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Abstract. We prove existence of a positive solution for a system of non-variational bi-harmonic equations.
Furthermore, we give some a priori estimates of solutions and a non-existence result. In addition we
compute numerical solutions to illustrate the theoretical results.

1. Introduction

We consider the following 2%, k > 1 strongly coupled elliptic system

A%u; = fi(ui), w;>0inB, i=1,2,...,26-1,

1)
AUy = fo(u1), Uy >0in B,
with the boundary conditions
uj=0, %4=0,0ndB,i=12,...,2"-1,
(2)

Ju
uy =0, == =0, ondB

where B is the unit ball in RN (N > 4), the functions f;: [0, %) — [0, c0) are continuous, verifying £:(0) = 0
fori=1,2,3,...,2k

The system described by (1)-(2) is ubiquitous in physics and chemistry where steady-states are answers to
problematic questions in a great variety of systems of reaction-diffusion equations. These equations interact
everywhere in nature. This interaction takes place in such disparate phenomena as the proliferation of virile
mutants over a substantially wide habitat, the dispersion of fire flames in spacious forests, in combustion
chambers, or in nuclear reactors where neutron populations evolve and develop. Hence, the reaction-
diffusion equations represent a significant research area in mathematics see [6] and the references therein.
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The non-variational Laplacian systems are extensively studied in several research papers. Existence,
non existence, and a priori estimates for solutions are addressed in many papers [2], [4], [5] and [15].
Similar results are obtained for the bi-Laplacian systems, fractional differential equations and nonlinear
elastic beam equations using topological methods, namely fixed point theorem and degree theory [1], [7],
[10], [11], [13], [18].

The particular case of the system (1)-(2), corresponding to k = 1 was treated in ([17]). The authors
established the existence of a non-trivial solution provided that a priori estimates on the L*-norm of
solutions holds true. In the present work, we propose to study the general strongly coupled elliptic system
(1)-(2). We carry out a detailed analysis of the expected solutions for our problem, and we extract suitable
conditions on the source terms f; fori=1,2,3,..., 2k which allow us to prove existence and non-existence
results.

This paper is organized as follows. In Section 2 we recall some preliminary results related to the bi-
laplacian problem. Furthermore, we study the eigenvalue problem associate to the system (1)-(2) and prove
some properties of its solutions. The main results are presented and proved in Section 3. We end the paper,
Section 4, by giving examples and computing numerical solutions related to the system (1)-(2).

2. Preliminary Results

In this work, we seek a positive radial summetric solution to system (1)-(2). Then, let r = |x| € [0, 1),
u; = ui(r) fori=1,2,3,...,25 =1, and uy = uy(r)

ul = fi(uiv1), ui>0,

(©)
4 |, 2(N-1) (3) , (N-D)(N-3 N-1)(N-3
ugk) + & . )u;k) + ¢ 35 )u;; . ,)é )u’2k = fo(u1), uxy >0,

{ u(4) + 2(N—1)u(3) + (N—l)gN—S)u{, _ (N—l)gN—S)
i r i 7 i r

with the following boundary conditions

w(©0) =0, uP0)=0, u(1)=0, u/(1)=0,
4)

1w, (0)=0, u(©0)=0, ux(1)=0, ,(1)=0.
It's well known that any solution (u(r), v(r)) € C*(0,1) x C*(0,1) of (3)-(4) is a radial symmetric solution
of (1)-(2).

The eigenvalue problem for the operator A? plays a crucial a role in studying our problem, we cite the
following result from [18, Lemma 2].

Lemma 2.1. There is a i1 > 0 such that the problem

v
2 = [ = — ==
A®v = v inB, U_av 0 onodB

possesses a positive, radial symmetric solution @1(x) which satisfies, for some positive constants Cy and Cs,

Ci(1 - |x)? < p1(x) < Co(1 - |x])?>, x €B. (5)

We recall the Green function G(r, s) for the operator A2, N > 4, see [11] and [18],

an(s) + r*ba(s), for0<r<s<1
G(r,s) =
) (E)Nfl(aN(r) + s%by (7)), for0<s<r<l,
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where
— t3 — N—
lZN(t) = m[2+(N—4)tN 2—(N—2)t 4],
and
_ t N-2 _ a7 _ AN _
bu(t) = oz ) [N N -2V -2].

