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Abstract. Suppose G is a finite group and C(G) denotes the set of all conjugacy classes of G. The normal
graph of G, N(G), is a finite simple graph such that V(N(G)) = C(G). Two conjugacy classes A and B in
C(G) are adjacent if and only if there is a proper normal subgroup N such that A ∪ B ≤ N. The aim of this
paper is to study the normal graph of a finite group G. It is proved, among other things, that the groups
with identical character table have isomorphic normal graphs and so this new graph associated to a group
has good relationship by its group structure. The normal graphs of some classes of finite groups are also
obtained and some open questions are posed.

1. Introduction

Throughout this paper, graph means simple finite graph and all groups are assumed to be finite. Suppose
Γ is such a graph on the vertex set {1, 2, . . . ,n} andF = {Γ1, . . . ,Γn} is a family of graphs such that n j = |V(Γ j)|,
1 ≤ j ≤ n. The graph 5 = Γ[Γ1, . . . ,Γn] is defined as

V(5) =

n⋃
j=1

V(Γ j),

E(5) =

 n⋃
j=1

E(Γ j)

 ∪
 ⋃

i j∈E(Γ)

{uv | u ∈ V(Γi), v ∈ V(Γ j)}

 .
This graph is called the Γ−join of F [15, p. 396].

Suppose Γ and ∆ are two graphs with disjoint vertex sets V(Γ) and V(∆), respectively. The union of Γ
and ∆, Γ ∪ ∆, is a graph with vertex set V(Γ) ∪ V(∆) and edge set E(Γ) ∪ E(∆). Two exceptional cases of
the Γ−join of graphs are usual and sequential joins of graphs. These are defined as follows: The join of
Γ and ∆ is the graph union Γ ∪ ∆ together with all the edges joining V(Γ) and V(∆). The sequential join
Γ1 + Γ2 + · · · + Γn of graphs Γ1, Γ2, . . . ,Γn with disjoint vertex sets is defined as Pn[Γ1,Γ2, . . . ,Γn].

A permutation α on the set of all vertices of a graph Γ is called an automorphism if and only if α and its
inverse preserve adjacency in Γ. The set of all automorphisms of Γ is denoted by Aut(Γ). It is well-known
that Aut(Γ) is a group under composition of functions. This group is named the full automorphism group
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of Γ. The complement Γ is a graph with the same vertex set V(Γ). Two vertices of Γ are adjacent if and only
if they are not adjacent in Γ. Obviously, Aut(Γ) = Aut(Γ).

Suppose G is a finite group and C(G) denotes the set of all conjugacy classes of G. Define κ(G) = |C(G)|.
The normal graph of G,N(G), is a finite graph such that V(N(G)) = C(G). Two conjugacy classes A and B in
C(G) are adjacent if and only if there is a proper normal subgroup N of G with this property that A∪B ≤ N.
It is easy to see that if G is a simple group thenN(G) is an empty graph.

Suppose G is a finite group and N is a proper normal subgroup of G. If N is a union of n G−conjugacy
classes then N is called n−decomposable. The number n is denoted by ncc(N) and if X = {ncc(N) | N C G}
then G is called X−decomposable. In [3], the authors characterized finite non-perfect groups for which
X = {1, 2, 3} and in [1] finite non-perfect groups with X = {1, 3, 4} are classified.

Throughout this paper, Kn, Cn, Pn and Starn denote the complete, cycle, path and star graph on n vertices.
The center of a group G and the set of all positive divisors of an integer n are denoted by Z(G) and D(n),
respectively. A group G is said to be centerless, if Z(G) = 1. An empty graph is a graph without edge. Our
other notations are standard and can be taken mainly from [6, 12, 13].

2. Examples

In this section, the normal graphs of the dihedral, semi-dihedral, dicyclic and the group V8n will be
computed. These groups can be presented as follows:

D2n = 〈a, b | an = b2 = e, bab = a−1
〉,

SD8n = 〈a, b | a4n = b2 = e, bab = a2n−1
〉,

T4n = 〈a, b | a2n = 1, an = b2, b−1ab = a−1
〉,

V8n = 〈a, b | a2n = b4 = e, aba = b−1, ab−1a = b〉.

It is easy to see that |D2n| = 2n, |SD8n| = 8n, |T4n| = 4n and |V8n| = 8n. We start by dihedral groups. The
dihedral group D2n has precisely 1

2 (n + 3) conjugacy classes, when n is odd. These are {1}, {a, a−1
}, . . ., {a

(n−1)
2 ,

a
−(n−1)

2 } and {b, ab, . . . , an−1b}. If n = 2m then D2n has exactly m + 3 conjugacy classes as follows:

{1}, {am
}, {a, a−1

}, . . . , {am−1, a−m+1
},

{a2 jb | 0 ≤ j ≤ m − 1}, {a2 j+1b | 0 ≤ j ≤ m − 1}.

Table 1: Non−Trivial Linear Characters of D2n, n is Odd.

Conjugacy Classes 1 ar b
Character 1 ≤ r ≤ (n − 1)/2

χ2 1 1 −1

Table 2: Non−Trivial Linear Characters of D2n, n is Even.

Conjugacy Classes 1 am ar b ab
Characters 1 ≤ r ≤ m − 1

χ2 1 1 1 −1 −1
χ3 1 (−1)m (−1)r 1 −1
χ4 1 (−1)m (−1)r

−1 1
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Example 2.1. In this example, the normal graph of dihedral groups are computed. It will be proved that the normal
graph of these groups can be described in the following simple form:

N(D2n) �



K n+1
2
∪ bD2n 2 - n

S3[K1,K1,K n+2
4
,K n+2

4
] 2 | n and 4 - n

S3[K1,K1,K n+4
4
,K n

4
] 4 | n

.

