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Abstract. An application of Herzberger’s matrix method, very rarely used in the topic of multipoint meth-
ods for solving nonlinear equations, is presented. It is shown that the area of application of Herzberger’s
matrix method is wider than it is presented in [J. Herzberger, Über Matrixdarstellungen für Iterationver-
fahren bei nichtlinearen Gleichungen, Computing, 12 (1974) 215–222]. This method is applied for the
determination of the order of convergence of multipoint families of methods, Steffensen’s type and New-
ton’s type, with and without memory. The advantage and the elegance of this method arise from ease in
handling matrices.

In Memory of Professor Jürgen Herzberger.

1. Introduction

In this paper we demonstrate the application of Herzberger’s matrix method [1] (HMM for short) for
calculation of the order of convergence of multipoint methods for solving nonlinear equations. Herzberger
has presented a matrix procedure which reduces the problem of determination of the order of convergence
of Hermite’s class of one-point methods, single-step and total-step methods to the problem of finding the
spectral radius of a certain matrix. We prove that Herzberger’s approach can be used to an arbitrary class
of multipoint methods with or without memory. The requirement is the knowledge of an error relation of
the method considered.

The main advantage of multipoint methods is their high computational efficiency since they can attain
convergence order 2n consuming only n + 1 function evaluations. Methods with this property are usually
called optimal methods and support the Kung-Traub hypothesis [2] on the upper bound of convergence order
of multipoint methods. For example, Kung-Traub’s families [2], Zheng-Li-Huang’s family [3], a general
class based on Hermite’s interpolation polynomials [4] and on Hermite’s interpolation by rational functions
[5], belong to the class of n−point optimal methods of general form. In our study we shall consider both
Newton’s type and Steffensen’s type methods with and without memory. It will be shown that under the
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same amount of Hermite’s sampled data, Steffensen’s type of methods produce higher convergence order
for methods with memory.

The paper is organized as follows. In Section 2 we recall some basic definitions and theorems of matrix
and Perron-Frobenius theory. Section 3 is devoted to Herzberger’s work [1] and provides evidence of
applicability of HMM in a broader sense than that defined in [1]. In the next section application of HMM
is explored. A multipoint derivative free class of iterative methods without memory, which starts with an
arbitrary two-point method of fourth order, has been proposed in a condensed form as a five-line note in
[6]. In Section 4 we present this class of methods in an expanded form and its generalization, suitable for
the application of HMM. With HMM we give an alternative proof that the order of these two multipoint
families is 2n. In Section 4 we also use HMM to compare acceleration effects using information from the
current and one previous iteration to Newton’s and Steffensen’s type of multipoint methods.

2. Non-negative Matrices

We recall some basic notions of matrix theory regarding positive and non-negative matrices.

Definition 2.1. A real n ×m matrix A = [ai j] is non-negative if

ai j ≥ 0, ∀i, j, i ∈ {1, 2, . . . ,n}, j ∈ {1, 2, . . . ,m}.

If ai j > 0, ∀i, j, i ∈ {1, 2, . . . ,n}, j ∈ {1, 2, . . . ,m}, then the matrix A is positive.

Definition 2.2. A non-negative n × n matrix A is primitive if there exists k ∈N such that Ak is positive.

Definition 2.3. A permutation matrix is a square binary matrix that has exactly one entry of 1 in each row and each
column, and zeros elsewhere.

Definition 2.4. A matrix is irreducible if it is not similar via a permutation to a block upper triangular matrix, that
has more than one block of positive size.

For a reducible matrix A there is a permutation matrix P such that

PAPT =

[
X Y
O Z

]
,

where X and Z are square matrices of order at least 1. O denotes a rectangular zero-matrix. This definition
is equivalent to the existence of a permutation matrix Q such that

QAQT =

[
Z O
Y X

]
.

A list of theorems used in the rest of the paper and appropriate references are given as follows. These
results originate from [7] and [8] and they can be found, e.g., in [9] or [10].

Theorem 2.5. Every primitive matrix is irreducible.

Theorem 2.6 (Perron-Frobenius). Let A be a non-negative irreducible n × n matrix. Then,

1. A has a positive real eigenvalue equal to its spectral radius ρ(A).
2. To ρ(A) there corresponds a positive eigenvector x.
3. ρ(A) increases when any entry of A increases.
4. ρ(A) is a simple eigenvalue of A.
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Theorem 2.7. Let A be a non-negative irreducible n × n matrix. There exists an n × n matrix B such that

lim
j→∞

(
A
ρ(A)

) j

= B

if and only if A is primitive.

