1

i|k|2
1

L2
i+1

= n|k|2
n−1∑
i = 0

1
L2

i+1

= n|k|2
n∑

i = 1

1
L2

i

≥ n|k|2
n∑

i = 1

1
L2

n
= |k|2(

n
Ln

)2 > |k|2
n2

LnLn+1
= |k|2

n2

L2n+1 + (−1)n .

Therefore,
‖L◦−1

k ‖E
√

n
≥|k|

√
n

L2n+1 + (−1)n .

We conclude from (20) that

‖L◦−1
k ‖2≥|k|

√
n

L2n+1 + (−1)n .

Now, we shall obtain the upper bound for the spectral norm of L◦−1
k . Let Q and W be the following matrices:

Q=



1 1 1 · · · 1

k
Ln

1 1 · · · 1

k
Ln−1

k
Ln

1 · · · 1
...

...
...

. . .
...

k
L2

k
L3

k
L4
· · · 1


and W =



1
L1

1
L2

1
L3
· · ·

1
Ln

1 1
L1

1
L2
· · ·

1
Ln−1

1 1 1
L1
· · ·

1
Ln−2

...
...

...
. . .

...

1 1 1 · · ·
1
L1


.
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Then,

r1(Q)= max
1≤ i≤n

√√√ n∑
j = 1

| qi, j |
2 =
√

n

and

c1(W)= max
1≤ j≤n

√√
n∑

i = 1

| wi, j |
2 =
√

n .

Since L◦−1
k = Q ◦W, based on Lemma 2.5., we can write

‖L◦−1
k ‖2 ≤ r1(Q) · c1(W) = n .

Example 2.7. Let L◦−1
k =circ{k(L−1

1 ,L
−1
2 ,L

−1
3 , . . . ,L

−1
n )}.

The lower bounds for the spectral norm of L◦−1
k

a) for |k| ≥ 1, b) for k = − 1
3 ,

1
3 , c) for k = − 1

2 ,
1
2 .

n

2
√

1
6 ≈ 0.40825

3
√

3
28 ≈ 0.32733

4
√

4
77 ≈ 0.22792

5
√

5
198 ≈ 0.15891

6
√

1
87 ≈ 0.10721

7
√

7
1363 ≈ 0.07166

n

2 1
3

√
1
6 ≈ 0.13608

3 1
3

√
3
28 ≈ 0.10911

4 1
3

√
4
77 ≈ 0.07597

5 1
3

√
5

198 ≈ 0.05297

6 1
3

√
1
87 ≈ 0.03574

7 1
3

√
7

1363 ≈ 0.02389

n

2 1
2

√
1
6 ≈ 0.20412

3 1
2

√
3

28 ≈ 0.16366

4 1
2

√
4

77 ≈ 0.11396

5 1
2

√
5

198 ≈ 0.07946

6 1
2

√
1

87 ≈ 0.05361

7 1
2

√
7

1363 ≈ 0.03583

The upper bounds for the spectral norm of L◦−1
k

a) for k = −3, 3, b) for k = −2, 2, c) for |k| < 1.

n
2

√
20 ≈ 4.47214

3
√

57 ≈ 7.54983
4
√

112 ≈ 10.58301
5
√

185 ≈ 13.60147
6
√

276 ≈ 16.61325
7
√

385 ≈ 19.62142

n
2

√
10 ≈ 3.16228

3
√

27 ≈ 5.19615
4

√
52 ≈ 7.21110

5
√

85 ≈ 9.21954
6
√

126 ≈ 11.22497
7
√

175 ≈ 13.22876

n
2 2
3 3
4 4
5 5
6 6
7 7

3. Conclusion

In this paper, we considered the matrix
L=circ{k(L1,L2, . . . ,Ln)},
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where Ln is the nth Lucas number and k is a nonzero complex number, and investigated the eigenvalues and
the Euclidean norm of such matrix. Also, the upper and lower bounds for the spectral norm of a k-circulant
matrix whose first row is (L−1

1 ,L
−1
2 , . . . ,L

−1
n ) were determined.

We did not consider the matrix L provided that k = 0 i.e. if L is a semicirculant matrix. But, since such
matrix belongs to the class of upper-triangular matrices, we conclude that the eigenvalues of such matrix
are: λ j(L) = 1, ( j = 0, n − 1). The Euclidean norm of such matrix can be obtained from (19) i.e. in (19), k can
be equal to 0. The upper and lower bounds for the spectral norm of a semicirculant matrix whose first row
is (L−1

1 ,L
−1
2 , . . . ,L

−1
n ) can be obtained from (23).
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