To prove, we define A1 = {bD2n }, A2 = {(ba)D2n }, A3 = {(ai)D2n | i is even}, A4 = {(ai)D2n | i is odd}, B1 = {bD2n },
B2 = {(ba)D2n }, B3 = {(ai)D2n | i is even} and B4 = {(ai)D2n | i is odd}. If n

2 is odd then

N(D2n) = S3[A1,A2,A3,A4] � S3[K1,K1,K n+2
4
,K n+2

4
]

and if n
2 is even then

N(D2n) = S3[B1,B2,B3,B4] � S3[K1,K1,K n+4
4
,K n

4
],

proving the result.

The dicyclic group T4n has order 4n and the cyclic subgroup 〈a〉 of T4n has index 2 [13, p. 420]. This
group has exactly n + 3 conjugacy classes. These are:

{1}, {an
}, {ar, a−r

}, (1 ≤ r ≤ n − 1), {a2 jb | 0 ≤ j ≤ n − 1}, {a2 j+1b | 0 ≤ j ≤ n − 1}.

Example 2.2. The aim of this example is to obtain the graph structure of N(T4n). It will be proved that if n is even
then N(T4n) � S3[K1,K1,Kn/2+1,Kn/2] and if n is odd then N(T4n) � Kn+1 ∪ K1 ∪ K1. To do this, we first assume
that n is odd. Then all normal subgroups of T4n are subgroups of 〈a〉. So, there is no edge connecting bT4n and other
vertices of the graph. Since 〈(ai)T4n , (a j)T4n〉 ⊂ 〈a〉 C T4n, (ai)T4n and (a j)T4n are adjacent. Hence the normal graph of
T4n has the following structure:

N(T4n) � Kn+1 ∪ K1 ∪ K1.

Next we suppose that n is even. Define:
A1 := {(ar)T4n | 2 - r},A2 := {(ar)T4n | 2 | r} ∪ {e, an

} and A3 := {bT4n , (ba)T4n }. Then the relations

〈(ai)T4n , (a j)T4n〉 ⊆ 〈a〉 C T4n,
〈eT4n , bT4n〉 ⊆ 〈a2, b〉 C T4n,

〈eT4n , (ba)T4n〉 ⊆ 〈a2, ba〉 C T4n,
〈(an)T4n , bT4n〉 ⊆ 〈a2, b〉 C T4n,

〈(an)T4n , (ba)T4n〉 ⊆ 〈a2, ba〉 C T4n,

show thatN(T4n) � S3[K1,K1,Kn/2+1,Kn/2]. This completes our argument.

The group V8n and the semidihedral group SD8n have order 8n and their character tables computed in
[7] and [11], respectively. We first present a notation which is useful in describing the normal graph of the
semidihedral group of SD8n. To do this we assume that ∆1 and ∆2 are subgraphs of a graph Γ. We write
∆1 G ∆2, when all vertices of ∆1 are adjacent with all vertices of ∆2. Define:

Ceven = C1 ∪ Ceven
2 ∪ Ceven

3 , Codd = C1 ∪ Codd
2 ∪ Codd

3 ,
C1 = {0, 2, . . . , 2n}, Ceven

2 = {1, 3, . . . ,n − 1},
Ceven

3 = {2n + 1, 2n + 3, . . . , 3n − 1}, Codd
2 = {1, 3, 5, . . . ,n},

Codd
3 = {2n + 1, 2n + 3, 2n + 5, . . . , 3n}, C†even = C1\{0, 2n},

C†odd = Ceven
2 ∪ Ceven

3 , Codd
2,3 = Codd

2 ∪ Codd
3 ,

Ceven
∗ = Ceven

\{0, 2n}, Codd
∗ = Codd

\{0,n, 2n, 3n}.
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Suppose
A1 := {(ar)SD8n | r ∈ C1} B1 := {(ar)SD8n | r ∈ Codd

2,3 }

A2 := {(ar)SD8n | r ∈ C†odd} B2 := {(ar)SD8n | r ∈ C1}

A3 := {bSD8n , (ba)SD8n } B3 := {bSD8n , (ba)SD8n , (ba2)SD8n , (ba3)SD8n }.

In the following example the normal graph of semidihedral groups is described as sequential join of
some known graphs.

Example 2.3. In this example we prove that,

a. If n is even, thenN(SD8n) = A1 + A2 + A3,
b. If n is odd, thenN(SD8n) = B1 + B2 + B3.

By [11], the conjugacy classes of SD8n, n ≥ 2, are as follows:

If n is even, then there are 2n + 3 conjugacy classes that can be computed in the following way:
- Two conjugacy classes of size one as [1] = {1} and [a2n] = {a2n

},
- 2n − 1 conjugacy classes of size two in the form [ar] = {ar, a(2n−1)r

}, where r ∈ Ceven
∗ ,

- Two conjugacy classes of size 2n as [b] = {ba2t
| t = 0, 1, 2, . . . , 2n − 1} and [ba] = {ba2t+1

| t =
0, 1, 2, . . . , 2n − 1}.

If n is odd, then there are 2n + 6 conjugacy classes as in the following way:
- Four conjugacy classes of size one as [1] = {1}, [an] = {an

}, [a2n] = {a2n
} and [a3n] = {a3n

},
- 2n − 2 conjugacy classes of size two as [ar] = {ar, a(2n−1)r

}, where r ∈ Codd
∗ ,

- Four conjugacy classes of size n as [b] = {ba4t
| t = 0, 1, 2, . . . ,n − 1}, [ba] = {ba4t+1

| t = 0, 1, . . . ,n − 1},
[ba2] = {ba4t+2

| t = 0, 1, . . . ,n − 1} and [ba3] = {ba4t+3
| t = 0, 1, 2, . . . ,n − 1}.