The following proprieties of the kernel G(r, s) are in [18]. There exists a positive constant C such that
0 < G(r,5) < CsN 11 — 5)? (max(r,s))* ™, (7)
(®)

J
Ec(rr S)(V, S) < O/

and
L G| = 11 - 9
87’2 (rls) r=1_ 2S ( s ) ( )
Hence, the problem (3)-(4) is transformed into the integral equations
1
ui(ry = f G(r,5) fi(uir1(s))ds, fori=1,2,...,2F-1
0, (10)
uy(r)y = f G(r,s) fox (u1(s))ds.
0
It’s natural that problem (3)-(4) and problem (10) are equivalent.
Consider the following eigenvalue problem,
AP = Aip1 i, i=1,2,...,28-1 in B,
Az(sz = A] (pl
do; 11
¢i=o,%=o,i:1,z,...,2’<—1 (1)
d
P =0, % =0.

where 4; >0, i=1,2,3,...,2%
Note ¢ the corresponding eigenfunction of y; the first eigenvalue of A% on the unit ball B, we prove the

following result.
2k
Lemma 2.2. Assume that H A = lu%k, then the problem (11) has a positive solution (¢1, P2, Ps3, . .., Pax) verifying

i=1
MAig1... A .
1o ; zk(plforz=2,3,...,2k—1,¢>2k=%gol.

(modulo a constant) o1 = @1, ¢; = 1
Hy

Proof. We define
ka—(i—l)
w; = L ¢, fori=2,...,2°~1, andwy = % . (12)
II Ay '
I=1,

1#,2,3,...,i

wi = ¢y,
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We put (12) in the problem (11), after some simplifications, we obtain

A’wi = i Wiy, Nwy = g wy in B,
Jw; JWok (13)
wi=a—vl=0, Wok = &VZ =0 on JB.

fori=1,2,3,...,2k-1.
Adding all the equations, we get

2k 2k
A? [Z wj] = Z w; in B,

' o (14)
i=

0
Zw,-:o, 5[;@]:0 on dB.

Applying (A227'1 on the i and (i + k)" equations of the system (13) fori =1,2,3,...,2¢1, yields

(A2 w; = 12w inB,

. (15)
wi=0,%=0 on dB,

ov
and

(Az)zkil_lwi_'_zkﬂ = I,l%ki]_lwi in B,

OW; k-1 (16)
Wiyok-1 = 0, é—+1/2 =0 on dB.

Next, subtracting the equation (16) from (15), gives
(Az)zkil_l(wi — Wiyph1) = M%H_l(wi_,_zk-l —w;) in B,
d (17)

Wi — Witok-1 = 0, x(wl - wl‘+2k—l) =0 on JB.

We multiply (17) by w; — w;,,-1 and we make a 2* integration by parts, we obtain

2k 2k-1-1 2
flA(wl - wl‘+2k—1)| dx = —H3 flwl - wi+2k71| dx,
B B

1 in B, which reduce the system (13) to 2! equations.

this proves that w; = w;,o1 fori = 1,2,3,...,2
Repeating the same argument k — 1 times, where at each j iteration we apply the operator (A2 to
the reduced system with 28/ equations and following the same steps as the previous iteration. Finally, we
obtainw; = wy, = w3 =... = Wx.

The properties of the eigenvalue problem for the bi-Laplacian, imply that the only solution of the system
(14) is the first eigenfunction ¢;. Looking at (14), we have, modulo a positive constant, wq = ... = Wy = @1.
Then we deduce directly the desired result. [

Let us, now, give the following identity which is important in studying our problem. Let F; be the primitive
of f; such that F;(0) =0, fori=1,...,2~
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Lemma 2.3. Let (uq,up, us, ..., uy) a solution of the system (1)-(2) and «; for i = 1,2,...,2% are some positive
constants. We have the following

%1 2%_1
Zf(Aui/Aqu)(x-V)de = ZfNFi(uiH)_ai+1ui+1fi(ui+1)dx
i=1 ~IB i-1 VB

+ fNsz(ul) — aqug for (U )dxdx (18)
B
2k—1 1=2k
+ Z(N —4- Z a) f (Aui, Autizr)dx.
i=1 I=1 B

Proof. Looking at [14, Proposition 4], [15, Theorem 2.1] and by some adaptations, we write the following
general identity

