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Abstract. Let A and B be two R-modules. We examine conditions under which Hom(A,X) � Hom(B,X),
implies that A � B, where X belongs to an appropriate class of R-modules. Different perspectives of the
question are studied. In the case of abelian groups (Z-modules), this investigation gives a partial answer
to an old problem of L. Fuchs.

1. Introduction

In group theory, if G1,G2 are finite groups and |Hom(G1,H)| = |Hom(G2,H)| for every finite group H,
then G1 is isomorphic to G2 (this result is an outcome of L. Lovász’s works in [10],[11] and [12]). On the
other hand, L. Fuchs posed in [5, Page 208, Problem 34] the following problem: does there exist a set X of
(abelian) groups X such that Hom(A,X) � Hom(B,X) for every X ∈ X implies that A � B ? This problem
has been extensively studied in [1],[2] and [3] and some classes of abelian groups were obtained which give
some answers to Fuchs’s problem 34.

In this article, every ring R is associative with identity and any module is a unitary module. Posing the
Fuchs 34 question in R-Mod, the category of unitary modules over a ring R, one has to distinguish three

possibilities one is confronted with. In the sequel by Hom(A,X)
T
� Hom(B,X), we mean that these two

structures are isomorphic as T-modules. Moreover, suppose that X is a “suitable” subclass of R-Mod. The
first and perhaps most common version of this question is as follows:

Question 1. Let R be a commutative ring and A and B be two R-modules and Hom(A,X)
R
� Hom(B,X) for

every R-module X ∈ X. Is it true that A
R
� B? Though, as we already asked, this question can be posed for

every commutative ring, in this paper, we mainly focus on the case R = Z, i.e., on the category of abelian
groups. In Section 2, we determine several classes of abelian groups in which this question has a positive
answer. The reader is reminded that in this section, we follow a more elementary approach than [1],[2] and
[3].

The second version which is a stronger form than the above one is the following. Remember that when R
is commutative, there is a ring homomorphism from R to End(X), for any R-module X:
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Question 2. Let R be an arbitrary ring, A and B two R-modules and

Hom(A,X)
S
� Hom(B,X)

for every R-module X ∈ X, where S = EndR(X). Then is it true that A
R
� B ? Section 3 is devoted to this

question.

The third version is the strongest one (with respect to its hypothesis):

Question 3. Let A and B be two modules over an arbitrary ring R such that the two functors Hom(A,−) and

Hom(B,−) are (naturally) isomorphic. Then is it true that A
R
� B ? The answer of this question is affirmative

and is actually an immediate consequence of Yoneda’s Lemma. The reader may find a proof, for example,
in [13, 44.6]. A partial case of of this question, when R is an integral domain has been solved in [1, Theorem
3.1]. Note that, in the proof of [1, Theorem 3.1], R is not needed to be an integral domain and also the proof
works for any locally small category in the place of R-Mod. Regarding to Question 3, the reader may be
curious on behavior of derived functors of Hom functor. Let A and B be two non-isomorphic projective
R-modules. Then Ext(A,−) and Ext(B,−) are naturally isomorphic due to the fact that for a projective
module P, Ext(P,X) = 0 for every R-module X.

Along this line, we may pose one further question: let R be an arbitrary ring and A and B two R-modules

with Hom(A,X)
Z
� Hom(B,X) for every R-module X ∈ X. Is it true that A

R
� B? However, the next example

gives a negative answer to this question immediately, even when X = R-Mod.

Example 1.1. Let R = M2×2(R) (two by two matrices over the real field R), and T be a simple R-module. It
is well-know that EndR(T) = R. Suppose that A = T and B = T ⊕ T. Then for every R-module K we have

HomR(A,K)
Z
� HomR(B,K)

because K is nothing but
⊕

I T, hence

HomR(T,⊕IT) �
⊕

I

Hom(T,T) � ⊕IR

and HomR(B,K) � (
⊕

I R) ⊕ (
⊕

I R). Since R
Z
� R ⊕ R, we have HomR(A,K)

Z
� HomR(B,K) for every

R-module K, but A � B.

As far as the first question is concerned, the following example shows that, sometimes, one has to restrict
oneself to finitely generated modules, even if R is a field. In the next example we use a result (it is also
named as Erdös-Kaplansky Theorem) which says: If F is a field, I is an infinite set and V =

∏
Vi, where Vi’s

are non-zero vector spaces over F, then dim V = |V| =
∏

I |Vi| (see [8, Chapter 9, Section 5]).