We first assume that n is even. In Table 3, some irreducible characters of the group SD8n are recorded. From this
table, one can easily see that 〈(ai)SD8n , (a j)SD8n〉 ⊆ Kerχ1 E SD8n. Hence, the induced subgraphs of A1 and A2 are
complete and we have A1 G A2. Therefore for each r ∈ C1,

〈(ar)SD8n , (b)SD8n〉 ⊆ Kerχ2 E SD8n,
〈(ar)SD8n , (ba)SD8n〉 ⊆ Kerχ3 E SD8n.

Hence we have A3 G A2. Since 〈bSD8n , (ba)SD8n〉 = SD8n, the induced subgraph on A3 is empty. On the other hand,
for each r ∈ C†odd,

〈(ar)SD8n , (b)SD8n〉 = SD8n and 〈(ar)SD8n , (ba)SD8n〉 = SD8n.

This proves that a vertex in A1 can not be connected to another one in A3. Therefore,N(SD8n) = A1 + A2 + A3.
Next we suppose that n is odd. Some linear characters of the group SD8n are recorded in Table 4. Since

〈(ai)SD8n , (a j)SD8n〉 ⊆ Kerχ1 E SD8n, the induced subgraphs of N(SD8n) on B1 and B2 are complete. Furthermore, we
have B1 G B2. On the other hand, for every r ∈ C1,

〈(ar)SD8n , (b)SD8n〉 ⊆ Kerχ2 E SD8n,
〈(ar)SD8n , (ba2)SD8n〉 ⊆ Kerχ2 E SD8n,
〈(ar)SD8n , (ba)SD8n〉 ⊆ Kerχ3 E SD8n,
〈(ar)SD8n , (ba3)SD8n〉 ⊆ Kerχ3 E SD8n.

Therefore, we have B2 G B3. Since

〈bSD8n , (ba)SD8n〉 = SD8n and 〈bSD8n , (ba3)SD8n〉 = SD8n,

the vertex bSD8n is not adjacent to vertices (ba)SD8n and (ba3)SD8n . In a similar way, the vertex (ba2)SD8n is not adjacent
to (ba)SD8n and (ba3)SD8n , since

〈(ba2)SD8n , (ba)SD8n〉 = SD8n and 〈(ba2)SD8n , (ba3)SD8n〉 = SD8n.
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Table 3: Non−Trivial Linear Characters of SD8n, n is Even.

Conjugacy classes [ar]; [ar]; [b] [ba]
Characters r ∈ C1 r ∈ C†odd

χ1 1 1 −1 −1
χ2 1 −1 1 −1
χ3 1 −1 −1 1

Table 4: Non−Trivial Linear Characters of SD8n, n is Odd.

Conjugacy classes [ar]; [ar]; [b] [ba] [ba2] [ba3]
Characters r ∈ C1 r ∈ Codd

2,3

χ1 1 1 −1 −1 −1 −1
χ2 1 −1 1 −1 1 −1
χ3 1 −1 −1 1 −1 1

By our calculations given in Table 4, 〈(ba2)SD8n , (b)SD8n〉 ⊆ Kerχ2 E SD8n. Hence (ba2)SD8n and (b)SD8n are adjacent.
Also, 〈(ba)SD8n , (ba3)SD8n〉 ⊆ Kerχ3 E SD8n and so the vertices (ba)SD8n and (ba3)SD8n are adjacent.

Finally, for any r ∈ Codd
2,3 ,

〈(ar)SD8n , (b)SD8n〉 = SD8n,
〈(ar)SD8n , (ba)SD8n〉 = SD8n,
〈(ar)SD8n , (ba2)SD8n〉 = SD8n,
〈(ar)SD8n , (ba3)SD8n〉 = SD8n.

Therefore, there are no vertices in B1 and B3 to be adjacent. This proves thatN(SD8n) = B1 + B2 + B3.

Suppose
A1 := {(a2r+1)V8n | 0 ≤ r ≤ n − 1},
A2 := {1, (b2)V8n , (a2s)V8n , (a2sb2)V8n | 1 ≤ s ≤ n−1

2 },
A3 := {bV8n , (ab)V8n },
B1 := {(a2r+1)V8n | 0 ≤ r ≤ n − 1},
B2 := {1, (b2)V8n , (an)V8n , (anb2)V8n , (a2s)V8n , (a2sb2)V8n | 1 ≤ s ≤ n

2 − 1},
B3 := {bV8n , (b−1)V8n },
B4 := {(ab)V8n , (ab−1)V8n }.

In the next example the normal graph of the group V8n is computed.

Example 2.4. In this example, it is proved that:

a. If n is odd, thenN(V8n) = A1 + A2 + A3.
b. If n is even, thenN(V8n) = S3[B1,B2,B3,B4].

Suppose n is odd. By [13, p. 420], the conjugacy classes of V8n are as follows:

{1}; {b2
}; {a2r+1, a−2r−1b2

}(0 ≤ r ≤ n − 1);
{a2s, a−2s

}; {a2sb2, a−2sb2
}(1 ≤ s ≤ n−1

2 );
{a jbk

| k = 1, 3; 2 | j}; {a jbk
| k = 1, 3; 2 - j}.

Some linear characters for this group are recorded in Table 5.
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Table 5: Non−Trivial Linear Characters of V8n, n is Odd.