0 uy J J uy
(Q_xi |:le - (ng_xk + alul) (Lpi - a—ijyij) - 83(] ( & ™ + alul) Lri/]

au[ (19)
= NL + xiin - alulLul - (ﬂl + 1)$ ( a + 2)
i

a a 711’

where L = L(x, U, p, ) is a lagrangian with U = (uy,uy, ..., ux), p = (p ), pl ‘;’;f r=(rij),i,j=1,... Nand

a forl=1,2,3,...,2% are constants. Applying the identity (19) to the Lagrangian of the problem (1) (2);

m=2K-1
L=Lx UVUAU) = Z [(Aup, Attyyi1) + Frp(me1)] + (Auigr, Auy) + Fye(uy),

m=1

anda =a;forl=1,2,3,...,2
Integrating (19) over B and using the condition u; = 0,24 =0ondBforl=1,2,3,. ,we get (18). O

Remark 2.4. If we take Z;jkoq = N — 4 in (18), we remark that the critical conditions on f;, i =1,2,3,.. ., 25 are
Nsz(Ltl) - oclulfzk(ul) = 0and NFj(uj+1) — ai+1u,-+1f1-(ui+1) = OfOT’i = 1, 2, 3, - ,Zk -1 therefore

fr(u1) N/ d fir1(i)  N/(@is1)

= = , for1,2,3,...,2k-1.
Fo(u1) Uy Fi1(u;) Uipl f

Hence, for some positive constants c;,

N

N _ ~—-1
for(u1) = cpx uﬁl b and fiwis1) = ciu -, for 1,2,3,...,2=1.

+1

3. Main Results and Proofs
We define the following critical exponents associated to the system (1)-(2) by

N — a: N —
g = % and g}, = — N where a;, a1 € (N —4)/2, Nj2),fori=1,2,3,...,2c—~1.  (20)
i+1 1

i—nk
= N-4

N

We state our first main result.
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Theorem 3.1. Suppose that f; fori=1,2,3,...,2, verify the following conditions
(D liminf fi(s)s™ > A;, limsup fi(s)s™' < A;,
§—00 550

NFi(s) = air15fi(s) = 05 fi(s), s > 0, for some ;.1 20,i=1,2,3,.. L2k

’ L i = k
(an NFy(s) — aisfo(s) = 6015 fx(s), s >0, forsome 61 >0, whereaj, j=1,2,3,...,2
j=2
are positive reals such that Z aj=N-4.
j=1

In addition, we suppose that:
H) There exists a constant C > 0 such that for every solution (u1,us, U3, . .., Up)
of the system (1)-(2) verifies |[u;llc < C, fori = 1,2,3,...,2~
trivial solution of the system (1)-(2).

Then there exists a non-

Remark 3.2. Let f;, i=1,2,3,... |2k verifying the conditions (I) and (II) of Theorem 3.1.

we have , ;
1imf’()=0,fori=1,2,3,...,2’<—1 and  tim 20

t—oo tq;ﬂ t—o0 tq;

=0.

Indeed, from condition (I), there exists ¢y > 0 such that f;(t) > 0 for t > t;. Then, looking at condition (II) we
write

NFi(t) > —0; + nitfi(t) fort > t,, (21)
where n; = a; + ;.

Hence

. N 0;
(1) — —Fi(t) > —-.
B = R 2 o

Multiplying the last inequalities, respectively, by t_%, we obtain
4 (t‘%a(t)) < iy
dt ni

1

Then, for some positive constants C;, we have
Ei(t) < Cit. (22)
Replacing (22) into (21), we get for  large enough that,
N_g
fi(t) < Ctu .

2k ok
for some positive constant C. Since Z a;j=N-4and n; = a; + 0,5, then we have Z n; >N -4
i=1 i=1
The proof of Theorem 3.1 relies on a variant of fixed point theorem, see [9] and [12].

Theorem 3.3. Let C be a cone in a Banach space X and ® : C — C a compact map such that ®(0) = 0. Assume
that there exist numbers 0 < r < R such that

(a) x # AD(x) for 0 < A <land||x|| =7,

(b) there exists a compact map F : Bg X [0, 00) — C such that
F(x,0) = O(x) if lxll =R,
F(x,p) # x if |xll=Rand0<pu<oo,
F(x, p) # x if xeﬁandeyo.
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Thenif U={xeC: r<|x|| <R}and B, = {x € C : ||x|| < p}, we have

ic(®, Br) =0, ic(® B)=1 ic(® U)=-1,
where ic(D, Q) denotes the index of ® with respect to Q. In particular, ® has a fixed point in U.