Example 1.2. Let F be a field such that |F| ≥ 2c, where by c we mean the continuum (i.e., 2ℵ0 ). Now consider
two sets I and J with |I| = c and |J| = ℵ0. Put A = F(I) and B = F(J). In this case, HomF(A,W) � HomF(B,W)
for every F-module W. Because Hom(A,W) �

∏
I Hom(F,W) = WI and on the other hand Hom(B,W) =∏

J Hom(F,W) = W J. Since by Erdös-Kaplansky Theorem dim WI = |W||I| and dim W J = |W||J| and |W| ≥ 2c,
we have |W||I| = |W||J| and hence HomF(A,W) � HomF(B,W), but A � B.

2. Abelian Groups

As we mentioned in the introduction, a special but very important case of the first question is the case
R = Z. L. Fuchs in [5, Page 208, Problem 34] posed the following problem: does there exist a set X of
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(abelian) groups X such that Hom(A,X) � Hom(B,X) for every X ∈ X implies that A � B ? The next results

answer this question for some classes of abelian groups. In this section, by A � B we mean A
Z
� B, unless

stated otherwise. Following [2], a classX of abelian groups is called a Fuchs 34 class, when A and B inX are
isomorphic if and only if Hom(A,X) � Hom(B,X) for every X ∈ X.

We begin with finitely generated abelian groups which are easier to deal with because of the fundamental
theorem of finitely generated abelian groups .

Proposition 2.1. Let A and B be two finitely generated abelian groups and Hom(A,X) � Hom(B,X) for every
cyclic group X, then A � B. In particular, the class of finitely generated abelian groups is a Fuchs 34 class.

Proof. By the fundamental theorem of finitely generated abelian groups, we have that A � Zn
⊕ H1 and

B � Zm
⊕H2, where H1,H2 are two finite abelian groups. First we show that n = m and after that we prove

that H1 � H2. We know that

Zn � Hom(A,Z)
Z
� Hom(B,Z) � Zm

This implies that n = m. Choose d ∈N such that both the order of H1 and the order of H2 divide d. Then
it is obvious that

Hom(H1,Zd) = H1, Hom(H2,Zd) = H2.

Hence Zn
d ⊕ H1 � Hom(A,Zd) � Hom(B,Zd) � Zn

d ⊕ H2, consequently, H1 � H2. By the above steps we
conclude that A � B.

Proposition 2.2. Let R be a P.I.D and A,B be two finitely generated R-modules. If HomR(A,X)
R
� HomR(B,X) for

all cyclic modules X, then A
R
� B.

Proof. The proof is similar to the proof of Proposition 2.1.

Convention 1. In the sequel, we suppose the weak Generalized Continuum Hypothesis (the weak GCH),
that is, “If α and β are two infinite cardinals and 2α = 2β, then α = β”. This property follows from GCH (the
generalized continuum hypothesis). Although independent of the axioms of ZFC (the Zermelo-Fraenkel
set theory with the Axiom of Choice), the statement is weaker than the GCH in the frame of ZFC (see for
example [7]).

We also need the following lemma before establishing our result on divisible groups.

Lemma 2.3. Let p be a prime number, Jp be the group of p-adic integers and Zp∞ be the Prüfer p-group. Then
Hom(Zp∞ ,Zp∞ ) � Jp and Hom(Q,Zp∞ ) � Q(c) � R.

Proof. By [5, Page 181, Example 3], Hom(Zp∞ ,Zp∞ ) � Jp. Now, let Z[1/p] = { m
pn | m,n ∈ Z}. Consider the

following exact sequence:

0 −→ Z[1/p] −→ Q −→
Q

Z[1/p]
−→ 0

Applying Hom(−,Zp∞ ) (recall that Zp∞ is an injective Z-module and hence Hom(−,Zp∞ ) is exact) and
observing that Hom( Q

Z[1/p] ,Zp∞ ) = 0 we obtain

Hom(Q,Zp∞ ) � Hom(Z[1/p],Zp∞ ).

By [5, Page 181, Example 4], we know that Hom(Z[1/p],Zp∞ ) � R and therefore Hom(Q,Zp∞ ) � R.

