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Abstract. This paper deals with some nonlinear problems which exponential and biexponential decays are
involved in. A proof of the quasiconvexity of the error function in some of these problems of optimization
is presented. This proof is restricted to fitting observations by means of exponentials having the form f (t) =
λ1 exp(kt) + λ2. Based on this quasiconvexity, we propose an algorithm to estimate the best approximation
to each of these decays. Besides, the robustness of this algorithm allows us to avoid initial guess.

1. Introduction

Exponential decays are involved in a wide class of processes. Some of these are radioactive processes,
cooling processes, dumped oscilations in charging processes and phenomena which arise from the superpo-
sition of purely periodic processes whose periods do not have integer ratios such as brightness fluctuations
of variable stars or ebb and flood tide, see [12, p. 355-363]. Exponential decays also appear in studies of
viscoelastic materials. In oversimplified Maxwell and in Kelvin-Voigt models the exponential decay can
be seen and it occurs in studies of stress relaxation, a typical behaviour of viscoelastic materials (see [8,
chap. 2]). A broad collection of references about problems involving exponential decays can be consulted
in the introduction of [5].

For the last two centuries, many efforts have been made to fit observations related with these problems
with sums of exponential functions [5, 6], [11, p. 369-371]. J. M. Hokanson explains in the introduction of
[5] how these efforts can be clasified in two groups. Namely, some of them are related to Prony’s methods
[7] and other ones to least square fitting such as Levenberg-Marquardt method. Also must be taken into
account a different kind of algorithms, the heuristic ones. A characteristic of these algorithms, shared with
the one we will present, is that initial guess is unneeded.

The aim of this paper is to propose a method to fit some observations by means of exponential decays.
The way to achieve this goal will be to locate and estimate the minimum of a real function just by sampling
it. Obviously, we have needed to study which properties guarantee that will work. Equally evident is that
the function to study should verify, at least, one of these properties. Maybe this would be sufficient to assert

2010 Mathematics Subject Classification. Primary 65D10; Secondary 41A52, 41A30
Keywords. Exponential decay; exponential fitting; biexponential decay; water temperature; Newton’s law of cooling; quasiconvex

functions
Received: 28 November 2017; Accepted: 21 May 2018
Communicated by Naseer Shahzad
Research partially supported by MICINN [research project reference CTM2010-09635 (subprogramme ANT)], MINECO [research

project reference MTM2016-76958-C2-1-P] and Consejerı́a de Economı́a e Infraestructuras de la Junta de Extremadura [research projects
references: IB16056 and GR15152].

Email addresses: jfernandck@alumnos.unex.es (Juan Antonio Fernández Torvisco), arias@unex.es(corresponding author)
(Mariano Rodrı́guez-Arias Fernández), coco@unex.es (Javier Cabello Sánchez)



J. A. F. Torvisco et al. / Filomat 32:12 (2018), 4233–4248 4234

that the method we propose can not be enclosed within any of previously referred groups. Convexity is a
common lifesaver in these situations; for us, quasiconvexity played this rôle. Two kindnesses of our method
are the lack of an initial guess for the approximation along with a quite reasonably time of processing.

The function E∞, which measures the error of some approximations, is defined on the first paragraph
of Section 2, where we prove its quasiconvex character. Also, conditions for the existence and uniqueness
of the absolute minimum for E∞ are determined. Section 3 is devoted to present the algorithm we propose,
named TAC. In sections 4 and 5, TAC has been used to fit data coming from a cooling process and from
study of cells’ stress relaxation, respectively.

In this paper, R+ denotes {x ∈ R : x > 0} and R−, {x ∈ R : x < 0}. We will always assume Rn and every
subset endowed with its usual topology, i.e., the one induced by the Euclidean norm.

Throughout this paper T = (T1, . . . ,Tn) will denote a vector ofRn produced by n observations of a given
observable.

The forerunner of this paper has been to give a satisfactory answer to some questions about a problem
of approximation. In that problem, T will be the element to be approximated; G, the family of aproximants;
and ‖ · ‖2, the approximation criteria. G is defined as

G = {(λ1ekt1 + λ2, · · · , λ1ektn + λ2) : k ∈ R−, λ1, λ2 ∈ R};

being t1 < . . . < tn ∈ R the instants in which the observations of T were taken.
For any k ∈ R−, Gk will denote the linear plane generated by

E = (ekt1 , · · · , ektn ) and I = (1, . . . , 1).

Gk is a finite-dimensional linear subspace of the Hilbert space (Rn, ‖ · ‖2). Therefore, the existence and
uniqueness of the best approximation to T in Gk is a well known problem [2, section 7.4, p. 276]. Namely,
the best approximation to T in Gk is λ1E +λ2I, where the values of λ1 and λ2 can be obtained by solving the
linear equations system{

λ1〈E,E〉 + λ2〈I,E〉 = 〈T,E〉
λ1〈E, I〉 + λ2 〈I, I〉 = 〈T, I〉

and 〈·, ·〉 denotes the usual inner product in Rn. The solution of this system is given by

λ1(k) =
〈I, I〉〈T,E〉 − 〈E, I〉〈T, I〉
〈I, I〉〈E,E〉 − 〈E, I〉〈E, I〉

, λ2(k) =
〈E,E〉〈T, I〉 − 〈E, I〉〈T,E〉
〈I, I〉〈E,E〉 − 〈E, I〉〈E, I〉

. (1)

SinceG is neither a linear space nor a convex or closed set, we do not have a priori results about the existence
and uniqueness of best approximations. We are, however, going to determine a way to estimate the best
approximation.

To do so, we need to define a couple of auxiliary functions, D2 and E2, later we are going to discuss
some desirable properties of E2.

Let us consider G as
⋃

k∈R− Gk. For each k ∈ R−, let Fk denote the unique best approximation to T in Gk.
We define the functionsD2 and E2 as follows

D2 : R− −→ (Rn, ‖ · ‖2)
k 7−→ D2(k) := Fk − T,

and E2 = ‖ · ‖2 ◦ D2.
To guarantee the existence of a best approximation of T in G we would want to prove that E2 has a

certain property: the quasiconvexity. We introduce now its definition.