Conjugacy classes 1 b2 a2r+1 a2s a2sb2 b ab
Characters 0 ≤ r ≤ n − 1 1 ≤ s ≤ n−1

2 1 ≤ s ≤ n−1
2

χ1 1 1 1 1 1 −1 −1
χ2 1 1 −1 1 1 1 −1
χ3 1 1 −1 1 1 −1 1

Since Kerχ1 = eV8n ∪ (b2)V8n ∪ (a2r+1)V8n ∪ (a2s)V8n ∪ (a2sb2)V8n , the subgraphs induced by A1 and A2 are complete
and we have A1 G A2. On the other hand, for each s, 1 ≤ s ≤ n−1

2 , we have

Kerχ2 = eV8n ∪ (b2)V8n ∪ (a2s)V8n ∪ (a2sb2)V8n ∪ bV8n ,
Kerχ3 = eV8n ∪ (b2)V8n ∪ (a2s)V8n ∪ (a2sb2)V8n ∪ (ab)V8n .

Thus A3 G A2. Since 〈bV8n , (ab)V8n〉 = V8n, bV8n is not adjacent to (ab)V8n . On the other hand, for each r, 0 ≤ r ≤ n− 1,
we have V8n = 〈(a2r+1)V8n , (b)V8n〉 = 〈(a2r+1)V8n , (ab)V8n〉. So, there is no a vertex in A1 to be adjacent to a vertex
in A2. This proves that N(V8n) = A1 + A2 + A3. Next we assume that n is even. By [7], the conjugacy classes
of V8n contained in Z(V8n) are {e}, {b2

}, {an
} and {anb2

}. There are also 2n − 3 conjugacy classes of length 2 as
{a2r+1, a−(2r+1)b2

}, {a2s, a−2s
} and {a2sb2, a−2sb2

}, where 0 ≤ r ≤ n − 1 and 1 ≤ s ≤ n
2 − 1. We have also four conjugacy

classes of length n. These are:

{a2k+1b(−1)k+1
| 0 ≤ k ≤ n − 1},

{a2kb(−1)k
| 0 ≤ k ≤ n − 1},

{a2kb(−1)k+1
| 0 ≤ k ≤ n − 1},

{a2k+1b(−1)k
| 0 ≤ k ≤ n − 1}.

It is well-known that a normal subgroup of a finite group can be written as the intersections of the kernels of some
appropriate irreducible characters. To compute normal subgroups, we record in Table 6 some linear characters of V8n.
This information were given in the paper of Darafsheh and Poursalavati [7].

Table 6: Some Non−Trivial Linear Characters of V8n, n is Even.

Conjugacy classes 1 b2 an anb2 a4k+1 a4k+3 a4s

Characters
ψ3 1 1 1 1 −1 −1 1
ψ5 1 1 1 1 1 1 1
ψ7 1 1 1 1 −1 −1 1

Conjugacy classes a4t+2 a4sb2 a4t+2b2 b b−1 ab ab−1

Characters
ψ3 1 1 1 −1 −1 1 1
ψ5 1 1 1 −1 −1 −1 −1
ψ7 1 1 1 1 1 −1 −1

From the Table 6, one can easily be seen that,
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Kerψ3 = 1 ∪ (b2)V8n ∪ (an)V8n ∪ (anb2)V8n ∪ (a4s)V8n ∪ (a4t+2)V8n ∪ (a4sb2)V8n

∪ (a4t+2b2)V8n ∪ (ab)V8n ∪ (ab−1)V8n ,

Kerψ5 = 1 ∪ (b2)V8n ∪ (an)V8n ∪ (anb2)V8n ∪ (a4k+1)V8n ∪ (a4k+3)V8n ∪ (a4s)V8n

∪ (a4t+2)V8n ∪ (a4sb2)V8n ∪ (a4t+2b2)V8n ,

Kerψ7 = 1 ∪ (b2)V8n ∪ (an)V8n ∪ (anb2)V8n ∪ (a4s)V8n , (a4t+2)V8n ∪ (a4sb2)V8n

∪ (a4t+2b2)V8n ∪ bV8n ∪ (b−1)V8n .

By our calculations given above, the induced subgraphs of B1, B2, B3 and B4 are complete graphs of order n, n + 2,
2 and 2, respectively. On the other hand, B1 G B2, B2 G B3, B4 G B2 and we have:

〈bV8n , (ab)V8n〉 = 〈bV8n , (ab−1)V8n〉 = 〈b−1V8n , (ab)V8n〉 = 〈b−1V8n , (ab−1)V8n〉

= 〈(a2r+1)V8n , (b)V8n〉 = 〈(a2r+1)V8n , (ab)V8n〉 = V8n.

Therefore, there is no edge connecting a vertex in B1 and a vertex in B3 ∪ B4 and there is no edge between a vertex of
B3 and a vertex in B4. This completes our argument.

It is an elementary fact that if p, q are primes and q|p − 1 then there exists a unique non-abelian group of
order pq. By [13, p. 290], this group is the Frobenius group Fp,q and can be presented as Fp,q = 〈a, b | ap =
bq = 1, b−1ab = au

〉, where u has order q modulo p. By [13, Proposition 25.9], the conjugacy classes of Fp,q are

{1},
(avi )Fp,q = {avis | s ∈ S}(1 ≤ i ≤ r),
(bn)Fp,q = {ambn

| 0 ≤ m ≤ p − 1}(1 ≤ n ≤ q − 1).

We end this section by computing the normal graph of Fp,q that will be used later.

Example 2.5. Suppose p, q are primes and q|p − 1. It is easy to see that 〈a〉 is the unique non-trivial proper normal
subgroup of Fp,q containing 1 +

p−1
q conjugacy classes of Fp,q. Therefore,N(Fp,q) = K1+

p−1
q
∪ Kq−1.