It is well-known that every abelian group G can be written as G = Gd ⊕ Gr, where Gd is the unique
maximal divisible subgroup of G and Gr is the reduced part of G.
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Remark 2.4. Let A and B be two abelian groups. If Hom(A,Br) � Hom(B,Br) and A is divisible, then B is
divisible too. If B is not divisible, then Br , 0 and hence Hom(B,Br) , 0, but Hom(A,Br) = 0 because A is
divisible.

Theorem 2.5. Let A, B be two divisible abelian groups. If Hom(A,X)
Z
� Hom(B,X) where X ∈ {Q,Zp∞: p is prime },

then A � B. In particular the class of divisible abelian groups is a Fuchs 34 class.

Proof. It is well-known that A � Q(I)
⊕(
⊕

p∈P Z
(Ip)
p∞ ) and B � Q(L)

⊕(
⊕

p∈P Z
(Lp)
p∞ ). Since Hom(A,Q) � Hom(B,Q)

we have QI � QL. Now if I or L is finite, then we have |I| = |L|. If on the other hand, I,L are infinite sets,
then we have ℵ|I|0 = ℵ|L|0 , which implies that 2|I| = 2|L| and now by the weak GCH, |I| = |L|.
Now consider Hom(A,Zp∞ ) � Hom(B,Zp∞ ), which implies that

Hom(Q,Zp∞ )I
⊕Hom(Zp∞ ,Zp∞ )Ip � Hom(Q,Zp∞ )L

⊕Hom(Zp∞ ,Zp∞ )Lp

By Lemma 2.3, Hom(Q,Zp∞ ) � R and Hom(Zp∞ ,Zp∞ ) � Jp. Thus we can write

RI
⊕ JIp

p � RL
⊕ JLp

p .

Tensoring the above formula by Zp, we have

JIp
p ⊗Zp � JLp

p ⊗Zp,

Inasmuch as Zp is finitely presented, the above relation can be written as

(Jp ⊗Zp)Ip � (Jp ⊗Zp)Lp ,

Since Jp ⊗Zp � Zp, we conclude that
(Zp)Ip � (Zp)Lp .

If Ip or Lp is finite, we have |Ip| = |Lp|. If Ip and Lp are infinite sets, we have

p|Ip | = p|Lp |,

Now using the weak GCH, |Ip| = |Lp|. And this implies that A � B.

Before we state our main results on bounded torsion groups (Theorem 2.11 and Corollary 2.12), we need
some auxiliary lemmas.

Lemma 2.6. If A,B are two abelian groups, Hom(A,Q) � Hom(B,Q) and A is torsion, then B is also torsion.

The proof is a consequence of the injectivity of Q.

Lemma 2.7. Let A and B be two torsion abelian groups and Hom(A,X) � Hom(B,X), for torsion divisible groups
X. If A is bounded, then so is B.

Proof. If A is bounded, then it is easy to observe that Hom(A,X) is bounded for every X. Now suppose
that B is not bounded. We will show that Hom(B, QZ ) is not bounded and get a contradiction. Choose an
arbitrary n ∈ N. Then there exists b ∈ B whose order is > n. Since Q

Z is divisible (injective), there exists
f : B −→ Q

Z such that n f , 0.

Let G be an abelian group and I be a set. In the following, by GI and G(I) we mean the direct product
and the direct sum of I copies of G respectively.

Lemma 2.8. Let p be a prime number, n ∈N and I an infinite set. ThenZI
pn � Z

(J)
pn (asZ-modules orZpn -modules),

where |J| = 2|I|.
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Proof. Consider ZI
pn as a Zpn -module. Inasmuch as Zpn is a noetherian self-injective local ring, by Matlis

Theorem (see [9, Theorem 3.48, Theorem 3.62]), ZI
pn � Z

(J)
pn , for some set J. Now we infer that 2|I| = |J|.

In the sequel, we use two fundamental results in abelian groups.

Theorem 2.9 (Prüfer-Baer). A bounded group is a direct sum of cyclic groups.

Proof. See [5, 17.2].

Theorem 2.10. Any two decompositions of an abelian group into direct sums of cyclic groups of prime power orders
are isomorphic.

The proof is immediate by [5, 17.4].

Theorem 2.11. Let A and B be two p-groups. If Hom(A,Zp∞ ) � Hom(B,Zp∞ ) and A is bounded, then A � B.