Theorem 2.8. If A = [ai j] is a non-negative irreducible n × n matrix, then either

n∑
j=1

ai j = ρ(A) for all 1 ≤ i ≤ n,

or

min
1≤i≤n

n∑
j=1

ai j < ρ(A) < max
1≤i≤n

n∑
j=1

ai j.

For matrix manipulations we use Sylvester’s theorem stated in 1851 (see [11] for details and variants of
Sylvester’s theorem).

Theorem 2.9 (Sylvester). If A and B are matrices of size m × k and k ×m (m ≥ k), respectively, then

det(λIm − AB) = λm−k det(λIk − BA),

where I j is the identity matrix of order j.

3. Herzberger’s Matrix Method

Iterative root-finding methods are one of the oldest and most persistent subjects of investigation. Basic
problem is to approximate a zero α of a function f by iterative means. This has evolved to finding an
iteration function that would solve such a problem in the least of time with the prescribed amount of data.
This is in close relation to order of convergence and optimality of an iterative function. In [1] a connection
was established between order of convergence of an iterative method and eigenvalues of a matrix formed
in a special manner. The connection was determined through an error relation of the analysed iteration. In
[1] Herzberger organized presentation around one-point interpolatory iteration functions ϕ with memory
of the form

xk+1 = ϕ(xk, xk−1, . . . , xk−n),

due to the beforehand knowledge of their error relation. The specific estimate reads

|xk+1 − α| = Ck

n∏
j=0

|xk− j − α|
m j , (1)

where m j ∈ N is the number of function evaluations calculated at the point xk− j : f (xk− j), f ′(xk− j), . . . ,
f (m j−1)(xk− j) and for some expression

Ck = C(xk, xk−1, . . . , xk−n)→ C =const. as xk → α.

This class of one-point interpolatory root-finding algorithms was coined Hermite interpolatory iteration
functions (HIF for short) because it operates on Hermite interpolation (both direct and indirect).

We wish to prove that HMM has a wider range of use to that defined in [1]. Specifically, HMM is
applicable for stationary iterative methods whenever the error relation of an iterative method is known
and takes form (1) for m j ≥ 0, j ∈ {0, 1, . . . ,n}. Therefore, we are broadening the domain of coefficients m j
from N to N0 and the application of HMM to a wider class of methods. This will particulary become of
importance when analysing multipoint iterations.

A wider application range of Herzberger’s method (HMM) is obtained by adapting the original proof
from [1] to validate conclusions for a broader class of single root finding methods.
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Theorem 3.1. Let the error relation (1) be valid for some iterative root finding method ϕ = ϕ(xk, xk−1, . . . , xk−n),
where all m j ≥ 0. Then the order of convergence of the stationary iteration

xk+1 = ϕ(xk, xk−1, . . . , xk−n), k ≥ n, k ∈N,

equals the spectral radius of the associated matrix

M(ϕ) =


m0 m1 m2 . . . mn−1 mn
1 0 0 . . . 0 0
0 1 0 . . . 0 0

. . .
0 0 0 . . . 1 0

 . (2)

Proof. Having in mind that we are analyzing error relation of an iteration function, we will not consider the
trivial case when all m j = 0.

First, it is assumed that all m j > 0. Introduce

εk = − log |xk − α|, ck = − log Ck,

and apply logarithm to (1). The following is obtained

εk+1 = ck +

n∑
j=0

m jεk− j. (3)

Convergence of {xk} to α is assumed and that the order of convergence exists and equals r = lim
j→∞

ε j+1

ε j
.Divide

(3) by εk−n and allow k→∞. Since εk →∞ and

lim
j→∞

ε j+i

ε j
= lim

j→∞

ε j+i

ε j+i−1

ε j+i−1

ε j+i−2
· · ·
ε j+1

ε j
= ri,

we obtain that the order of convergence r satisfies the equation

Pϕ(x) := xn+1
−

n∑
j=0

m jxn− j = 0. (4)

By Descartes’ rule of signs, Pϕ defined in (4) has a unique positive root - the order of convergence r. Note
that Descartes’ rule of signs provides the same conclusion in the case when some m j = 0. The Frobenius
companion matrix [12] of the polynomial (4) reads

M(ϕ) =


m0 m1 . . . mn−1 mn
1 0 . . . 0 0
0 1 . . . 0 0

. . .
0 0 . . . 1 0


. (5)