3. Main Properties of Normal Graph

The aim of this section is to obtain the main properties of the normal graph of a finite group. We start
this section by the following simple but important lemma:

Lemma 3.1. Suppose G is a finite group with exactly n conjugacy classes and C0 denotes the component containing
identity element e of G. Then,

1. IfN(G) does not have isolated vertex then the degree of eG is equal to n − 1,
2. All components ofN(G) other than C0 are isolated vertices ofN(G),
3. IfN(G) is connected and r−regular, r ≥ 2, thenN(G) is complete,
4. If G and H are two groups that one of them has complete normal graph, thenN(G ×H) is also complete.

Proof. Our main proof will consider four separate cases as follows:

1. Suppose u is an arbitrary vertex in N(G). Choose the vertex v , eG in such a way that 〈u, v〉 , G. On
the other hand 〈eG,u〉 ⊆ 〈u, v〉 and so eG and u are adjacent. This shows that de1 eG = n − 1.

2. Suppose x and y are adjacent vertices in a component C , C0. Hence 〈x, y〉 , G and since 〈eG, x〉 ⊆ 〈x, y〉,
〈eG, x〉 , G which is impossible.

3. The proof follows from the part (1).
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4. Suppose aG
×bH and cG

×dH are two given vertices ofN(G×H). We have to prove that 〈aG
×bH, cG

×dH
〉 ,

G×H. Since aG
× bH

∪ cG
× dH

⊆ 〈aG
× eH

∪ cG
× eH

∪ eG
× bH

∪ eG
× dH
〉 ⊆ 〈aG

∪ cG
〉 × 〈bH

∪ dH
〉 , G×H.

Thus, aG
× bH and cG

× dH are adjacent, as desired.

This proves our lemma.

Theorem 3.2. Let G be a group and Inn(G) be the only maximal normal subgroup of Aut(G). ThenN(G) is a union
of a complete graph and an empty graph.

Proof. If f ∈ Aut(G) \ Inn(G) then 〈 f Aut(G)
〉 E Aut(G). Since f < Inn(G), 〈 f Aut(G)

〉 = Aut(G) which means that
f Aut(G) is an isolated vertex. We now assume that f Aut(G) and 1Aut(G) are two vertices ofN(Aut(G)) such that
f , 1 ∈ Inn(G), then 〈 f Aut(G), 1Aut(G)

〉 ⊂ Inn(G) E Aut(G) and so they are adjacent.

Lemma 3.3. Let G be a non-abelian simple group and |Aut(G) : Inn(G)| = p, p is prime. Then the normal graph of
Aut(G) is a union of a complete and an empty graph.

Proof. It is easy to see that Inn(G) E Aut(G). If N is another normal subgroup of Aut(G) then Aut(G) =
N · Inn(G). Since N ∩ Inn(G) E Inn(G) and Inn(G) is simple, N ∩ Inn(G) = 1 and |N| = p. This proves that
Aut(G) � Inn(G)×Zp. On the other hand, G is simple and so Aut(G) has a unique minimal normal subgroup,
which is a contradiction. Therefore, Aut(G) has a unique non-trivial proper normal subgroup and so the
result is an immediate consequence of Theorem 3.2.

Suppose G is a sporadic simple group. It is well-known that Aut(G) � G if and only if G � M11, M23,
M24, Co1, Co2, Co3, Th, Fi23, J1, J4, Ly, Ru, B or M. Hence, for these groups the normal graph of Aut(G) is an
empty graph. In the next result, the normal graph of the automorphism group of other sporadic groups are
determined.

Corollary 3.4. If G is a sporadic simple group isomorphic to M12, M22, HS, J2, J3, McL, Suz, He, HN, Fi22, 2F4(2)′

or Fi′24 then N(Aut(G)) � K12 ∪ K9, K11 ∪ K10, K21 ∪ K18, K16 ∪ K11, K17 ∪ K13, K19 ∪ K14, K37 ∪ K31, K26 ∪ K19,
K44 ∪ K34, K59 ∪ K53, K17 ∪ K12 or K97 ∪ K86, respectively.

Proof. It is well-known that in each case |Aut(G) : G| = 2 and the proof follows from Lemma 3.3.

Remark 3.5. Suppose G = 〈x, y〉 is a non-cyclic two generators finite group. Consider the conjugacy classes xG and
yG. Since 〈xG, yG

〉 = G, the vertices xG and yG are not adjacent. Thus N(G) is not complete. As a consequence, the
normal graph of a non-abelian simple group is not complete.

Theorem 3.6. N(Zn) = Γ[Kφ(d1), . . . ,Kφ(dt)] ∪ Kφ(n), where di’s are divisors of n and Γ is a graph with vertex set
D(n) \ {n} and two vertices di and d j are adjacent if and only if lcm(di, d j) , n.

Proof. It is easy to see that each generator of Zn is an isolated vertex of N(Zn) and so the normal graph
of the cyclic group of order n has exactly φ(n) isolated vertices. Since the cyclic group Zn has a unique
subgroup of an order of each divisor of n, all elements of order di are in a subgroup of order di. This shows
that non-generator elements with the same order are adjacent. Suppose di and d j are two divisors of n,
O(x) = di, and O(y) = d j such that lcm(di, d j) , n. Since |〈x, y〉| = lcm(O(x),O(y)) = lcm(di, d j) , n, 〈x, y〉 , Zn.
This proves thatN(Zn) = Γ[Kφ(d1), . . . ,Kφ(dt)] ∪ Kφ(n), proving the result.