Proof of Theorem 3.1 Applying Theorem 3.3, Let C*([0, 1]) denote the space of continuous bounded functions

defined on [0, 1]. Consider the Banach space X = (C*((0, 1)))2k endowed with the norm |[u|| = sup {u(t)|}.
te[0,1]
The cone C is defined by
C={weX: w20 forallte[0,1]],
where w = (y1,...,Y») > 0 means that y; >0 fori =1,...,2%
We define the compact map @ : X — X by

1
D(w)(r) = fo G, s)h(wls)ds,  hw) = (fi(ua), ..., faro1(u2x), for(th))-

It’s clear that a fixed point of @ is a solution of (10). So, it will be a solution of (3)-(4) as well.
Verification of condition (a): From hypothesis (I) of Theorem 3.1 we have that fi(ui+1(x)) < gidiuiz(x),
i=1,...,28=1and f(u1(x)) < gurAyus(x) whereg; < 1fori=1,...,25 Then

Alfqbluzdx: fuzAngzkdX:fAzuz ¢2kdx= ffz(u3)¢)2kdx<A2q2fqb2ku3dx, (23)

Age f Por_jyattidx = f Uil Py _jpdx = f A1 oi_jypdx = f fittisr) Qo_jyodx

(24)

< Aiﬂi f¢2k_i+2u,-+1dx, fori= 3,... ,2k -1,
A3 f¢3u2kdx = fuzkA2¢2dx = fAzuzk ¢P3dx = ffzk(ul) Padx < Apgor fqbzuldx, (25)
/\zf(;bzuldx = fulAquldx = fAzul qbldx = ffl(uz) ¢)1dx < /\1Q1 f(;bluzdx. (26)

Multiplying (23), (24) for i = 3,...,2¢ — 1, (25) and (26) each other. Since the integrals are nonzero, we
get, after some simplifications,

ok 2ok ok
ITA; < Ig; ITA,,
=1 i=1" i=1

2k
which leads to a contradiction, since qu,- < 1. Also, ifu;fori=1,...,2F are replaced by A u; in the previous
i=

inequalities, for A € [0, 1], then similarly a contradiction follows and hence
w(t) # AD(w(t)) with Ae€[0,1], |wl|=r, weC.
Verification of (b): Set the compact mapping F : C X [0, 0) — C such that
F(w, p)(r) = @(w + p)(r) (27)

Clearly we have F(w,0) = ®(w). From condition (i) of Theorem 3.1, there exist constants k; > A; for
i=1,...,2% and to > 0 such that fi(y; + p) = kiy; if u > po for all y; > 0. We have

M f Orupdx = f Uy A2 Poyedx = f A’y ppedx = f Fo(uz) Podx > ko f Goizdx, (28)
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Aok f Por_jyaUtidx = f WA Pe_iyodx f A2 e _pypdx = f filtiv1) Po_ipodx

(29)

> quif¢2k_i+2ui+1dx, fori=3,...,2k-1,
/\3f¢3u2kdx:fuzkA2(p2dx:fAzuzk (z)3dx=ffzk(u1)¢2dx2k2kf¢2uldx, (30)
/\2f¢2u1dx=fu1A2q§1dx=fAzul (Pldx=ff1(u2)(¢)1dx2k1f¢1uzdx. (31)

Multiplying all the previous inequality each other, since the integrals f up;, for i, j € {1,2,...,2"}, are
nonzero, we obtain

2ok 2k
ITA; > ITk;.
i=1 i=1

The last inequality leads to a contradiction since k; > A; foreveryi=1,2,..., 2k,
Then, there exists a constant 19 > 0 such that

w(t) # F(w, u)(t) forallw € Cand u > pyo. (32)

Therefore the last condition of (b) is verified. Now, in order to prove the second condition of (b), we take
the family of nonlinearities ( Ay +u), ., (Y + y)) for u € [0, po]. Using the a priori estimates (H) which
does not depend on u and choosing R > r large enough, we have

w(r) # F(w, u)(r) forallpe[0,upl, weC, |wl|l=R. (33)

The relations (32) and (33) prove the second condition of (b).

Finally, all conditions of Theorem 3.3 are fulfilled, then we obtain the existence of a nontrivial positive

solution of problem (10). Therefore we deduce the existence of positive solution of problem (1)-(2) as well.
O

Theorem 3.4. Suppose that f; for i = 1,2,3,...,2%, satisfy the conditions (I) and (II). Then every solution of the
system (1)-(2) is bounded in L, namely the hypothesis (H) is verified.