Definition 1.1. Let X be a linear topological space. A function f : X → R is said to be quasiconvex whenever it
satisfies

f (λx + (1 − λ)y) ≤ max{ f (x), f (y)}, ∀x, y ∈ X and λ ∈ (0, 1).

We will say that f is strictly quasiconvex when the inequality is strict.
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To the best of our knowledge, the first time this concept was introduced was in [4, p. 1554]. Some results
and properties related to quasiconvex functions can be found in, for example, [4, 9].

It is clear that a strictly quasiconvex function cannot have relative minima which are not absolute.
Proving that E2 is a strictly quasiconvex function, the problem of approximation would be solved since
every relative minimum of this function is absolute. Quasiconvexity, then, allows us to construct an
algorithm to find such absolute minimum or minima by sampling the function.

We tried to prove that E2 is a quasiconvex function, but every attempt was a failure. We have not even
found general conditions on T that could make E2 quasiconvex. Because of that, we decided to change the
norm, using ‖ · ‖∞ instead of ‖ · ‖2.

2. Quasiconvexity of E∞

Throughout this section we will consider Rn endowed with ‖ · ‖∞. We must now define two new
functions that will play the rôle ofD2 and E2:

D∞ : R− −→ (Rn, ‖ · ‖∞)
k 7−→ D∞(k) := Fk − T,

and E∞ = ‖ ·‖∞◦D∞, i.e., E∞(k) = ‖Fk−T‖∞, whereFk is the best approximation to T in Gk for the max-norm.
For D∞ to be well-defined, we need to prove the existence and uniqueness of a best approximation in

every Gk. This was not necessary before, but now, since (Rn, ‖ · ‖∞) is not a pre-Hilbert space, we need to
ensure it. Therefore, we will:

1. Prove the existence and uniqueness of the best approximation in each Gk.
2. Prove the quasiconvexity of E∞ and determine conditions for existence and uniqueness of a best

approximation of T in G.

2.1. Existence and Uniqueness of the Best Approximation in Each Gk

Lemma 2.1. Let T ∈ Rn,F ⊂ Rn a closed subset. Then, there exists at least one x ∈ F such that ‖T − x‖∞ =
inf{‖T − y‖∞ : y ∈ F}.

Proof. Suppose T ∈ Rn, and F ⊂ Rn is a nonempty closed subset that does not contain T, being trivial the
case T ∈ F. Take z ∈ F and α = ‖T − z‖∞. It is pretty clear that

inf{‖T − y‖∞ : y ∈ F} = inf{‖T − y‖∞ : y ∈ F, ‖T − y‖∞ ≤ α},

and the last expression is the infimum of a continuous function on a compact set, so this infimum is attained
at some x ∈ F.

Remark 2.2. The problem of finding the best approximation to T in the (linear) plane Gk = 〈E, I〉 is equivalent to
finding the vector with smallest norm in the (affine) plane H = Gk − T = {v − T : v ∈ Gk}, we will say that such a
vector is minimal in H. For the sake of clarity, we will consider the latest way of stating the problem in the following
result.

Proposition 2.3. Let x ∈ H be such that ‖x‖∞ = min{‖y‖∞ : y ∈ H} = r. Then, there exist indices 1 ≤ i < j < m ≤ n
such that xi = −x j = xm = ±r.

Moreover, if x fulfills this condition, then it is minimal and it is the unique minimal element in H.

Proof. Suppose x is minimal and let r = ‖x‖∞. By the very definition of the max-norm, there exists some
i ∈ {1, . . . ,n} such that xi = ±r. Let r+ = max{x1, . . . , xn} and r− = min{x1, . . . , xn}. If r+ , −r−, then
we may suppose that r+ = −r− + α for some α > 0, being the opposite case very similar. Obviously
‖x − α/2 · I‖∞ = r − α/2 < r and x − α/2 · I ∈ H, so we have a contradiction that shows that r+ = −r−: there
must exist i, j such that xi = −x j = ±r.
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Suppose that xi = −x j = r, |xm| < r for every m < {i, j} and take v ∈ Gk such that vi < 0, v j > 0 –it is pretty
clear that there exists such a v. Now, there exists ε > 0 such that |xm| ≤ r − ε for every m < {i, j}, so we may
take δ > 0 such that

|xm + βvm| < r, ∀ m < {i, j}, β ∈ [0, δ].

It is clear that we can manage to find β ∈ [0, δ] such that |xi + βvi| < r and |x j + βv j| < r. So, x + βv ∈ H and
‖x + βv‖∞ < ‖x‖∞.

So, for x to be minimal, there must exist another index m such that xm = ±r. Suppose that i, j and m do
not fulfill the hypothesis, i.e., all the maxima lie before (or after) every minimum. We may and do assume
i < m, xi = −xm = r, with x j < r for every j > i and x j > −r for every j < m, the other case is analogous. Take
ε > 0 small enough to keep xi − εEi as the greatest coordinate of y = x − εE and xm − εEm as its smallest. As
El > El+1 > 0 for every l = 1, . . . ,n− 1, we have r−max{y1, . . . , yn} = εEi > εEm = −r−min{y1, . . . , yn} > 0, so

max{y1, . . . , yn} −min{y1, . . . , yn} < r + r = max{x1, . . . , xn} −min{x1, . . . , xn}.

Now, take δ = 1
2 (max{y1, . . . , yn} + min{y1, . . . , yn}) and the vector y − δI. Now it is clear that

‖y − δI‖∞ =
1
2

(max{y1, . . . , yn} −min{y1, . . . , yn}) < r

and y − δI ∈ H, so x was not a minimal element in H and we have finished the first part of the proof.
For the inverse implication, take x ∈ H and 1 ≤ i < j < m ≤ n such that xi = −x j = xm = ‖x‖∞. Now,

Ei > E j > Em implies (x +λE)i − (x +λE) j > 2‖x‖∞ for every λ > 0 and (x +λE)m − (x +λE) j > 2‖x‖∞ for every
λ < 0. It is clear that in both cases ‖x + λE + µI‖∞ > ‖x‖∞ for any real µ. For λ = 0 the latest inequality is
also true for every µ , 0, so we are done.