Characteristic polynomial and the minimal polynomial of M(ϕ) coincide with Pϕ(λ) = det
(
λIn+1 −M(ϕ)

)
,

and M(ϕ) is a primitive matrix (see e.g. [9], [10], [12]), thus r = ρ(M(ϕ)).
Now we shall consider the case when some m j vanish. There exists an array of matrices {Mk}k∈N of the

form (5) with all positive entries in the first raw that converge to the matrix M(ϕ). Basically, if m j = 0 in
M(ϕ) we substitute it with a positive value δk to form the matrix Mk, and then allow δk to be arbitrarily
close to zero as k approaches infinity. Each Mk has a unique positive eigenvalue rk = ρ(Mk). Polynomial
zeros are continuous functions of its coefficients, so by the argument of continuity we can conclude that the
spectral radius of M(ϕ) is its eigenvalue. Therefore, the order of convergence r of the iteration function ϕ
equals spectral radius of the matrix M(ϕ). It is also the unique positive eigenvalue of multiplicity one, by
Descartes’ rule of signs. �
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Remark 3.1. The error relation (3) can as well be presented in a matrix form
εk+1
εk
εk−1
...

εk−n+1


=


m0 m1 . . . mn−1 mn
1 0 . . . 0 0
0 1 . . . 0 0

. . .
0 0 . . . 1 0


·


εk
εk−1
εk−2
...

εk−n


+


ck
0
0
...
0


, (6)

which establishes an even more profound and natural connection between iteration formula ϕ and its
associated matrix M(ϕ).

Remark 3.2. Iterative root finding methods are applied in real life problems only when their order of
convergence r ≥ 1. This is in accordance with a demand that there is no sign change of Pϕ(x) between 0 and
1, or equivalently

Pϕ(1) ≤ 0 ⇐⇒ m0 + · · · + mn ≥ 1.

For m j ∈N0 where not all m j vanish, this inequality holds.

Consideration of the case when some m j take zero value is important for analysis of iterations without
memory and multipoint iterations. For example, the matrix M(N), associated to Newton’s method (N),
takes one of the forms

M(N) =

[
2 0
1 0

]
, M(N) =

2 0 0
1 0 0
0 1 0

 , . . .
This is a consequence of the fact that any iteration can be considered as a function of more variables where
some of these variables do not participate in the error relation. Not all matrices associated to Newton’s
method are primitive or irreducible, however HMM formula works as much expected.

With powerful numerical tools for estimating dominant eigenvalues and modern computers, HMM
method allows ease in computing order of convergence of one point iterations with memory. Newton’s
method can be successfully used to determine the dominant eigenvalue in this case. Results such as those
presented in [13] and [14] provide good initial value estimates.

The application of HMM expands to compositions of iteration functions. Composition of functions is
naturally related to matrix multiplication. Using Perron-Frobenius theory of irreducible matrices it was
proved in [1] that the order of convergence of a composition of HIF iterations ϕ = ϕm ◦ ϕm−1 ◦ · · · ◦ ϕ1 with
associated matrices Mm,Mm−1, . . . ,M1, where Mk = M(ϕk), preserves feature:

r(ϕ) = ρ(Mm ·Mm−1 · · ·M1), and r(ϕ) ∈ Sp(Mm ·Mm−1 · · ·M1),

where Sp(M) is the spectrum of the matrix M.We shall prove that this feature is not restricted to interpolatory
type of iteration functions. Also, matrices M j need not be primitive while of the specific form.

Composition of one-point iteration functions with memory ϕ1 and ϕ2 is defined through extensions
φ j : Dn+1

→ Dn+1, j = 1, 2

φ j(xk, xk−1, . . . , xk−n) =
(
ϕ j(xk, xk−1, . . . , xk−n), xk, . . . , xk−n+1

)
where D ⊂ C is some open set containing α. Let yk+1 = ϕ1(xk, xk−1, . . . , xk−n). Composition ϕ = ϕ1 ◦ ϕ2 is
defined by an implicit equation(

ϕ(xk, xk−1, . . . , xk−n), yk+1, xk, . . . , xk−n+2

)
= (φ2 ◦ φ1)(xk, xk−1, . . . , xk−n).