Proof. We will proof it in four steps.
Step 1. We claim that there exist positive constants C;q, Cip, fori=1,..., 2% such that

f filuis)pidx < Ciy, fori=1,...,2F-1, (34)
B
f for(ur)ppdx < Cyg, (35)
B

fB uipidx < Cip, fori=1,...2% (36)

Indeed, from the equations (1) and (11) one can write

fﬁ(um)(j)idx = fAzuiqb,-dx= fuiAz(]bidx
B B B
= AHlfu,-qbiJrldxfori:1,...,2"—1,
B
ffzk(ul)(pzkdx = fA2uzk¢)2kdx: fuzkAz(szdx
B B B

/\1 fuqubldx.
B



Next, from condition (I) of Theorem 3.1, there exist k; > A; and A; > 0, for every i € {1,...,
f,-(u,-+1) > kiuj —A;jfori=1,...

fB fi(uz)prdx
szk(ul)fpzdx
f];fZ"i(uszrli)qbZde

L|f2(u3)|¢2kdx

I. Mechai et al. / Filomat 32:12 (2018), 4113-4130

= Azfu1¢2dxﬁc+ ﬁffzk(ul)(j)zdx,
B Ko Jp

:Mf
B

= Asyi f Uprpzdx
B

IN

= Alfu2k¢1dxsc+ﬂfﬁ(uz)cl)ldx
B Kl B

Combining (37)-(40) we get, for a generic constant C,

ffzk—j(u2k+1—j)¢2+jdx
B

also
ffl(m)qbldx < C+
B
<
and
f fo(uz)pydx <
B
<
2k
A

Az4jAstj-1

< C+ f Jata (b1 )Parjadx
B

i
i=1
< C+—0— jl; for_j(gi i1 )P4 jdx

ArA
kzki; f foroq (upe)Ppadx

2k
=1 q
% (u2)Prdx
i=1

/\ A

. fozk(ul)¢2dx
2k

i=1

Since 5— < 1, this implies (34) and (35).

Hk

From COl’ldlthl’l (I) of Theorem 3.1, (34) and (35) we deduce (36).

_1 () Padx,

/\ .
C+ 2 f Foeo1i(tiae_)asida, fori=1,..
Kae1-i Jp

2k—3

4121

2%}, such that
,28 —1and for(11) > kyu1. Thus, for generic constant C, we have

(37)
(38)

(39)

(40)

(41)

(42)

(43)
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Step 2. We claim that, fori € {1,2,..., 2K}, there exist positive constants C;,. . ., C;, such that
2
ui(r) < Ci1  for 3 <r<l1 (44)
and
u:’(l) < Cilg. (45)
Indeed, we have
1
ui(r) = f G(r,s)fi(uiz1(s))ds, forie{l,2,.. L2k,
0
and
1
U (1) = f G(r,s) fox (u1(s))ds.
0

The fact that ¥ — G(r, 5) is decreasing, (see (8) and (7)), gives that u;(r), fori € 1,2,..., 2%, are decreasing and
for arbitrary 2 <r <1,

3 1 1
u;(r) < ui(g) =3 j: Cui(s)ds < C fo sN1(1 = 5)%ui(s)ds < C + f sNH(1 = 5)?uy(s)ds.

5 0

From (5) and Lemma 2.2, we have

1
ui(r) < C(l + f N1 - s)zui(s)ds) < C(l + f(j)iuidx).
0 B

Using (36) we conclude that u;(r) < C;; for % <r<L
To prove (45) we will use the following

1
ui(r) = f G(r,9) fi(uis1(s))ds, forie1,2,...,25 -1,
0 (46)

1
uzk(r):fo G(r,5) foe(u1(s))ds.

We differentiate (46) two times, we get

1 2 1 32
w0 = [ T5 s and )= [ FoC punoas
0 r 0 r

Taking the limit when r goes to 1, since the integrals converge, we write

L 92G(r, ., L 32G(r,
wm = [ 5 Ao and w = [ D] s

From (9), we get

1 1
W= fo S =) fa(@)ds, and (1) = £ fo N1 - ) fu(an (6))ds.

Using (5) and Lemma 2.2, we write, for some positive constant C, that

u;’(l) <C f(Pjﬁ(ujJrl)dS fori=1,2,.. .,Zk -1, and u;;(l) <C f(z)zk for(u1)ds.
B B



I. Mechai et al. / Filomat 32:12 (2018), 4113-4130 4123

Then we obtain (45) using (34) and (35).
Step 3. We claim that, for a small number 0 </ < 1, there exist positive constants Cj, . .., C4 such that

!