Remark 2.4. The description of the best approximations provided in the above proposition will be more useful than
it seems. Please observe that it implies that the best approximation will be a constant only when there are two indices
of T where the maximum or the minimum is attained, and some minimum (resp. maximum) must be between two
maxima (resp. minima).

2.2. Best Approximation for Every k

Remark 2.5. In this subsection, we will suppose that T is such that some exponential approximates it better than
any constant, the other case is vacuous. Indeed, if there exist k ∈ (−∞, 0), b0 ∈ R such that

‖(b0 − T1), . . . , (b0 − Tn)‖∞ ≤ ‖(a exp(kt1) + b − T1, . . . , a exp(ktn) + b − Tn)‖∞

for every a, b ∈ R then Proposition 2.3 ensures that there is a minimum between two maxima (o a maximum between
two minima), so this will happen for every k ∈ (−∞, 0) and we have nothing to do.

Remark 2.6. This is one of the two main advantages of working with the max-norm instead of the Euclidean norm,
the easy way to determine whether T is a good point to be approximated or not.

Before we continue, let us see a property of the family of approximants that will be key from now on.
Please observe that every triple (a, b, k) ∈ R×R×R− determines not only an element (aekt1 +b, · · · , aektn +b) ∈ G
but a function, too: aekt + b. We can consider then the family of functions

G̃ = {aekt + b : (aekt1 + b, · · · , aektn + b) ∈ G}.

Obviously, evaluating each non constant function of G̃ in t1, · · · , tn determines a unique vector in G. Now,
our immediate goal is to show that, in some sense, the ‘inverse’ implication also holds: every vector in G
determines a triple (a, b, k), which in turn determines a function in G̃, as long as n ≥ 3.
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Remark 2.7. Because of Remark 2.5, we will need to deal just with, say, non constant exponentials, so whenever we
have f (t) = a exp(kt) + b we will assume that a , 0 for the remainder of the subsection. Please observe that, if we deal
with a constant vector T = (b, . . . , b), then f (t) = a exp(kt) + b, with a = 0, is a function that fulfills f (ti) = Ti for
every i = 1, . . . ,n, no matter the value of k.

Let f1(t) = a1 exp(k1t) + b1, f3(t) = a3 exp(k3t) + b3. Recall that a1, a3 ∈ R− ∪R+, b1, b3 ∈ R and k1, k3 ∈ R−.

Lemma 2.8. If there are two different s1, s2 ∈ R such that f ′1(s1) = f ′3(s1) and f ′1(s2) = f ′3(s2), then a3 = a1 and
k3 = k1. If, furthermore, f1 and f3 agree at some point, then they agree everywhere and b3 = b1.

Proof. As f ′1(t) = a1k1 exp(k1t) and f ′3(t) = a3k3 exp(k3t), our hypotheses can be rewriten as

a1k1ek1s1 = a3k3ek3s1 , a1k1ek1s2 = a3k3ek3s2 ,

or equivalently,

e(k3−k1)s1 =
a1k1

a3k3
= e(k3−k1)s2 .

As s1 , s2, this readily implies k3 = k1, so exp((k3 − k1)s1) = 1 and this implies a3 = a1. So, f ′1 and f ′3 are the
same function and this means that f1 = f3 if and only if they agree at some point.

Corollary 2.9. f1 and f3 agree everywhere if any of the following conditions holds:

1. There exists c0 such that f1(c0) = f3(c0), f ′1(c0) = f ′3(c0) and f ′′1 (c0) = f ′′3 (c0).
2. They agree at two points, and are tangent at one of them.
3. They agree at three points.

Proof. The first item is equivalent to the following equalities:

a1ek1c0 + b1 = a3ek3c0 + b3, k1a1ek1c0 = k3a3ek3c0 and k2
1a1ek1c0 = k2

3a3ek3c0 .

The second and third equalities together imply that k3 = k1, and this implies that a3 = a1. Now it is readily
seen that b3 = b1.

For the second one, suppose there exist c1 < c2 such that f1(c1) = f3(c1), f1(c2) = f3(c2) and f ′1(c1) = f ′3(c1).
Then the Rolle’s Theorem ensures that there is some point s ∈ (c1, c2) such that f ′1(s) = f ′3(s), so we have two
different points where f ′1 and f ′3 agree, namely s and c1. By the above lemma, this implies that f ′1 = f ′3 . As
f1(c1) = f3(c1), we are done. The case f ′1(c2) = f ′3(c2) is analogous.

In the third case, suppose that there exist c1 < c2 < c3 such that f1(c1) = f3(c1), f1(c2) = f3(c2) and
f1(c3) = f3(c3). Again, the Rolle’s Theorem ensures that there exist s1 ∈ (c1, c2) and s2 ∈ (c2, c3) such that
f ′1(s1) = f ′3(s1) and f ′1(s2) = f ′3(s2). Again, the previous lemma is enough to finish the proof.

Lemma 2.10. Let c1 < c2 < c3 and y1 > y2 > y3 be real numbers such that

y2 − y1

c2 − c1
,

y3 − y1

c3 − c1
.

Then, there exist unique a, b and k in R such that

aekci + b = yi for i ∈ {1, 2, 3}.

Proof. The previous corollary ensures the uniqueness of a, b and k, so we just need to show their existence.
It is easy to check that, if c1 < c2 and y1 > y2, then, given k ∈ R, k , 0, the function fk(t) = (y2−y1)1k(t)+y1,

being

1k(t) =
ekt
− ekc1

ekc2 − ekc1
,∀t ∈ R,
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satisfies fk(c1) = y1, fk(c2) = y2 –of course this is also true if y1 < y2.
So far we have seen that for each k ∈ R\{0} there is a function fk satisfying fk(c1) = y1 and fk(c2) = y2.