In other words,
ϕ(xk, xk−1, . . . , xk−n) = ϕ2

(
ϕ1(xk, xk−1, . . . , xk−n), xk, . . . , xk−n+1

)
.
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Theorem 3.2. Let iterations ϕ j = ϕ j(xk, xk−1, . . . , xk−n) all have error relations

|xk+1 − α| = C( j )
k

n∏
i=0

|xk−i − α|
m( j )

i , (7)

where all m( j)
i ∈N0. Then the order of convergence of the stationary iteration

xk+1 = ϕ(xk, xk−1, . . . , xk−n) = (ϕm ◦ ϕm−1 ◦ · · · ◦ ϕ1)(xk, xk−1, . . . , xk−n)

equals the spectral radius of the matrix

M = Mm ·Mm−1 · · ·M1, M j = M(ϕ j). (8)

Proof. We first consider the case when all m( j)
i > 0. It can be verified that any product of associated matrices

M j = M(ϕ j) with positive first rows is still a primitive matrix. Also, for the entries ai j of the product of

Ms it is easily verified that they are all nonnegative integers and min
1≤i≤n

n∑
j=1

ai j ≥ 1 and max
1≤i≤n

n∑
j=1

ai j > 1. From

Theorem 2.8 it follows ρ
(∏

Ms

)
> 1.

Error relations (7) for iterations ϕ j, j = 1, 2 . . . ,m, in matrix form (6) read
εk+1
εk
εk−1
...

εk−n+1


=



m( j )
0 m( j )

1 . . . m( j )
n−1 m( j )

n
1 0 . . . 0 0
0 1 . . . 0 0

. . .
0 0 . . . 1 0


·


εk
εk−1
εk−2
...

εk−n


+



c( j )
k
0
0
...
0


,

where c( j )
k → c( j ) when k→∞. For iteration ϕ we thus have

ek+1 = Mm ·Mm−1 · · ·M1 · ek + vk = M · ek + vk, (9)

where
ek =

[
εk εk−1 . . . εk−n

]T
, M = Mm ·Mm−1 · · ·M1,

vk =

m∑
j=1

( m∏
s= j+1

Ms

)
· c

( j )
k

 , c
( j )
k =

[
c( j )

k 0 . . . 0
]T
.

Note that components of the vector vk converge to some constant expression v as k → ∞, that is
vk → v = [v v . . . v ]T, when k → ∞. Since every convergent sequence is bounded, there exists δ > 0 such
that

‖vk − v‖ < δ, for all k ∈N. (10)

For arbitrary j ∈Nwe have

ek+ j = M jek +

j−1∑
s=0

M svk+ j−s−1

= ρ(M) j
( M
ρ(M)

) j

ek +

j−1∑
s=0

ρ(M)s
( M
ρ(M)

)s

vk+ j−s−1. (11)
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Let B be a matrix from Theorem 2.7, such that lim
j→∞

(
M
ρ(M)

) j

= B. Sequences

{∥∥∥( M
ρ(M)

) j∥∥∥}
j∈N

and
{∥∥∥( M

ρ(M)

) j
− B

∥∥∥}
j∈N

are convergent and are bounded. There exist δ1, δ2 > 0 such that for all j ∈N∥∥∥∥( M
ρ(M)

) j∥∥∥∥ < δ1,
∥∥∥∥( M
ρ(M)

) j
− B

∥∥∥∥ < δ2. (12)

Error relation (11) may be written in the form,

ek+ j = ρ(M) j
( M
ρ(M)

) j
ek+

j−1∑
s=0

ρ(M)s
(( M
ρ(M)

)s
(vk+ j−s−1 − v) +

(( M
ρ(M)

)s
−B

)
v+Bv

)
. (13)

Using properties of the induced matrix norm, vector norm and modulus (triangle inequalities)∣∣∣‖a‖ − ‖b‖∣∣∣ ≤ ‖a + b‖ ≤ ‖a‖ + ‖b‖,

from (10)–(13) it follows

‖ek+ j‖ ≤ ρ(M) j
∥∥∥∥( M
ρ(M)

) j
ek

∥∥∥∥ + ε

j−1∑
s=0

ρ(M)s

= ρ(M) j
∥∥∥∥( M
ρ(M)

) j
ek

∥∥∥∥ + ε
ρ(M) j

− 1
ρ(M) − 1

≤ ρ(M) j

(∥∥∥∥( M
ρ(M)

) j
ek

∥∥∥∥ +
ε

ρ(M) − 1

)
,

and

‖ek+ j‖ ≥ ρ(M) j
(∥∥∥∥( M
ρ(M)