Proof. First of all, we may infer by Lemma 2.7 that B is also bounded. Theorem 2.9 implies that A �

Z(I1)
p ⊕Z

(I2)
p2 ⊕ · · · ⊕Z

(In)
pn and B � Z(J1)

p ⊕Z
(J2)
p2 ⊕ · · · ⊕Z

(Jn)
pn for suitable sets I1, · · · , In and J1, · · · , Jn. Now from

the fact that Hom(A,Zp∞ ) � Hom(B,Zp∞ ) and Hom(Zpi ,Zp∞ ) � Zpi , for i ∈N, we get that

ZI1
p ⊕Z

I2

p2 ⊕ · · · ⊕Z
In
pn � Z

J1
p ⊕Z

J2

p2 ⊕ · · · ⊕Z
Jn
pn .

Using Lemma 2.8, we have that ZIi

pi � Z
(Ki)
pi and ZJi

pi � Z
(Li)
pi , where Ki = Ii if Ii is finite, and |Ki| = 2|Ii | if Ii

is infinite. The same holds for Ji and Li. Therefore we have that

Z(K1)
p ⊕Z(K2)

p2 ⊕ · · · ⊕Z
(Kn)
pn � Z(L1)

p ⊕Z(L2)
p2 ⊕ · · · ⊕Z

(Ln)
pn .

Now by Theorem 2.10, |Ki| = |Li| for i = 1, 2, . . . ,n. From the weak GCH, we conclude that |Ii| = |Ji| for
i = 1, 2, . . . ,n, and hence A � B.

Let A be an abelian group and p be a prime number. By A(p) we indicate the subgroup { x ∈ A | pnx =
0 for some n ∈N}, called the p-component of A.

Corollary 2.12. Let A and B be two torsion abelian groups. If Hom(A, QZ ) � Hom(B, QZ ) and the p-components of
A are bounded for any prime number p, then A � B.

Proof. It is well-known that every torsion abelian group is the direct sum of its p-components. Therefore
A =
⊕

A(p) and B =
⊕

B(p). Also recall that Q
Z � ⊕Zp∞ and Hom(A(p),⊕q,pZq∞ ) = (0). This implies that

Hom(A,
Q

Z
) �
∏

Hom(A(p),
Q

Z
) �
∏

Hom(A(p),Zp∞ ).

Inasmuch as, for every prime p, A(p) is bounded, Hom(A(p),Zp∞ ) is a torsion p-group and hence Hom(A, QZ )(p) �
Hom(A(p),Zp∞ ). Similarly, for B, we have that Hom(B, QZ )(p) � Hom(B(p),Zp∞ ). Since Hom(A, QZ ) �
Hom(B, QZ ), we may infer that

Hom(A(p),Zp∞ ) � Hom(B(p),Zp∞ ).

By Theorem 2.11, we conclude that A(p) � B(p), and hence A � B.

Corollary 2.13. Let A and B be two abelian groups and suppose A finitely generated torsion. If Hom(A, QZ ) �
Hom(B, QZ ), then A � B. In particular, B is finitely generated.

Proof. Since A is a finitely generated torsion group, every p-component of A is bounded. Now we may
apply Corollary 2.12.
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A subset {aα} of an abelian group A is linearly independent (over Z) if the only linear combination of
these elements that is equal to zero is trivial: if∑

α

nαaα = 0, nα ∈ Z,

where all but finitely many coefficients nα are zero (so that the sum is, in effect, finite), then all coefficients
are 0. Any two maximal linearly independent sets in A have the same cardinality, which is called the rank
of A. The factor-group A

T(A) is the unique maximal torsion-free quotient of A where by T(A) we mean the
torsion subgroup of A. The rank of A

T(A) coincides with the rank of A, because rank A = dim A ⊗ Q =

dim A
T(A) ⊗Q = rank A

T(A) .

Proposition 2.14. Let A and B be two abelian groups. If Hom(A,Q) � Hom(B,Q), then rank A = rank B.

Proof. Suppose Hom(A,Q) � Hom(B,Q). Equivalently,

Hom(A,Hom(Q,Q)) � Hom(B,Hom(Q,Q)).

Then
Hom(A ⊗Q,Q) � Hom(B ⊗Q,Q),

so that
HomQ(A ⊗Q,Q)

Q
� HomQ(B ⊗Q,Q).

Since A ⊗ Q � Q(I) and B ⊗ Q � Q(J) for suitable sets I and J, taking dual, we can deduce that QI � QJ. If
either I or J is finite, then |I| = |J|. If I and J are infinite, by the weak GCH, we have that |I| = |J|. So in both
cases we conclude that A ⊗Q � B ⊗Q, and hence rank A = rank B.