Now, taking c3 > c2, we shall prove that there exists an unique k satisfying fk(ci) = yi for i = 1, 2 and 3.
Let us see what happens with fk(c3) as we vary k. It is clear that the function

(−∞, 0) ∪ (0,∞) 3 k 7→ fk(c3) ∈ (−∞, y2)

is continuous. So, we must compute the limits of fk(c3) when k→ −∞, k→ 0−, k→ 0+ and k→∞.
Since c1 < c2 < c3, it is clear that 1k(c3) goes to infinity when k → ∞. As y2 < y1, this means that

fk(c3)→ −∞.
It is also clear that 1k(c3)→ 1 when k→ −∞, so fk(c3)→ y2.
For k→ 0, the limit of 1k(c3) can be easily computed via the L’Hôpital’s rule to get

lim
k→0
1k(c3) = lim

k→0

ekc3 − ekc1

ekc2 − ekc1
= lim

k→0

c3ekc3 − c1ekc1

c2ekc2 − c1ekc1
=

c3 − c1

c2 − c1

and this implies that

lim
k→0

fk(c3) =
(y2 − y1)(c3 − c1)

c2 − c1
+ y1.

So, the function φ : R→ (−∞, y2) defined as

k 7→ φ(k) =

 fk(c3), for k , 0
(y2 − y1)(c3 − c1)/(c2 − c1) + y1, for k = 0

is continuous; and, by the previous corollary, it is also injective. As φ(k) tends to −∞ when k → ∞ and to
y2 when k→ −∞, this implies that it is strictly decreasing. Therefore, for each y3 ∈ (−∞, y2) there is exactly
one k ∈ R such that φ(k) = y3. Besides,

y2 − y1

c2 − c1
=

y3 − y1

c3 − c1
⇔ y3 =

(y2 − y1)(c3 − c1)
c2 − c1

+ y1 = φ(0),

so for c1, c2, c3, y1, y2 and y3 satisfying the hypotheses there exist unique a, b and k such that

aekci + b = yi for i ∈ {1, 2, 3}

and this ends the proof.

In order to prove thatE∞ is a quasiconvex function, we will show that for every k1 < k2 < k3 < 0, if F̃k1 and
F̃k3 are the functions determined byFk1 andFk3 , respectively, then we can find (a2ek2t1 +b2, · · · , a2ek2tn +b2) ∈ Gk2

such that, for every ti ∈ {t1, · · · , tn},

|a2ek2ti + b2 − Ti| ≤ max{|F̃k1 (ti) − Ti|, |F̃k3 (ti) − Ti|} ≤ max{E∞(k1),E∞(k3)} (2)

is satisfied and, therefore,

‖(a2ek2t1 + b2, · · · , a2ek2tn + b2) − (T1, · · · ,Tn)‖∞ ≤ max{E∞(k1),E∞(k3)}.

Hence, as

E∞(k2) ≤ ‖(a2ek2t1 + b2, · · · , a2ek2tn + b2) − T‖∞

is ensured, mixing both inequalities we get

E∞(k2) ≤ max{E∞(k1),E∞(k3)}, (3)
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i.e., E∞ is a quasiconvex function.
By Lemma 2.9, F̃k1 and F̃k3 agree at most in 2 points, so we will study separately what happens if F̃k1

and F̃k3 agree each other 0, 1 or 2 times. We will show that (2), and so (3), hold in every case.
Before, we shall explicit a result that ensures that a function lying between two other functions is always

a better approximation than the worst of them:

Lemma 2.11. Let be c1 ≤ c2 ≤ c3 ∈ R. Then,

|c2 − α| ≤ max{|c1 − α|, |c3 − α|},∀α ∈ R.

Moreover, if both inequalities are strict, then the last is, too.

Proof. If α ≤ c2, then

|c2 − α| = c2 − α ≤ c3 − α = |c3 − α| ≤ max{|c1 − α|, |c3 − α|}.

If α > c2, then |c2 − α| = α − c2 ≤ α − c1 = |c1 − α| ≤ max{|c1 − α|, |c3 − α|}, too. Hence, in every possible case,
the result holds. As for the moreover part, if c1 < c2 < c3, then c2 − α < c3 − α and α − c2 < α − c1, and this
implies |c2 − α| < max{|c1 − α|, |c3 − α|}.

Corollary 2.12. Let f1, f2 and f3 be such that min{ f1(t), f3(t)} ≤ f2(t) ≤ max{ f1(t), f3(t)} for every t ∈ R. Then

‖(T1 − f2(t1), . . . ,Tn − f2(tn))‖∞ ≤ max{‖(T1 − f1(t1), . . . ,Tn − f1(tn))‖∞, ‖(T1 − f3(t1), . . . ,Tn − f3(tn))‖∞}

for every (T1, . . . ,Tn), (t1, . . . , tn) ∈ Rn.

Proof. It is straightforward from the above lemma.

Proposition 2.13. Let k1 < k2 < k3 < 0 and F̃k1 , F̃k3 be the functions determined by the best approximations for k1

and k3. Then, there exist a2, b2 such that min{F̃k1 (t), F̃k3 (t)} ≤ a2 exp(k2t) + b2 ≤ max{F̃k1 (t), F̃k3 (t)} for every t ∈ R.

Before the proof, we will explicit this consequence:

Corollary 2.14. If k1 < k2 < k3 < 0, then

E∞(k2) < max{E∞(k1),E∞(k3)}.