) j
ek

∥∥∥∥ − ε
ρ(M) − 1

)
,

for all j ∈N, and ε = δ1δ+ δ2‖v‖+ ‖Bv‖.Having in mind
∥∥∥∥( M
ρ(M)

) j
ek

∥∥∥∥→∞, k→∞, for k ∈N large enough

the inequality ∥∥∥∥( M
ρ(M)

) j
ek

∥∥∥∥ − ε
ρ(M) − 1

> 0

is valid.
We conclude

0<ρ(M) j
(∥∥∥∥( M
ρ(M)

) j
ek

∥∥∥∥+αk

)
≤‖ek+ j‖≤ρ(M) j

(∥∥∥∥( M
ρ(M)

) j
ek

∥∥∥∥+βk

)
, (14)

where for fixed k, αk and βk are some constants.
Among several equivalent ways to obtain the order of convergence r, in [15] (see also [16]) it was proved

that r = lim
j→∞
‖e j‖

1/ j. Taking (k + j)−th root of inequalities (14) and allowing j→∞, relying on limits:

lim
j→∞

∥∥∥∥( M
ρ(M)

) j
ek

∥∥∥∥ = ‖Bek‖ and lim
j→∞

j√

C = 1 we get r = ρ(M).

As in the conclusion of the proof of Theorem 3.1, using the argument of continuity we verify the
statement in the case when some m( j )

i are equal to zero. �
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When considering multipoint methods without memory, the following is observed: Multipoint methods
are a compositionϕ = ϕm◦ϕm−1◦· · ·◦ϕ1 of one-point iteration functions with/without memoryϕ2, ϕ3, . . . , ϕm
and ϕ1 a one-point iteration function without memory. For example, Traub-Steffensen’s method (S)

xk+1 = xk −
γ f (xk)2

f
(
xk + γ f (xk)

)
− f (xk)

, γ , 0,

can be viewed as a composition of Secant method (ϕ2) and Traub-Steffensen’s correction (ϕ1) :

ϕ2(xk) = xk −
f (xk) − f (xk−1)

xk − xk−1
and ϕ1(xk) = xk + γ f (xk).

The associated matrices read

M(ϕ2) =

[
1 1
1 0

]
and M(ϕ1) =

[
1 0
1 0

]
.

Their product, according to (8), gives

M(S) = M2 ·M1 =

[
2 0
1 0

]
and ρ(M(S)) = 2.

Matrix M(ϕ1) is neither a primitive matrix, nor it is irreducible. However, HMM can still be used to calculate
the order of convergence.

Additional examples of the application of HMM methods can be found in the early works [18], [19] of
B. Neta.

Multipoint methods with memory are a composition of one-point iteration functions with/without
memory ϕ = ϕm ◦ ϕm−1 ◦ · · · ◦ ϕ1. With such interpretation it is obvious that HMM can be used to calculate
the order of convergence of multipoint methods as long as the error relations are known. This application is
the subject of the following section. Although in this communication we restrict our attention to the scalar
case, it is important to note that HMM is applicable to the non-scalar case as well.

4. Application of Herzberger’s Matrix Method to Multipoint Methods

4.1. Family of multipoint derivative free methods without memory

Let α be a simple zero of a given function f , and x an approximation to α. The multipoint family of
derivative free methods for solving nonlinear equations proposed in [6]

yk,0 = xk, yk,1 = yk,0 + γ f (yk,0), γ , 0,

yk,2 = yk,0 −
f (yk,0)

f [yk,0, yk,1]
,

yk,3 = θ4(yk,0, yk,1, yk,2),

yk, j+1 = yk, j −
f (yk, j)

P′j(yk, j)
, ( j = 3, . . . ,n),

xk+1 = yk,n+1, k ∈N0,

(15)

relies on the method from [3]. It is a generalization due to the fact that pre-conditioner (steps yk,0 to yk,3)
is an arbitrary two-point optimal family of methods starting with Steffensen-Traub’s correction. Steps that
define yk, j+1, j = 3, . . . ,n, use Newton’s interpolating polynomials P j(t) = P j(t; yk,0, . . . , yk, j).
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As noted in [6], this approach of increase in convergence by Newton’s polynomial is of general nature.
In this manner we can define optimal families of methods

yk,0 = xk, yk,1 = yk,0 + γ f (yk,0), γ , 0,

yk,2 = yk,0 −
f (yk,0)

f [yk,0, yk,1]
,

yk, j+1 = θ2 j (yk,0, . . . , yk, j), ( j = 2, . . . , p)

yk, j+1 = yk, j −
f (yk, j)

P′j(yk, j)
, ( j = p+1, . . . ,n),

xk+1 = yk,n+1, k ∈N0,

(16)

where θ2 j−1 (yk,0, . . . , yk, j−1) is an arbitrary optimal derivative-free method of order 2 j−1.We note that dealing
with j > 4 is only of academic interest, which has been mentioned several times in the existing literature.
First we analyze methods (15).