!
f N fiuiq(s))ds < €y fori=1,2,...,2F -1, f sV fe(ug (s))ds < Cy. (47)
0 0
fum f,-(u,-+1)dx < C3 fori= 1, 2, .. .,Zk - 1, ful ka(ul)dx < C4. (48)
B B

Indeed, following Step 1, Lemma 2.1 and Lemma 2.2 we have, fori =1,2,..., 2¥ —1and forsmall0 <1< 1,

[
f SN fiupa(e)ds < f SNl(l 2fz<ur+1(5>)ds
0 0

1
< (1 _ l)2 f N (1 - S)zﬂ(ui+l(s))ds
< Cf(; SN pi(s) fi(uis (5))ds = fd) ifi(uip1)dx < M;
and
!
f SN o (s)ds < f s 1(1 Zf%(ul(s»ds
0 0
1
< T f N - 92 f o (6))ds

1
< C f SN (s) for(a(s))ds = C f o for(u1)dx < My,
0 B

where M;, 1 <i < 2¥, are some positive constants. This shows (47).

zk
For the proof of (48), using the identity (18) of Lemma 2.3, considering the fact that Zlai =N-4,as
i=
ok
Z fNFi(Mi+1) — ity fi(uiy)dx - + fNsz(Ml) — aqiy foe(ug)dx
= Js B

2
Y, f (Autg, Atis)(x.v)dor.
i=1 oB

Using condition (II) of Theorem 3.1 for the left hand side of the last equality and after some computations
on the right hand side we obtain, for a positive constant C,

Zem fuz+1ﬁ(uz+1)dx + 61 fulfzk(ul dx < CZ (Mul (1),

Therefore
2k—1
ZGiH fui+1ﬁ(ui+1)dx+ 61 fulfzk(ul)dx <C
i=1 B B

we obtain (48) since all terms in the left hand side are positive.
Step 4. We claim that there exist positive constants C; fori =1,.. ., 2k ‘such that, for any solution (u1, ..., tox)
of problem (1)-(2),

”ui”oo < Ci fori= 1, .. .,2k. (49)
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Indeed, for uj,1,i=1,...,25 =1, we have

1
il < 11 (0) < fo G(0,5) (1t (5))dls

1
Cj(; $3(1 = s)* fi(ui1(s))ds

<
1

< C 3 f(ui(s))d

< fOSf(u [(§)ds
t 1

< C f S f (i1 (5))ds + C f & fi(t1(9)ds,
0 t

where t € (0,1) is arbitrary and C is a generic positive constant for the rest of this step.
Let fi(m) = max] fi(s) for m € (0, o), by Holder’s inequality, we obtain
,m

s€[0,

-
. A
q;* q;+1

~ 1 . ’77% 1 e i
il < Ct4||ﬁ<||ui+1||m>+c( [ SV"”("z”)ds) ( [ e ds)
t t

CH filluis1lleo)

A

IA

q;
Pra—
Tipp 1

1 '7:% 1 - 1
C( ft S‘V"”(q?“)dS) ( ft SN‘l(fz‘(um(S)))(ﬁ(um(S)))‘*?ﬂdS) ’

where yi11 =3 - (N — 1)%. From Remark 3.2, we have the existence of a positive constant M such that
i+1

+

fi(s) < M(1 + )%+, foralls >0 (50)
Then
1 U
N 1 X Tl 1 g+
luillo < Ctfillluislleo) + C(f S’/’“(”"*l“)ds) (f SN fiuia (s)(1 +U(S))d5) ,
t t
< Ctfillluislleo)

: T
+ C( ft S)"'“(q?““)ds) ( fB (fiuisa (s)))dx + j; (ﬁ(ui+1(s)))”i+1(x)dx) :

Using (47) and (48), we get

1

. 1 . URES
lluilloo < CHt* fi(llttis1lleo) + C (f s7”'+1('7i+1+1)ds) , fori=1,...,28-1.
t
Similarly, we have for u,x,

7
q1+l'

1
3 o G
ltzelloo < CH foe(llinlleo) + C ( f s”’“”dS) ", wherey; =3~ (N-1)
t

After some manipulations, we get

4+@-N)L,

luilleo < Ct* fi(lluisllw) + Ct "™, fori=1,...,25-1 (51)
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and

4+(4-N)gj

lluzlloe < CH fr(llinllec) + C# 57T (52)

Note that if ﬁ, fori=1,...,2% are bounded t}}en (49) comes directly. Nevertheless, if ﬁ is not bounded then
there exist a positive M;, see (50) such that fi(m) < M;m% fori=1,...,25 =1 and fo(m) < My m" where
m > 1.