Corollary 2.15. Suppose that F1 and F2 are two free abelian groups, and Hom(F1,Q) � Hom(F2,Q), then F1 � F2.

Remark 2.16. As far as Proposition 2.14 is concerned, we can add some comments on integral domains.
Since the dual space of a finite dimensional vector space is isomorphic to the space itself, we have that if R
is an integral domain with field of fractions Q, A and B are two finitely generated torsion-free R-modules

and Hom(A,Q)
R
� Hom(B,Q), then E(A) � E(B), where E(A) indicates the injective hull of A. In particular,

A and B have the same Goldie dimension. In order to see this, we have from the hypothesis that

HomR(A,HomR(Q,Q))
R
� HomR(B,HomR(Q,Q)).

Hence, by the Hom-tensor relation, we can write

HomR(A ⊗R Q,Q)
R
� HomR(B ⊗R Q,Q).

Since HomR(M,N) = HomQ(M,N) for every M,N ∈ Q-Mod, we get that

HomQ(A ⊗R Q,Q)
Q
� HomQ(B ⊗R Q,Q).

Hence A ⊗R Q
Q
� B ⊗ Q. This implies that A ⊗R Q

R
� B ⊗ Q. But it is well-known that E(M) � M ⊗R Q for

every finitely generated torsion-free R-module M.

We are ready to express our main result on torsion-free groups of rank 1. These kind of groups are (up to
isomorphism) the subgroups of Q. For undefined terms and concepts, the reader is referred to [6, Chapter
13]. Before we state our result, we need two basic results from [6].

Theorem 2.17 (Baer). Two torsion-free groups of rank 1 are isomorphic if and only if they are of the same type
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Proof. See [6, Theorem 85.1].

In the sequel by t(−) we mean the type of a torsion-free abelian group of rank 1, as defined in [6, Section
85].

Proposition 2.18. If A and B are torsion-free groups of rank 1, then Hom(A,B) is 0 if t(A) � t(B), and is a
torsion-free group of rank 1 and of type t(B) : t(A) if t(A) ≤ t(B).

Proof. See [6, Proposition 85.4].

Theorem 2.19. Let A and B be two torsion free abelian groups. Suppose Hom(A,X) � Hom(B,X) for X ∈ {A,B,Q}
and rank A = 1. Then A � B. In particular, the class of torsion free abelian groups of rank 1 is a Fuchs 34 class.

Proof. By Proposition 2.14, we know that rank B = 1. Since

Hom(A,A) � Hom(B,A),

we have from Proposition 2.18 that t(B) ≤ t(A). Similarly, t(A) ≤ t(B). So t(A) = t(B). By Theorem 2.17,
A � B.

Now we are ready to summarize what we have done in this section. This gives a partial answer to [5,
Page 208, Problem 34]. The answer is provided under ZFC together with the weak GCH.

Corollary 2.20. When A and B belong to each of the following classes of abelian groups, the relation Hom(A,X) �
Hom(B,X) for X ∈ X implies that A � B.

1. Finitely generated abelian groups; X the class of cyclic groups.
2. Divisible groups; X = {Q,Zp∞: p is prime }.
3. Torsion abelian groups with bounded p-components; X = {QZ }.
4. Torsion-free abelian groups of rank 1; X the class of torsion-free abelian groups of rank 1.

3. Partial Answers to the Second Question

This section is devoted to the second question. We begin with a useful observation.

Proposition 3.1. Let A and B be two finitely generated semisimple R-modules. Suppose Hom(A,X)
S
� Hom(B,X)

for every simple module X ∈ R-Mod, where S = End(X). Then B
R
� A.

Proof. Let T be a simple R-module with D = End(T).

Since Dn � Hom(A,T)
D
� Hom(B,T) � Dm for n,m ≥ 0, we conclude that n = m. Hence Tr(T,A) � Tr(T,B)

for every simple R-module T. This implies that A � B.

Lemma 3.2. Let Q be a quasi-injective R-module with S = End(Q). Then the S-module Hom(T,Q) is either simple
or 0 for every simple R-module T.

Proof. See [4, Page 191 ].

The next proposition can be compared with Corollary 2.13. Remember that for an R-module M, by E(M)
we mean the injective hull of M.