Theorem 4.1. The order of convergence of the family of derivative free methods (15) is 2n.

Proof. According to error relations
εk,0 = yk,0 − α, εk,1 = yk,1 − α ∼ εk,0,

εk,2 = yk,2 − α ∼ εk,0εk,1, εk,3 = yk,3 − α ∼ ε4
k,0,

εk, j+1 = yk, j+1 − α ∼

j∏
i=0

εk,i, j = 3, . . . ,n + 1, k ∈N0,

we form companion matrices of dimensions (n + 1) × (n + 1). Indices of companion matrices M j match the
second index of the approximation yk, j. For brevity, block matrices notation is used, with

a j = [1 . . . 1︸ ︷︷ ︸
j

0 . . . 0︸ ︷︷ ︸
n+1− j

] and b = [0 0 4 0 0 . . . 0︸   ︷︷   ︸
n−2

]

row matrices, O j×i = [0] j×i a zero rectangular matrix and I j is the identity matrix of dimension j :

M j =

 a j

In On×1

 , j , 3, M3 =

 b

In On×1

 .
It is easily verified that when M3 is not a factor, the following equalities hold

M j+1M j =


2a j

a j

In−1 O(n−1)×2

 , M j+2M j+1M j =



22a j

2a j

a j

In−2 O(n−2)×3


.

Using induction it is easily demonstrated that when M3 is not a factor, the matrix product reads

M j+s · · ·M j =


As+1( j)

In−s O(n−s)×(s+1)

 , 1 ≤ s ≤ n + 1 − j, (17)
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where As+1( j) is the (s + 1) × (n + 1) matrix with i−th row equal to 2s+1−ia j, that is

As+1( j) =



2sa j

2s−1a j

...

20a j


=

j︷          ︸︸          ︷ n+1− j︷     ︸︸     ︷
2s . . . 2s 0 . . . 0

2s−1 . . . 2s−1 0 . . . 0
...

1 . . . 1 0 . . . 0

 . (18)

Thus, regard to Theorem 3.2, for the method (15) we obtain

M = (Mn+1 · · ·M4)M3(M2 ·M1)

=


An−2(4)

I3 O3×(n−2)

·M3 ·


A2(1)

In−1 O(n−1)×2


=


An−2(4)

I3 O3×(n−2)

·


A3(1)

In−2 O(n−2)×3



=



2n−3 2n−3 2n−3 2n−3 0 . . . 0
2n−4 2n−4 2n−4 2n−4 0 . . . 0
...
1 1 1 1 0 . . . 0
1 0 0 0 0 . . . 0
0 1 0 0 0 . . . 0
0 0 1 0 0 . . . 0


·



4 0 . . . 0 0 0
2 0 . . . 0 0 0
1 0 . . . 0 0 0
1 0 . . . 0 0 0
0 1 . . . 0 0 0
...
0 0 . . . 1 0 0



=


2n 0 . . . 0

2n−1 0 . . . 0
...
1 0 . . . 0

 .
We now easily conclude r = ρ(M) = 2n. �

Theorem 4.2. The order of convergence of the family of derivative free methods (16) is 2n.

Proof. Error relations of (16) for k ∈N0 read

εk,0 = yk,0−α,

εk,1 = yk,1−α ∼ εk,0,

εk,2 = yk,2−α ∼ εk,0εk,1 ∼ ε2
k,0,

and

εk, j = yk, j − α ∼


ε2 j−1

k,0 , j = 3, . . . , p+1,

j−1∏
i=0

εk,i, j = p+2, . . . ,n+1.
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Using earlier notation a j = [1 . . . 1︸ ︷︷ ︸
j

0 . . . 0︸ ︷︷ ︸
n+1− j

] and b j = 2 j−1(a j − a j−1), (b1 = a1), O j×i = [0] j×i a zero

rectangular matrix and I j the identity matrix of dimension j, associated matrices are

M j =



 b j

In On×1

 , j = 1, 2, . . . , p+1,

 a j

In On×1

 , j = p+2, . . . ,n+1.