Proof. [Proof of the corollary] Let f2(t) = a2 exp(k2t) + b2 be such that

inf{F̃k1 , F̃k3 } ≤ f2 ≤ sup{F̃k1 , F̃k3 }

and suppose E∞(k3) ≥ E∞(k1). As f2 and F̃k3 are different exponentials, Corollary 2.9 ensures that they agree
at most in two points. By Corollary 2.12, this implies that | f2(ti) − Ti| ≤ E∞(k3) for every i = 1, . . . ,n, with
equality in at most two points. But Proposition 2.3 ensures that |F̃k2 (ti) − Ti| = ‖(F̃k2 (t1) − T1), . . . , (F̃k2 (tn) −
Tn)‖∞ = E∞(k2) at least at three points, so it is clear that E∞(k2) , E∞(k3). As E∞(k2) ≤ ‖( f2(t1)−T1, . . . , f2(tn)−
Tn)‖∞ ≤ E∞(k3), we are done.

Remark 2.15. This is the other great advantage of using ‖ · ‖∞ instead of ‖ · ‖2. When using the Euclidean norm,
we have not been able to find conditions in T ensuring that a function between two other functions will be a better
approximation than any of them.

2.3. Proof of Proposition 2.13
We will split the proof of the proposition into some steps: 1.- Two cuts; 2.- One cut. Limiting case and

3.- One cut. Genuine case.
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2.3.1. Two cuts
Let c1 < c2 be such that F̃k1 (c1) = F̃k3 (c1) and F̃k1 (c2) = F̃k3 (c2).
Consider k1 < k2 < k3 < 0 and f2(t) = a2 exp(k2t) + b2 as is the beginning of the proof of Lemma 2.10, i.e.,

such that f2(c1) = F̃k1 (c1), f2(c2) = F̃k1 (c2).
As all three functions are different, Corollary 2.9 ensures that there are no more points where any

couple of them agree and, moreover, that they are not tangent neither in c1 nor in c2. It is pretty clear that
all three functions are strictly increasing or strictly decreasing, so we have only two possibilities: either
a1, a2, a3 ∈ (−∞, 0) or a1, a2, a3 ∈ (0,∞). It is readily seen that in the first case t→∞ implies f1(t) > f2(t) > f3(t)
and in the second case we just need to let t tend to −∞ to have f1(t) < f2(t) < f3(t), so in both cases there are
points where min{ f1(t), f3(t)} < f2(t) < max{ f1(t), f3(t)}.

As they are not tangent, f1 − f2 and f3 − f2 change their signs at both c1 and c2, and this means that
min{ f1(t), f3(t)} < f2(t) < max{ f1(t), f3(t)} for every t < {c1, c2}.

One Cut
Let us assume F̃k1 ≡ a1ek1t + b1 and F̃k3 ≡ a3ek3t + b3 coincide just in s1 ∈ R.
With a1, a3 > 0, and for small enough t, F̃k1 (t) > F̃k3 (t). The other cases are analogous. Since they coincide

in a single point, s1, F̃k1 (t) > F̃k3 (t) ∀ t < s1, and then it must be one of this two possible situations:

F̃k1 (t) > F̃k3 (t), t ∈ (s1,∞) (4)

or

F̃k1 (t) < F̃k3 (t), t ∈ (s1,∞) (5)

2.3.2. One Cut. Limiting Case
This case refers to the situation described in (4). We will show that this cannot happen by means of the

following

Lemma 2.16. Let F̃k1 , F̃k3 be the best approximations for k1 < k3 < 0. Then, there exist s1, s2 ∈ R such that
F̃k1 (s1) > F̃k3 (s1) and F̃k1 (s2) < F̃k3 (s2).

Proof. Suppose on the contrary that F̃k1 (t) ≥ F̃k3 (t) for every real t. Then, both functions can agree at
most at just one point. Indeed, it they agree at two points then they have to be tangent at both, and this
implies, by Corollary 2.9, that they are the same function. By Claim 2.3, there exist i, j ∈ {1, . . . ,n} such
that Ti = F̃k1 (ti) + E∞(k1) and T j = F̃k3 (t j) − E∞(k3). So, as F̃k1 (t) ≥ F̃k3 (t), we have Ti − F̃k3 (ti) ≥ E∞(k1)
and T j − F̃k1 (t j) ≤ −E∞(k3) and at least one of the inequalities is strict because F̃k1 (t) = F̃k3 (t) for at most
one t. Of course, E∞(k3) ≥ Ti − F̃k3 (ti) and −E∞(k1) ≤ T j − F̃k1 (t j). Mixing all the inequalities, we obtain
E∞(k3) ≥ E∞(k1),−E∞(k1) ≤ −E∞(k3). Since at least one of the inequalities is strict, we have a contradiction
that finishes the proof.

2.3.3. One Cut. Genuine Case
Suppose we are in the situation described by (5). Assume a1, a3 > 0, the other cases are analogous. With

this assumption, the last inequality ensures b1 ≤ b3. We are going to find a2 ∈ R+ and b2 ∈ R such that the
function a2ek2t + b2 agrees with F̃k1 and F̃k3 in s1 and remains between them.

Considering b2 = (b1 + b3)/2, a2 must satisfy

a2ek2s1 + b2 = a3ek3s1 + b3,

and this implies that for small enough t,

a1ek1t + b1 > a2ek2t + b2 > a3ek3t + b3.
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Now, we have to guarantee a1ek1t + b1 < a2ek2t + b2 < a3ek3t + b3 for big enough t, no matter whether b1 = b3
or b1 < b3. Please observe that this would be enough for ending the proof. For b1 < b3, the inequality is
obvious, so we suppose b1 = b3. Thus, b1, b2 and b3 agree and, therefore,

a1ek1t + b1 < a2ek2t + b2 ⇔ a1e(k1−k2)t < a2

and

a2ek2t + b2 < a3ek3t + b3 ⇔ a2e(k2−k3)t < a3.

Both couples of equivalent inequalities are true for big enough t since a1, a2 and a3 are strictly positive and

lim
t→∞

e(k1−k2)t = lim
t→∞

e(k2−k3)t = 0.

So, we have finished the proof of Proposition 2.13 since Lemma 2.16 rules out the no-cut situation.