Proposition 3.3. Let A and B be two finitely generated R-modules. Suppose Hom(A, I)
S
� Hom(B, I) for every

injective module I ∈ R-Mod, where S = End(I). If A is simple, then A � B.
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Proof. Let B be non-semisimple. Then there exists a proper essential submodule K in B which is maximal.
Since Hom(B,E(B/K)) , 0, we have Hom(A,E(B/K)) , 0. This implies that A � B/K due to A and B/K
being simple. On the other hand, Hom(B,E(B)) , 0 which implies that Hom(A,E(B)) , 0. Hence there
exists a map f : B −→ E(B) with ker( f ) = K. By injectivity of E(B), we have an R-homomorphism extension
(of f ) 1 : E(B) −→ E(B) with K ⊆ ker(1) and hence ker(1) ≤e E(B) due to K being essential in B. Consider
the following diagram, where φ : Hom(A,E(B)) −→ Hom(B,E(B)), is an S-module isomorphism with
S = End(E(B)):

Hom(A,E(B))
φ
−→ Hom(B,E(B))

Hom(A,1) ↓ ↓ Hom(B,1)

Hom(A,E(B))
φ
−→ Hom(B,E(B))

This diagram is commutative. To see this, let h ∈ Hom(A,E(B)). Since 1 ∈ S, φ(1 ◦ h) = 1 ◦ φ(h).
Therefore φ ◦Hom(A, 1) = Hom(B, 1) ◦ φ. Now consider, the inclusion map ι : B −→ E(B), so there exists
α ∈ Hom(A,E(B)) such that φ(α) = ι. From the one hand, 1 ◦ φ(α) = 1 ◦ ι = 1|B = f , 0. On the other hand,
φ(1 ◦ α) = 0 because 1 ◦ α = 0, which is a contradiction with the commutativity of the above diagram. So
B is semisimple. Let T be a simple submodule of B. Since Hom(B,E(T)) , 0, hence Hom(A,E(T)) , 0, and
therefore T � A. This implies that B � An, for some n ≥ 1. Since by Lemma 3.2, Hom(A,E(A)) is a simple
S-module, where S = End(E(A)), so n = 1 and hence A � B.

In the following by a coretractable R-module M we mean a module M such that HomR( M
K ,M) , 0 for every

proper submodule K of M. In the sequel, by a homogenous seimisimple module we mean a semisimple
module which is the direct sum of isomorphic simple modules.

Proposition 3.4. Let A and B be two finitely generated R-modules and Hom(A,X)
S
� Hom(B,X), where X = B or

X is a simple R-module and S = End(X). If A is semisimple, then under each of the following conditions, A
R
� B:

a. A is homogenous;

b. B is coretractable.

Proof. By Proposition 3.1, it is enough to show that B is also semisimple. Suppose that B is not semisimple,
hence there exists a maximal submodule K of B which is essential. Now, consider the map π : B −→ B

K . If B
is coretractable, there exists a non-zero map β : B

K −→ B and hence 0 , β ◦ π : B −→ B with K = ker(β ◦ π).
In case A is homogenous, since Hom(B, B

K ) , 0, we have Hom(A, B
K ) , 0. It is not difficult to observe that,

in this case too, there exists a non-zero map f : B −→ B with K = ker f . So, in either case, we have such
a map 1 : B −→ B with ker 1 = K. Now, consider the following diagram which is commutative due to

Hom(A,B)
S
� Hom(B,B), where S = End(B) and 1 ∈ S:

Hom(A,B)
φ
−→ Hom(B,B)

Hom(A,1) ↓ ↓ Hom(B,1)

Hom(A,B)
φ
−→ Hom(B,B)

which, similar to the proof of Proposition 3.3, leads us to a contradiction. Therefore, B is semisimple.

Recall that an R-module M, is called reflexive if the canonical map M −→ M∗∗ = Hom(M∗,R), is an
isomorphism. Knowing that for a ring R, End(R) � R, we have the following result.

Proposition 3.5. Let A and B be two reflexive modules over a ring R. If Hom(A,R)
R
� Hom(B,R), then A

R
� B.

Proof. The verification is immediate.
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A ring is said to be quasi-Frobenius if the class of its projective modules coincides with the class of its
injective modules.

Corollary 3.6. Let A and B be two modules over a ring R. Under each of the following cases, from Hom(A,R)
R
�

Hom(B,R) we conclude that A � B.

1. A and B are finitely generated projective modules.
2. R is quasi-Frobenius and A,B are finitely generated modules.

Proof. Recall that in these cases A and B are reflexive (see [9, Theorem 15.11]).
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