By induction we easily verify bp+1

In On×1

 · · ·
 b1

In On×1

 =

 Bp+1

In−p O(n−p)×(p+1)

 ,

where Bp+1 =


2p 0 . . . 0

2p−1 0 . . . 0
...
1 0 . . . 0

 is a matrix of dimension (p + 1) × (n + 1). In view of (17) we have

 an+1

In On×1

 · · ·
 ap+2

In On×1

 =

 An−p(p + 2)

Ip+1 O(p+1)×(n−p)

 ,
where As+1( j) is defined in (18). Therefore

M = Mn+1 · · ·M1 =


2n 0 . . . 0

2n−1 0 . . . 0
...
1 0 . . . 0

 , r = ρ(M) = 2n. �

We conclude with a remark that similar families of methods can be defined for Newton’s type methods
using Hermite’s interpolating polynomials. HMM can again be used for the convergence analysis of these
methods.

4.2. Families of methods with memory

In this section we will use HMM to compare order of convergence of multipoint methods with memory.
We are exploring root-finders for a nonlinear equation f (x) = 0 used to approximate an isolated simple real
zero α. We restrict our attention to methods that use Hermitian information: if the method uses f (s)(x) at
some point x, function values f (x), f ′(x), . . . , f (s−1)(x) are used as well. These type of methods were in detail
discussed in [17] by Woźniakowski. He proved that for this type of methods those relayed on Hermite’s
interpolation attain the highest order of convergence. Kung and Traub in [2] have proved that two types of
sampling in interpolatory iteration functions (HIF for short) provide optimal order of convergence. These
are

1o Newton’s type: f (y1), f ′(y1), f (y2), . . . , f (yn);
2o Steffensen’s type: f (y0), f (y1), f (y2), . . . , f (yn),

with iteration index k omitted. For these reasons we explore convergence acceleration of optimal Newton’s
type and Steffensen’s type methods and compare outcomes. Using HMM we will show that convergence
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acceleration in HIF using information from one previous iteration gives better results for Steffensen’s type
of methods.

Let ϕN and ϕS denote two optimal multipoint iterations of order 2n. ϕN will denote Newton’s type of
methods, using sampling 1o, and ϕS Steffensen’s type of methods , using sampling 2o.

ϕN :


yk,1 = xk,

yk, j = N j(yk, j−1, . . . , yk,1), j = 2, . . . ,n+1,
xk+1 = yk,n+1, k ∈N0,

ϕS :


yk,0 = xk, yk,1 = S1(yk,0) = yk,0 + γ f (yk,0),
yk, j = S j(yk, j−1, . . . , yk,1, yk,0), j = 2, . . . ,n+1,
xk+1 = yk,n+1 k ∈N0.

Therefore, ϕN = Nn+1 ◦ · · · ◦N2, and ϕS = Sn+1 ◦ · · · ◦ S1 in the context of composition of iteration functions.
We wish to calculate the highest order of convergence obtainable for methods ϕN and ϕS when they are

accelerated using information from one previous iteration. Modifications with memory of methods ϕN and
ϕS will be denoted by ϕ̃N and ϕ̃S, respectively. We are examining the case where all information from the
current and one previous iteration are used in each step. Let the modifications with memory read

ϕ̃N :


yk,1 = xk,

yk, j = Ñ j(yk, j−1, . . . , yk,1, yk−1,n, . . . , yk−1,1), j = 2, . . . ,n+1,

xk+1 = yk,n+1, k ∈N0,

(19)

ϕ̃S :


yk,0 = xk,

yk, j = S̃ j(yk, j−1, . . . , yk,0, yk−1,n, . . . , yk−1,0), j = 1, . . . ,n+1,

xk+1 = yk,n+1 k ∈N0.

(20)

It is assumed that corresponding error relations of each step in ϕ̃N and ϕ̃S are of HIF form

ϕ̃N : yk, j − α = Ñ j(yk, j−1, . . . , yk−1,1) − α

∼ (yk,1 − α)
j−1∏
i=1

(yk,i − α) · (yk−1,1 − α)
n∏

i=1

(yk−1,i − α),

j = 2, . . . ,n+1;

ϕ̃S : yk, j − α = S̃ j(yk, j−1, . . . , yk−1,0) − α

∼

j−1∏
i=0

(yk,i − α) ·
n∏

i=0

(yk−1,i − α), j = 1, . . . ,n+1.