2.4. Main Result

It is time to state properly what we have:

Theorem 2.17. Let us consider T = (T1, . . . ,Tn) ∈ Rn, t1 < · · · < tn ∈ R. Then, E∞ is a quasiconvex function.
Moreover, if T does not have a maximum between two minima nor a minimum between two maxima, then E∞ is
strictly quasiconvex.

Please recall that, as defined in the first part of this paper (see the begining of this section and the Intro-
duction), E∞ : (−∞, 0)→ [0,∞) is the function mapping k to ‖Fk − T‖∞, where Fk is the best approximation
to T in the plane Gk = 〈(1, . . . , 1), (exp(kt1), . . . , exp(ktn))〉.

Proof. Actually, the proof of this result is this section. As it was indicated in Remark 2.4, when T has
two indices where the maximum (or the minimum) is attained, and some minimum (resp. maximum) is
between two maxima (resp. minima) then the best approximation for each k will be a constant, and always
the same constant. Therefore, in this case, E∞ will be a constant function, in particular a quasiconvex
function. In any other case, note that strict quasiconvexity of E∞ is an immediate consequence of Corollary
2.14. Therefore, the result is proved.

Once we have seen that E∞ is quasiconvex, we must analyse the consequences of this. Please recall that
we are assuming that T is not weird, so E∞ is strictly quasiconvex. As seen in [3, p. 128], there are three
options for E∞. Namely:
1.- It is decreasing; 2.- It is increasing and 3.- There is k0 ∈ (−∞, 0) such that E∞ decreases on (−∞, k0) and
increases on (k0, 0).

Of course, if the third case holds then k0 is the point where the minimum is attained and this means that
there is a best approximation λ1 exp(k0t) +λ2. Let us see, in a somehow loose way, the meaning of the other
two cases.

Case 1: If E∞ is decreasing, then the approximations Fk = ak exp(kt) + bk are better as we let k tend to
0. As the slopes of all Fk must be bounded in the interval [t1, tn], akk must be also bounded, so the second
derivative of Fk tends to 0 uniformly in [t1, tn]. This means that the limit of Fk is a line a0t + b0, that must be
a better approximation than any exponential. Then, the point T we are trying to approximate must have a
pretty strange form: there must exist i1 < i2 < i3 < i4 such that

Ti1 − (a0ti1 +b0) = a0ti2 +b0−Ti2 = Ti3 − (a0ti3 +b0) = a0ti4 +b0−Ti4 = ±‖T1− (a0t1 +b0), . . . ,Tn− (a0tn +b0)‖∞.

It is pretty clear that, for T, a0 and b0 fulfilling the above, there is no convex or concave function that
approximates T better than a0t + b0. On the other hand, if there are just three indices that fulfill the above
equality, then there will be an exponential closer to T than a0t + b0, as long as a0 , 0.
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Case 2: If E∞ is increasing, then the best approximation would, say, lie at k = −∞. This is what happens
if T1 = max{T1, . . . ,Tn} and T2 = min{T1, . . . ,Tn}. In this case, with Ti = max{T2, . . . ,Tn}, the vector

(T1, (T2 + Ti)/2, (T2 + Ti)/2, . . . , (T2 + Ti)/2)

is closer to T than any possible approximation, and it is the limit, as k→ −∞, of the evaluations in t1, . . . , tn
of some exponentials. Namely, suppose that t1 = 0. Then, the limit of (T1 − (T2 + Ti)/2) exp(kt j) + (T2 + Ti)/2,
as k goes to −∞, is T1 if j = 1 and (T2 + Ti)/2 for every j > 1.

This kind of limit will be a best approximation when T1 = max{T1, . . . ,Tn} and also there exist some i < j
such that both Ti = min{T1, . . . ,Tn} and T j = max{T2, . . . ,Tn} are fulfilled.

Now, we are in conditions, finally, to put in order everything we know about how the behaviour of E∞
depends on T. Let M = max{T1, . . . ,Tn} and m = min{T1, . . . ,Tn}:

1. If T has a minimum between two maxima (or a maximum between two minima), then the best
approximation for every k is a constant. Namely, it is (m + M)/2.

2. If T1 = M and M2 = max{T2, . . . ,Tn} < M is attained after some minimum, then the best approximation
does not exist, but the best approximations tend to (M, (M2 + m)/2, (M2 + m)/2, . . . , (M2 + m)/2) as
k→ −∞.

3. If there are some a0, b0 ∈ R, i1 < i2 < i3 < i4 ∈ {1, . . . ,n} such that

Ti1−(a0ti1 +b0) = a0ti2 +b0−Ti2 = Ti3−(a0ti3 +b0) = a0ti4 +b0−Ti4 = ±‖T1−(a0t1+b0), . . . ,Tn−(a0tn+b0)‖∞,

then the best approximation does not exist, but the best approximations improve as k → 0 and they
approach (a0t1 + b0, . . . , a0tn + b0).

4. In any other case, there exists k such that Fk is the (unique) best possible approximation.

3. TAC’s Flowchart

Once the quasiconvex character of function E∞ has been proven, we can propose an algorithm to
estimate the minimum of this function by sampling it. The convergence of this kind of algorithm is
guaranteed for any non monotonic quasiconvex function. However, we wish to extend the use of this
algorithm to quasiconvexish functions, that is, functions that, not being quasiconvex, behave as follows: the
absolute minimum is considerably lower than all the relative ones and, also, the fall into and rise from the
absolute minimum take long enough. This behaviour allows us to detect the interval where the absolute
minimum lies simply by sampling the function within reason. In this sense, what we will need is the
absolute minimum to be deep and wide enough. Think about a doodle like the one in Figure 1. Even

Figure 1: An idea of quasiconvexish

though it could never be the graph of a quasiconvex function, the absolute minimum is deep and wide
enough. This situation can be observed, for example, while fitting data stemming from trigonometric
functions.