The number of edges inN(Zn) can be computed from our previous theorem as follows:

Corollary 3.7. |E(N(Zn))| =
∑

dd′∈E(Γ) φ(d)φ(d′) +
1
2

[φ(n) − φ(n)2
− n] +

1
2
∑

d|n φ(d)2.
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Proof. By Theorem 3.6, we have:

|E(N(Zn))| =
∑

n,d|n

(
φ(d)

2

)
+

∑
dd′∈E(Γ)

φ(d)φ(d′)

=
1
2

∑
d|n

φ(d)2
− φ(n)2

−

∑
d|n

φ(d) + φ(n)

 +
∑

dd′∈E(Γ)

φ(d)φ(d′)

=
1
2

∑
d|n

φ(d)2 +
1
2

[φ(n) − n − φ(n)2] +
∑

dd′∈E(Γ)

φ(d)φ(d′),

proving the result.

If G is a finite group then the minimum cardinality of a set of generators for G is denoted by d(G).

Theorem 3.8. The following statements hold:

1. The normal graph of an abelian group G is complete if and only if G � Zm1 × Zm2 × · · · × Zmk , where k ≥ 3 and
2 ≤ m1 | m2 | · · · | mk.

2. The normal graph of a group G is isomorphic to Pn if and only if |G| = 1.
3. There is no group with a cycle graph Cn,n ≥ 3, as its normal graph.

Proof. 1. LetN(G) be complete. By fundamental theorem of finite abelian groups, G � Zm1×Zm2×· · ·×Zmk ,
where 2 ≤ m1 | m2 | · · · | mk. If k ≤ 2 then G is cyclic or d(G) = 2. In the first case, G has φ(n) isolated
vertices and in the second case the vertices of a 2−generating set are not adjacent which are not
possible. Thus k ≥ 3, as desired. Conversely, we assume that d(G) = k ≥ 3. So, for any elements x and
y in G, G , 〈x, y〉 and so they are adjacent.

2. It is easy to see that κ(G) = 2 if and only if G � Z2 and κ(G) = 3 if and only if G � Z3 or S3. Thus,
there are three normal graphs of orders two or three isomorphic to K2, K3 or K2 ∪ K1. Therefore,
the paths P2 and P3 cannot be isomorphic to the normal graph of a group. Suppose n ≥ 4 and
Pn : v1e1v2e2 · · · vn−1en−1vn. If v1 = eG then it will be adjacent to v3, a contradiction. If v2 , eG then
〈v1, eG

〉 ≤ 〈v1, v2〉 , G and so v1 and eG are adjacent. This shows that de1(v1) ≥ 2 which is impossible.
Hence v2 = eG. The converse is trivial.

3. It is proved in (2) that C3 cannot be represented as a normal graph. Suppose n ≥ 4 and G is a finite
group withN(G) � Cn. If

Cn : v1e1v2e2 . . . vn−1en−1vnenv1

then there exists i, 1 ≤ i ≤ n, such that vi = eG. By definition of normal graph 〈vi, vi+1〉 , G. Since
〈vi+2〉 ≤ 〈vi+1, vi+2〉 , G, vi+2 and vi are adjacent, a contradiction.

This completes our argument.

By Theorem 3.8, if for a prime p, p3
|n then the group G = Zp×Zp×Zp×Z n

p3
has a complete normal graph.

This shows that the maximum edge of a normal graph in the set of all groups with exactly n conjugacy
classes is n(n−1)

2 .

Theorem 3.9. Let G be a finite group.

1. G is simple if and only ifN(G) is an empty graph.
2. Let G be abelian. ThenN(G) is bipartite if and only if G is isomorphic to Z2 × Z2, Z4 or Zp, p is prime.
3. Let G be a non−abelian group and G′ , G. ThenN(G) is bipartite if and only if G is a simple group, G � S3 or

G is a Frobenius group of order |N|(|N| − 1), where N is a 2−decomposable normal 2−subgroup of G and |N| − 1
is a prime number.
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Proof. We first notice that xG is an isolated vertex if and only if 〈xG
〉 = G. If N(G) has an edge connecting

two non−trivial conjugacy classes xG and yG of G, then the conjugacy classes eG, xG and yG constitute a
triangle inN(G). Our main proof will consider three separate cases as follows:

1. Suppose G is a simple group and e , x ∈ G. Then 〈xG
〉 is a normal subgroup of G and so 〈xG

〉 = G.
This proves that the graph N(G) is empty. Conversely, we assume that N(G) is an empty graph and
N is a non−trivial normal subgroup of G. Choose the non−trivial G−conjugacy class xG contained in
N. So, 〈xG, eG

〉 ⊂ N and so, xG and eG are adjacent inN(G), which is impossible.
2. SupposeN(G) is bipartite. If the normal graph is empty then by Part (1), G will be simple. This shows

that G � Zp, p is prime. If |E(N(G))| ≥ 2 then by above discussion all edges will be started form eG.
Choose the edges eGxG and eGyG from N(G). Hence N = eG

∪ xG and M = eG
∪ yG are two distinct

non−trivial normal subgroups of G and by our assumption, MN = G and M∩N = 1. This proves that
κ(M) = κ(N) = 2 and so G � M × N � Z2 × Z2. Finally, we assume that |E(N(G))| = 1. If rank(G) = 1,
then G is a cyclic and sinceN(G) dose not have a triangle, G � Z4. If rank(G) = 2 then G � Z2 ×Z2 and
the normal graph of abelian groups with rank ≥ 3 have at least one triangle, which is not possible.
Conversely, it is clear that the normal graph of the abelian groups Zp, p is prime, Z2 × Z2 and Z4 are
bipartite.