Therefore (51) becomes

AN
4+A-N)L,

l[tilleo < CH(uistlloo)er + Ct %™, fori=1,...,25=1. (53)

We rewrite (52) and all the equations appearing in (53) as

4+(47N)q;

luille < CH(luallo)™ +Ct 57, (54)
4+(4—N)q§

lalle < CH(lusllee)® +Ct 57
4+(4—N)q;k

lup_ille < CH(luyllo)™ +Ct =", (55)
4+(4—N)q;

liplle < CE(fulleo)® +Ct 77

Combining the previous inequalities and using the inequality (a + b)" < C,(a" + b") fora, b, n > 0 where C,
is a positive constant depending only on 1, we obtain

2k ] 1
4+4[ T Ilqu;) f—k[q; 2F-1 m;(r/[q;)+4(],2 nq;)+4 .
lulle < Ct V22 (flugllo)=" + C]§2t B O (56)
4+(3-N)T,, )
* _ J+ — k _
where my = Tt forj=1,...,2°-1.

Now, putting (52) into (56) and using again the inequality (a + b)" < C,(a" + b"), we get

k i k . i1
4+4[_2§2}%IQ;J ~ f_lqj ok m}(lllqj)+4({zlnq;)+4 ot 4 .
Uille <Ct VP2 c(linlleo) =27 + C Xt V20 =220 Cfl™ 4 C ™ 57
2/ =
]:

j j-1i
_ * * * . k _ * % _ *
WenoteMj—mj(ll__lqu)+4(i§211:12ql)+4,f0r]—3,...,2 =1, My = m3q;, +4 and My = m;.
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We remark that

2k +
My-M; = -N Y B
) q:+1
=2,
j#2,3
3
k *
: 2
M;-=Mi1 = -N Z —
) q;i+1
j=2, 7
j#ELi+1
2k—1
k *
My -My_, = -N i =
2k-1 2k-2 q*.+1'
=2 j
j#2k—1, 2k
2k ﬁq;
Notingy; =N L oy fori=1,..,2¢-1.
j=2, "
j#ELi+1

2k—1
We deduce that M; = My_; + ‘le)/]- fori=1,...,2x-1.
j=i+
Using this relation with (57) and the fact that t < 1 for y > 0, we write

ok

j k
4 Ez 11:_125[,

2
I1

| (Bl =" +Cre. (58)

4+[
lui)lo < Ct VU

2k
My, (1-11g7)

For convenient calculations, we define r = 7 . Since t € (0,1), we write
1

ok

~ Ilgy
llleo < CE {faellinll) 2" + CEMatcr, (59)

In order to have the best estimate for ||u1]|.c we take the infimum with respect to ¢ in the right expression of
(59). Then we define the function
zk
~ Ilg:
h(t) = ¢ { flnlloo) =" + V11 (60)
2k
51

The function h attains its infimum at g = C( f;k(llullloo))Mzk—l" and has the following value

Zk 2k

71132‘77 ot

- — + I, ~ S i

h(to) < C (frlllunlle) M2t =7 =27 4 C (fu(linlls) M2t =7

*



I. Mechai et al. / Filomat 32:12 (2018), 4113-4130 4127

2* 2
r 1_12‘71 ok M2"—1 ll;Izq; 1
The choice of r gives that My =7 + Ezq’,‘ = My =1 = —; Then

h(to) < C+ C(fa(lunlla) .
From Remark 3.2 we have f;k (x) = o(xf) for x — +oco then we obtain
llurllo < C (1 + 0(llurlleo)),
this shows that [[u1]| is bounded. Replacing the bound of ||u1 ]| into (56) we deduce that ||u;]|. is bounded

fori=1,...,2~
This finish Step 4 and complete the prove of Theorem 3.4. [

We end this section by giving a non-existence theorem.
Theorem 3.5. Assume that f;, fori=1,2,3,...,2%, verify for t > 0

NEi(t) = aiat fi(t) <0, i=1,2,3,...,25 =1, and NFu(t) — art fu(£) < 0. (61)

Then there is no nontrivial solution of the system (1)-(2) in (CZ(B) N Cl(B))z.

2k
Proof. Taking Zoz, N — 4 in the identity (18). Since u; = 0 = ‘?9”‘ fori=1,...,25 we have (Auj, Aujs1) =

Tu i forj=1,...,28 1.
If (ug,...,ux)is a nontrivial solution of (1)-(2), since B is star-shaped domain about 0, then x.v > 0 on JB.