J. A. F. Torvisco et al. / Filomat 32:12 (2018), 4233–4248 4243

It is obvious that we can not ensure the convergence of the algorithm in every possible situation.
Actually, it could be quite easy to find functions where the algorithm does not work properly, due to the
impossibility to guarantee that a reasonable a priori sample will include points in the interval where the
function falls into and raises from the absolute minimun. That’s why the strict quasiconvex character is
imperative to ensure the algorithm’s convergence. Nevertheless, the algorithm we propose is designed
to find, or more precisely to bound, the absolute minimum of quasiconvexish functions. The algorithm
proposed here is shown in Figure 2.

a = a0, b = b0 interval
m mesh of the partition
k̄ optimal k. Init with 0

α stop condition

read data which will be fitted

[a, b] Sm = {0, · · · ,m}
k = {a + i b−a

m : i ∈ Sm}

Ω = {E(ki) : i ∈ Sm}

J = i ∈ Sm : E(ki) = min(Ω)

|k̄ − kJ | > α
i1 = max{J − 1, 0}
i2 = min{J + 1,m}

a = ki1, b = ki2 and k̄ = kJ

write file containing results

stop

true

false

Figure 2: The simplest TAC’s Flowchart.

In Subsection 3.1 we fit a data set stemming from the function (6) by means of the pattern (7), establishing
the mesh of the partition as 10. These considerations are also good for Section 4; where another data set
has been fitted by the same pattern but, in this case, different mesh partitions were used in order to check
the method stability: 10, 20, 30, 40 and 50. In Section 5 we use TAC to fit a series of data sets by means
of the pattern (8), establishing the mesh partition as 10, and also fitting a noisy data set with pattern (9),
establishing in this case different mesh partitions in order to check, again, the method stability: 5, 10 and
15. To use TAC with the patterns of Section 5 it is neccessary to sample, instead of a real interval, convex
subsets in R2 or R4, respectively.

3.1. The Obviousness
In this subsection we are going to verify that TAC accomplish the most elemental task. In other words,

when sampling a function

f (t) = λ1ekt + λ2, (6)

TAC must find f .
In this case the Euclidean norm will be used instead of the max-norm; although the convergence of the

algorithm is not ensured. The reason is that the calculations are much simpler due to the possibility of using
equations (1) to obtain the value of λ1 and λ2 for each k. This change will remain in following examples,
stretching in that way the use of the algorithm beyond its proven convergence conditions.
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Let us choose

f (t) = 6.87654321 e−1.12345678t + 2.11223344.

The function f will be sampled in t ∈ {1, . . . , 1000}. The constant k is to be seek in the interval [−10,−10−9]
and the stop condition for TAC is set as α = 10−9.

The results corresponding to this implementation of TAC are shown in Table 1.

Divisions CPU Time k λ1 λ2 RSS MSE
(in seconds)

10 0.02659 −1.12345678027 6.87654321210 2.11223344000 3.00986e − 39 3.00986e − 42

Table 1: Result of implementation of TAC. RSS =
∑n

i=1(Ti − Fk(ti))2, being n = 1000 the number of observa-
tions and MSE = RSS/n.

It is quite obvious that TAC finds f according to stop condition imposed on k. The calculations in this
section, along with the ones in the two following sections were carried out by means of a GNU Octave using
an Intel Core i7-2600 3.4GHz Quad-Core processor with 4GB of RAM. The system used is an elementary
OS 0.4.1 Loki (64-bit) based on a Ubuntu 16.04.3 LTS with a Linux kernel 4.4.0-93-generic.

4. Fitting Exponential Decay in a Newton’s Law of Cooling Process

The aim of this section is to show the implementation of TAC in a well known process. Consider a
device submerging in the ocean to determine the immediate water temperature at some point. During the
manoeuvre the sensor is recording the temperature as programmed. Since, usually, initial temperatures of
the device and the water are different, the data show how thermometer and water achieve thermal balance.
This behaviour is usually referred to as Newton’s law of cooling. According to this law, the rate at which
a body cools is proportional to the difference between the temperature of the body and the temperature
of the surrounding medium; see, for example, [13, p. 21]. In other words, the time evolution of body’s
temperature is a solution of an ordinary differential equation, a homogeneous linear one; and therefore it
must be an exponential function as follows

P(t) = λ1ekt + λ2, (7)

where λ1 and λ2 ∈ R and, in this case, k < 0.
The data considered in this section were obtained during the Spanish Antarctic campaign in the Antarctic

summer 2012. We implement the algorithm in order to fit, by a pattern as (7), the records obtained by the
device. This is the way we propose to estimate the water’s temperature at the instant which the device
was introduced in. In this application, the estimation of water’s temperature would be λ2. The results
corresponding to this implementation of TAC are gathered in Table 2. A wide interval, [−10,−10−9],
containing k will be considered. The stop condition of TAC will be fixed at α = 10−9.

See Figure 3 for some significant aspect of this implementation.

5. Fitting Biexponential Decays in Stress Relaxation on Living Cells

Stress relaxation experiments are widely spread in the study of the viscoelastic mechanical properties of
soft matter, such as cells, polymer brushes, vesicles. . . Indentation experiments are carried out by scanning
probe microscopes, e.g., Atomic Force Microscopes. The tip of that microscope is placed in contact with the
sample at a constant height and, if the sample shows a viscoelastic behaviour, an exponential decay of the
needed force to keep the tip in the same place is observed, provided the contact area remains constant.
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Divisions CPU Time k λ1 λ2 RSS MSE
(in seconds)

10 0.0718 −0.0027323255878 5.839341497 −1.3650697701 7.63101355666 0.00139992910597
20 0.1137 −0.0027323254186 5.839341344 −1.3650697841 7.63101355667 0.00139992910597
30 0.1191 −0.0027323254987 5.839341416 −1.3650697775 7.63101355666 0.00139992910597
40 0.1398 −0.0027323255060 5.839341423 −1.3650697769 7.63101355666 0.00139992910597
50 0.1415 −0.0027323256495 5.839341553 −1.3650697650 7.63101355668 0.00139992910597

Table 2: Result of implementation of TAC. RSS =
∑n

i=1(Ti − Fk(ti))2, being n = 5451 the number of observa-
tions and MSE = RSS/n.
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Figure 3: Some graphical aspects about this TAC implementation. In the numerical analysis bibliography,
relative error is defined with or without sign; in this paper we will consider the latter. A spike can be seen
in the small window of Figure 3b. This spike should not be considered as an indicator of a poor adjustment
of the curve to the data. On the contrary: the spike is due to the proximity of the data to zero and, however,
the error remains bounded. This is because curve and data are close enough to control the fact that we are
virtually dividing by zero.