3. Suppose the normal graph of a non-abelian and non−perfect finite group G is bipartite. By a similar
argument as Part (2), we can assume that |E(N(G)| = 1. Choose the conjugacy class xG such that xGeG is
an edge inN(G). Then N = eG

∪ xG is a normal subgroup of G. If G is centerless then by [16, Theorem
2.1.](a), G is a Frobenius group with kernel N and its complement is abelian and by [16, Theorem
2.1.](d), |G| = |N|(|N| − 1). Since G is centerless, x is not a central element of G and so |N| > 2. On the
other hand, by our assumption N = G′ is an elementary abelian 2−subgroup of order 2n and 2n

− 1 is
a Mersenne prime. This proves that G � S3 or

G � Z2 × · · · × Z2︸         ︷︷         ︸
n times

: Z2n−1,

as desired. Finally, if Z(G) , 1 then a simple argument leads to another contradiction.
Conversely, it is clear that the normal graph of the symmetric group S3 and all finite simple groups are
bipartite. Suppose G is a Frobenius group of order |N|(|N| − 1), where N is a 2−decomposable normal
2−subgroup of G and |N| − 1 is a prime number. Since N is 2−decomposable normal 2−subgroup of
G, it is elementary abelian group of order 2α. If G has another proper non-trivial normal subgroup M.
It is clear that G � M × N and since M,N are abelian subgroup of G, G is abelian. This contradiction
shows that G has a unique proper non-trivial normal subgroup. Therefore, N(G) has a unique edge
and some isolated vertices and so it is bipartite.

This proves the result.

It is possible to find finite groups with bipartite normal graphs which are not simple, abelian and
centerless. As an example, we consider the finite groups SL(n, q). These groups are perfect except in the
cases that (n, q) = (2, 2) or (2, 3). On the other hand, the special linear groups SL(n, q) are simple if and only
if (n, q − 1) = 1. By [14, Theorem 5.13 and 5.14], proper normal subgroups of SL(n, q), for n ≥ 3 or n = 2 and
q ≥ 4 are central. It is clear that |Z(SL(n, q))| = (n, q− 1) = 2 if and only if one of the following conditions are
satisfied:

a. 2|n, 4 - n and 2 - q,
b. 4|n, 2 - q and 4 - q − 1.

This proves that if (n, q− 1) = 1 or the pair (n, q) satisfies one of the conditions a or b then the normal graph
of the special linear groups SL(n, q) will be bipartite.

Let n be a natural number with n ≥ 2, and let q be a prime power such that (n, q) < {(2, 2), (2, 3), (3, 2)}.
Then SU(n, q2) is perfect. By [8, Theorem 5, p. 70], all proper normal subgroups of SU(n, q2) are central. On
the other hand, |Z(SU(n, q2))| = (n, q + 1) = 2 if and only if one of the following conditions are satisfied:
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c. 2|n, 4 - n and 2 - q,
d. 4|n, 2 - q and 4 - q + 1.

Therefore, if (n, q + 1) = 1 or the pair (n, q) satisfies one of the conditions c or d then the normal graph of the
special unitary groups SU(n, q2) will be bipartite.

Question 3.10. Is there any classification of perfect non-simple groups with bipartite normal graphs?

Suppose G1 and G2 are finite groups and α : C(G1) −→ C(G2), β : Irr(G1) −→ Irr(G2) are two bijections.
We say that G1 and G2 have identical character table if the value of β(χ) on all the elements of the class α(K)
is equal to χ(x), where x ∈ K. We shall also say that (α, β) is a character table isomorphism from G1 to G2. It
is easy to see that if (α, β) is a character table isomorphism from G1 to G2 then (α−1, β−1) is a character table
isomorphism from G2 to G1.

Theorem 3.11. Let G and H be finite groups with identical character table. ThenN(G) � N(H).

Proof. Suppose G and H have identical character table and the pair (α, β) is a character table isomorphism
from G to H. To prove the theorem, we show that the map α : V(N(G)) −→ V(N(H)) defines a graph
isomorphism fromN(G) toN(H). To do this, we assume that xG and yG are adjacent inN(G). By definition
N1 = 〈xG, yG

〉 C G. Suppose N1 = xG
1 ∪ xG

2 ∪ · · · ∪ xG
r with xG

1 = xG and xG
r = yG, where xG

i , 1 ≤ i ≤ r < κ(G),
are distinct conjugacy classes of G. Define N2 = α(xG

1 ) ∪ · · · ∪ α(xG
r ). It is then obvious that N2 is a normal

subset of H and that |N2| = |N1|. We still must show that N2 is a subgroup. There is a character ψ1 of G (not
necessarily irreducible) such that N1 = Ker(ψ1), so the classes K of G in N1 are exactly the classes such that
if x is in K, then ψ1(x) = ψ1(1). Now H has a character ψ2 corresponding to ψ1. To construct ψ2, we assume
that ψ1 = a1χ1 + · · · + atχt such that t = κ(G) and χ1, . . . , χt ∈ Irr(G). Then ψ2 = a1β(χ1) + · · · + atβ(χt). We
show that ψ1(x) = ψ2(1). Since x ∈ K ⊂ N1,

ψ2(1) = a1β(χ1)(1) + · · · + atβ(χt)(1)
= a1χ1(1) + · · · + atχt(1)
= ψ1(1) = ψ1(x),

as desired. Then because the character tables are identical, we see that N2 is exactly the set of elements of
H that lie in Ker(ψ2). Thus N2 = Ker(ψ2) and this is a subgroup.

Since G and H have identical character table, |G| = |H|. Hence, |N2| = |N1| < |G| = |H| which proves that
α(xG) and α(yG) are adjacent inN(H). Finally, since (α−1, β−1) is a character table isomorphism from H to G,
the map α−1 preserves adjacency inN(H). This completes the proof.