Theorem 4.3. r(ϕ̃S) > r(ϕ̃N).

Proof. Associated matrices for Newton’s type methods with memory ϕ̃N are

M(Ñ j) =

 c j

I2n−1 O(2n−1)×1

 ,

where c j = [

j−2︷ ︸︸ ︷
1 . . . 1 2

n−1︷ ︸︸ ︷
1 . . . 1 2

n+1− j︷ ︸︸ ︷
0 . . . 0 ], for j = 2, . . . ,n + 1.
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It is easily proved that for 1 ≤ j ≤ n−1 the product of associated matrices reads

M(Ñ2+ j) · · ·M(Ñ2) =

 C j

I2n− j−1 O(2n− j−1)×1

 , C j =



2 jc2

2 j−1c2

...

20c2


,

C j is the matrix of dimension ( j + 1) × 2n. Then

M(ϕ̃N) =

 Cn−1

In On×n

 .
Since (n + 1)−dimension leading principal submatrix of M(ϕ̃N) is

n−1︷                 ︸︸                 ︷
2n 2n−1 . . . 2n−1 2n

2n−1 2n−2 . . . 2n−2 2n−1

. . .
2 1 . . . 1 2
1 0 . . . 0 0


=


2n−1 0
2n−2 0
...

20 0
0 1


n−1︷     ︸︸     ︷[

2 1 . . . 1 2
1 0 . . . 0 0

]
,

introduce A =

[
2n−1 2n−2 . . . 20 0

0 0 . . . 0 1

]T

and B =

n−1︷     ︸︸     ︷[
2 1 . . . 1 2
1 0 . . . 0 0

]
. The characteristic polynomial of

M(ϕ̃N) is obtained using Laplace’s expansion and Theorem 2.9:

Pϕ̃N
(λ) = det(λI2n −M(ϕ̃N)) = λn−1 det(λIn+1 − AB)

= λ2n−2 det(λI2 − BA) = λ2n−2
∣∣∣∣∣λ − 3 · 2n−1 + 1 −2

−2n−1 λ

∣∣∣∣∣ .
This gives

r(ϕ̃N) = ρ(M(ϕ̃N)) = 1
2

(
3 · 2n−1

− 1 +
√

1 + 2n + 9 · 22(n−1)
)

= 1
2

(
3 · 2n−2

− 1 +
√

22n+1 + (2n−1 + 1)2
)
.

With notation similar to previous section, with a j = [ 1 . . . 1︸ ︷︷ ︸
j

0 . . . 0︸ ︷︷ ︸
2n+2− j

], associated matrices for Steffensen’s

type of methods read

M(S̃ j) =

 an+ j+1

I2n+1 O(2n+1)×1

 ∈ M(2n+2)×(2n+2), 1 ≤ j ≤ n + 1.

Proceeding in the same manner as earlier, we obtain

M(ϕ̃S) =


An+1(n + 2)

In+1 O(n+1)×(n+1)

 ,
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where An+1(n + 2) is the (n + 1) × (2n + 2) matrix with i−th row equal to 2n+1−ian+2, that is

An+1(n + 2) =



2nan+2

2n−1an+2

...

20an+2


=

n+2︷           ︸︸           ︷ n︷      ︸︸      ︷
2n . . . 2n 0 . . . 0

2n−1 . . . 2n−1 0 . . . 0
...

1 . . . 1 0 . . . 0

 .

Since 
2n 2n . . . 2n

2n−1 2n−1 . . . 2n−1

...
1 1 . . . 1
1 0 . . . 0


=


2n 0

2n−1 0
...

20 0
0 1


[
1 1 . . . 1 1
1 0 . . . 0 0

]
,

we get Pϕ̃S
(λ) = λ2n

∣∣∣∣∣λ − 2n + 1 −1
−2n λ

∣∣∣∣∣ . Therefore

r(ϕ̃S) = ρ(M(ϕ̃S)) =
1
2

(
2n+1
− 1 +

√

22(n+1) + 1
)
.

Having in mind
r(ϕ̃N) = 1

2

(
3 · 2n−1

− 1 +
√

(3 · 2n−1 − 1)2 + 2n+2
)
,

r(ϕ̃S) = 1
2

(
4 · 2n−1

− 1 +
√

(4 · 2n−1 − 1)2 + 2n+2
)
,

we conclude that Steffensen’s type methods produce better order of convergence with the same information
volume. �

Note that similar analysis can be performed for different type of memory usage and different error
relations.
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