In some studies, see [10, p. 3], when the sample is formed by two materials with different (visco-)elastic
properties, the force decay can be modelled by a double exponential decay in the form

P(t) = λ1ek1t + λ2ek2t + λ3, (8)
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being real all the parameters and k1, k2 < 0.
We will show two different implementations. The first one, included for demonstration purposes only,

is constituted by Table 3. This table shows the behaviour of TAC fitting curves corresponding to the first
5 of the 14 examples that can be found in [1]. A huge interval, [−20,−10−6], containing k1 and k2 will be
considered; 10 will be chosen as the default mesh partition and the stop condition in this case will be fixed
at α = 10−6. The point of this table is to allow the reader to compare TAC against a widely known and
used algorithm: the Levenberg-Marquardt algorithm, taking in mind that we do not need to initialize any
variable whatsoever.

k1 k2 λ1 λ2 λ3 SSR MSE

−4.7832922 −0.3521602 1.6849216e − 10 1.3747312e − 10 6.5258959e − 10 7.0319408e − 20 3.4352422e − 23
−2.2501220 −0.0154859 1.7351215e − 10 6.0038892e − 10 1.7367841e − 10 1.0648907e − 19 5.2022018e − 23
−4.1127733 −0.1999089 1.5888120e − 10 1.2906191e − 10 6.7388509e − 10 7.8436193e − 20 3.8317632e − 23
−6.6396453 −0.3583037 1.5563740e − 10 1.4391666e − 10 6.5265553e − 10 7.6892152e − 20 3.7563337e − 23
−4.9698671 −0.3825276 1.6264867e − 10 1.2442707e − 10 6.5888391e − 10 7.6859116e − 20 3.7547199e − 23

Table 3: Parameters gathered in this table correspond to the biexponential decay of pattern (8). Time of
CPU processing is between 1.96 and 1.98 seconds for each curve.

We will go further in a second implementation, fitting data obtained in an experiment developed at
the Institute for Biophysics, of the University of Natural Resources and Life Sciences (BOKU-Wien). These
records present, not only a biexponential decay, but also some periodic signals which are probably due to
the oscillations of the microscope’s cantilever as a consequence of electronic noise. The pattern considered
in this case is

P(t) = λ1ek1t + λ2ek2t + λ3 + β1 sin(µ1t) + β2 cos(µ1t) + β3 sin(µ2t) + β4 cos(µ2t), (9)

being real every parameter, k1, k2 < 0 and µ1, µ2 > 0.
We have chosen [−20,−10−6] as the interval where k1 and k2 can be found, [10−6, 10] as the interval

where µ1 and µ2 can be found and fixed α = 10−6 as the algorithm’s stop condition. Resaults of TAC’s
implementation for 5, 10 and 15 divisions can be found in tables 4, 5 and 6.

Note that, as in previous section, we are going beyond of our knowledge about the convergence of this
algorithm in order to obtain evidences about its robustness. In this case the function E2 exhibits a deep and
wide enough absolute minimun allowing the algorithm to work properly; even though the quasiconvexity
of E2 is not guaranteed. These characteristics of this minimum are the key of its robustness.

To close, note that Figure 4 shows some relevant aspects about this implementation.

6. Final Remarks

Please observe that, allowing k to range over (0,∞), we may apply verbatim everything we have done
to the study of the remaining exponential evolutions. It would be more than welcome any hint about the
conditions T must fulfill to ensure the quasiconvexity of E2. It is not too hard to adapt these methods to
weighted norms, but every calculation must be carried out with care.
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Figure 4: A word to the wise: don’t miss the white line and the spikes . . . Figure 4b shows that the relative
errors are mostly around zero, although some spikes appear. These are numerous since the observations
are quite noisy and many of them are close to zero. Even in this scenario, the spikes remain bounded, as
far as we can tell, for the same reasons as in Figure 3.

Divisions CPU Time k1 k2 λ1 λ2 λ3
(in seconds)

5 135.93 −4.9611570 −1.0005773e − 06 1.7071912e − 10 7.3616932e − 06 −7.3617394e − 06
10 2370.45 −17.7513354 −1.6802928 9.2406742e − 11 1.5523536e − 10 −9.4023128e − 11
15 12213.18 −17.7513259 −1.6802933 9.2406730e − 11 1.5523535e − 10 −9.4023128e − 11

Table 4: Parameters gathered in this table correspond to the biexponential decay of pattern (9).

Divisions µ1 µ2 β1 β2 β3 β4

5 2.1297350 10 5.9826879e − 12 −7.6271944e − 12 −3.0835996e − 12 2.0909088e − 12
10 0.4874903 2.2811038 2.5556496e − 11 −2.5090025e − 12 −3.6852033e − 12 −9.4834037e − 12
15 0.4874902 2.2811036 2.5556499e − 11 −2.5089862e − 12 −3.6851942e − 12 −9.4834075e − 12

Table 5: Parameters gathered in this table correspond to the oscilatory part in pattern (9)

Divisions SSR MSE

5 2.5877776e − 17 1.2636250e − 21
10 2.5466615e − 17 1.2435478e − 21
15 2.5466615e − 17 1.2435478e − 21

Table 6: As in Table 2, RSS =
∑n

i=1(Ti−Fk(ti))2, being n = 20479 the number of observations and MSE = RSS/n.
TAC seems to be stabilized when taking 10 or greater as the default mesh partition.

It is a pleasure to thank the editor as well as the referee for his/her accurate comments that have led to a
more readable paper.
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