The converse of the previous theorem is not generally correct. For example, the simple groups PSL(2, 8)
and PSL(2, 13) have exactly nine conjugacy classes and N(PSL(2, 8)) � N(PSL(2, 13)) � K9. On the other
hand, these groups have different orders and so they don’t have identical character tables. For non-simple
groups, we can choose G = SmallGroup(57, 1) � Z19 : Z3 and H = SmallGroup(60, 7) � Z15 : Z4, where
SmallGroup(n, i) denotes the i − th group of order n in the small group library of GAP and H : K is the
semi-direct product of a group H by the group K [17].

Question 3.12. Are there finite groups G and H such that |G| = |H|,N(G) � N(H) but G and H don’t have identical
character table?

Example 3.13. Suppose p is prime. In this example the normal graph of a non-abelian group of order p3 is considered
into account. The normal graph of dihedral group D8 and quaternoin group Q8 are obtained in Examples 2.1 and 2.2,
respectively. So, it is enough to consider the case that p is odd.
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Following Conrad [5], we define:

Heis(Zp) =


 1 a b

0 1 c
0 0 1

 : a, b, c ∈ Zp

 ,
Gp =

{(
a b
0 1

)
: a, b ∈ Zp2 , a ≡ 1 mod p

}
=

{(
1 + pm b

0 1

)
: m, b ∈ Zp2

}
,

where m has to be calculated in modulo p. By [5, Theorem 4.] every non-abelian group of order p3 is isomorphic
to Gp or Heis(Zp). Since these groups have identical character table, by Theorem 3.11, it is enough to obtain the
normal graph of Heis(Zp). The group Heis(Zp) has exponent p containing a unique normal subgroup of order p,
the center of Heis(Zp), and p + 1 normal subgroups of order p2. Suppose H is a subgroup of order p2 in Heis(Zp)
and Z = Z(Heis(Zp)). Then Z 6 H and so H has exactly p Heis(Zp)−conjugacy classes of length 1 and p − 1
Heis(Zp)−conjugacy classes of length p. This proves that N(Heis(Zp)) � Starp+2[Kp,Kp−1, . . . ,Kp−1], where Kp is
corresponding to the central vertex of Starp+2.

The relationship between X−decomposable finite groups and the structure of normal graphs are inves-
tigated. Here, the notationω(Γ) stands for the clique number of Γ which is defined as the number of vertices
in a maximal clique and E(pn) � Zp × · · · × Zp︸         ︷︷         ︸

n times

.

Theorem 3.14. Suppose G is a non-perfect finite group. Then the following hold:

1. If ω(N(G)) = 3 then the group G is isomorphic to one of the following groups:
(a) One of the groups Z6, D8, Q8, Z3×Z3, Z9, S4, SmallGroup(20, 3), SmallGroup(24, 3), SmallGroup(36, 9),
(b) A non-abelian group of order pq, p, q are primes and q =

p−1
2 ,

(c) The semi-direct product Zq o E(3n) in which q = 3n
−1
2 is prime.

2. If ω(N(G)) = 4 then G is isomorphic to one of the following groups:
(a) One of the groups Z8, Z2 × Z4, S5, Q12, Z2 × A4, D12, ((Z3 × Z3) : Q8) : Z3 = SmallGroup(216, 153),

((Z5 × Z5) : Q8) : Z3 = SmallGroup(600, 150) and (Z7 : Z3) : Z2 = SmallGroup(42, 1).
(b) A non-abelian group of order pq, p, q are primes and q =

p−1
3 ,

(c) A metabelian group of order 2n(2
n−1

2 − 1) in which n is odd positive integer and 2
n−1

2 − 1 is a Mersenne
prime,

(d) A metabelian group of order 2n(2
n
3 − 1), where 3|n and n

3 − 1 is a Mersenne prime,
(e) The semi-direct product Zq o E(2n) in which q = 2n

−1
3 is prime.

Proof. Our main proof will consider two separate cases as follows:

1. ω(N(G)) = 3. In this case N(G) � K3, G is {1, 3}−decomposable or {1, 2, 3}− decomposable. By
Theorem 3.8(3), the case of N(G) � K3 cannot be occured and if G is {1, 3}−decomposable or
{1, 2, 3}−decomposable then by [2, Theorem 4] and [3, Theorem], the proof will be completed.

2. ω(N(G)) = 4. In this case N(G) � K4, G is {1, 4}−decomposable, {1, 2, 4}− decomposable, {1, 3, 4}−
decomposable or {1, 2, 3, 4}−decomposable. If N(G) � K4 then G is isomorphic to D10, Z4, Z2 × Z2
or A4 which are not possible. Other cases follow from [2, Theorem 5], [9, Theorems 3.1 and 3.2], [1,
Theorem] and [10, Main Theorem].

Hence the result.
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To characterize finite non-perfect groups in which the clique number of its normal graph is 5 we
have to first characterize all {1, 5}−, {1, 2, 5}−, {1, 3, 5}−, {1, 4, 5}−, {1, 2, 3, 5}−, {1, 2, 4, 5}−, {1, 3, 4, 5}− and
{1, 2, 3, 4, 5}−decomposable non-perfect finite groups. The {1, 5}− decomposable non-perfect finite groups
are characterized in [4], but with the best of our knowledge there is no characterization of X−decomposable
non-perfect finite groups, where {1, 5} ⊂ X ⊆ {1, 2, 3, 4, 5}. Therefore, the characterization of finite non-
perfect groups G with ω(N(G)) = 5 will remain an open question. We end this paper by recording this open
question.

Question 3.15. Is there a characterization of finite groups with ω(N(G)) = 5.
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