Then the identity (18) gives a contradiction in the case of the condition (61). This finishes the proof. O

4. Examples of Some Numerical Solutions

In this section, we give some examples to illustrate the study of the general system (1)-(2). We fix the
dimension of the space N = 5 and k = 2 that means we consider the following system.

u§4) + 2(5;1)1433) 4 G1G- 3)u,, _ (5—1%5—3)% = fili),
4, 26-1) .8 , 6= )(5 3) . 6=1D)5-3) , _
NO i 2(5’ 1) i (5- 1)(5 3)u } 16 13?5 3) ty = f2{ita) (62)
- O~ - ’—
?4) 268-1) ?3) - (5 1><5 3.3 e folua)
r Ll4 72 Uy = r u, = f4(141),

with the boundary conditions

0, w1(1) =1, uy(1) =
:0/ 1/{2(1):C2, Mé(l):
: 0, us(1) =cs, uj(1) = ©
0)=0,u(0) =0, us(l) =ca, (1) =

where ¢y, ¢o, 3, and ¢4 are constants.
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In order to obtain a numerical solution, we write the system (62)-(63) as a system of first order ODEs

Mi = Ui
Uy =1
Uy, =3
N-1)(N-3 N-1)(N-3
uy 5= filuz) - (M1,3 + 1 3§ Dt - Sé )M1,1),
u; =Uz1
Uy =1z
Uy, =13
N-1)(N-3 N-1)(N-3
uy = fous) — (Mz,a + Zg D1ty — ¢ ,)é L ,1),
23 (64)
Uz = U3
ul,’),l = Uzp
Uy, = U3
N-1)(N-3 N-1)(N-3
us 3 = fa(us) — (u3,3 + 3§ D5 — ¢ ,)é )M3,1),
Uy =g
Uy, = U
Uy, = U3
, N-1)(N-3 N-1)(N-3
uy 3 = falur) - (M4,3 + Zg Jiggp Zg )M4,1),
subject to boundary conditions
u11(0)=0 u13(0)=0 w(l)=c1;, w1 (1)=0,
u1(0)=0 u3(0)=0 ua(1)=ca, u1(1)=0, (65)
u31(0)=0 u33(0)=0 us(1)=c3, wu31(1)=0,
us1 (0) =0 us3(0) =0 wus(l)=vcs, usy(1)=0

The numerical solutions obtained using the Matlab program bvp5c [16] which requires initial guess for
the solution on a given mesh.

Example 4.1.

Let fi(u) = u?, fo(u) = 1%, f3(u) = u*, faw) = uand ¢y =1, ¢, = 3, c3 = §, ¢4 = §. Easily we see that the f;,
1 <i < 4 verify the condition (I) and (II) of Theorem 3.1. The numerical solution computed by choosing the initial
quess

and is presented in Figure 1 on a mesh of 100 points and relative error tolerance RelTol = 107°.

Example 4.2. Let fi(u) = u> +u, H(u) = +u? +u, ) =ut + > +u> +u, faw) =’ +ut +u® + v + u.
We note that the functions f;, 1 < i < 4 verify the conditions (I) and (1) of Theorem 3.1. Therefore, the numerical
solution computed by choosing the initial guess

—1u—1u—Landu—L
Tx+lU P R+ T B T M

251

and is presented in Figure 2 on a mesh of 1000 points and maximum error 107,
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1.0009F—— 0.5001
L N
1.0008 0.5001 g
1.0007} B I
0.5F ™ B
1.0006 4 \ .
1.0005} B 051 1
1.0004 g 05k |
1.0003 ,
0.5F B
1.0002 B
0.5F |
1.0001} N B -
- ™~
1 L L L N N N . . P 0.5 I I I I I I I I L
0 01 02 03 04 05 06 07 08 09 1 01 02 03 04 05 06 07 08 09 1
(@) up (b) ua
0.25
0.1295 . . T ! ! ! ! ! !
0.25F B
™~ 0.129+ B
N
0.25F B
0.1285F T _ B
~—
0250 B L
0.128F AN R
0.25F B N
0.1275} |
0.25F B
0.127} E
0.25F B
0250 | 0.1265F |
0.25F 1 o.126ef |
0250 4 0.1255¢ \ B
. - \\~,
0.25 : - - - - - - ' = 0.125 . . . . . . . . T~
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
(c) us (d) ug

Figure 1: Numerical Solution for Example 1 obtained on a mesh of 100 points and RelTol = 10~
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Figure 2: Numerical Solution for Example 2 obtained on a mesh of 1000 points
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