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Abstract. In the present paper we introduce the Durrmeyer type modification of Stancu operators based
on Poélya-Eggenberger distribution. For these new operators some indispensable auxiliary results are
established in the second section. Our further study focuses on a Voronovskaja type asymptotic formula
and some estimates of the rate of approximation involving modulus of smoothness, respectively Ditzian-
Totik modulus of smoothness. The rate of convergence for differential functions whose derivatives are of
bounded variation is also obtained.

1. Introduction

In 1923, Eggenberger and Pélya [11] devised the original Pélya-Eggenberger urn model (usually sim-
plified as Pélya urn) to study processes such as the spread of contagious diseases. In one of its simplest
form, the Pélya-Eggenberger urn model contains w white balls and b black balls. A ball is drawn at random
and then replaced together with s balls of the same color. This procedure is repeated n times and noting
the distribution of the random variable X representing the number of times a white ball is drawn. The
distribution of X is given by

Pr(sz)z(n)w(w+s)'""(w+ms)b(b+5)'---'(b+n—k—1_s)/

k 1)

W+b)(wW+b+5)-...-(w+b+n—1s)

fork=0,1,--- ,nand k — 1s = (k—1)s. The distribution (1) is known as Pélya-Eggenberger distribution with
parameters (1, w, b, s) and contains binomial, respectively hypergeometric distribution as particular cases.

Based on Pélya-Eggenberger distribution (1), Stancu [21] introduced a new class of positive linear
operators associated to a real-valued function f : [0,1] — R, given by

Z(n) TS0+ va) T ' (1 = x + pay) (5) -

Wy = N el (K =
Pn (f/x)_;pn,k(x)f(n)_kzo k (1+a)(1+2a)...(1+(n—1)a) n
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where p% are the fundamental Stancu polynomials and «a is a non-negative parameter which may depend

only on the natural number n. In the case when o = 0 operators (2) reduce, obviously, to the original
Bernstein operators [4] and for @ = 1 we get a special case

n n k-1 n—k-1
A = 3t fhor ()= 30 2 (1) o+ T] - () @
k=0 " k=0 v=0 ©=0

introduced by Lupas and Lupas [15]. Concerning the operators (2) and (3), the reader is invited to see two
recent papers [16], [17], where some results of the recalled operators are revised. Taking into account the
period in which the Stancu operators (2) were introduced, we remark that there exists a huge interest to
study them, respectively generalizations of them until nowadays. Some representative examples in this
sense could be the papers of Razi [20], Finta [9], [10], Wang et al. [22], Abel et al. [1], Agrawal et al. [2], [3],
Gupta et al. [13], [5], [14] and Deo et al [6].

Denote by Lg[0, 1] the space of bounded Lebesgue integrable functions on [0, 1] and by I1, the space of
polynomials of degree at most n € IN. In 2007, Paltdnea [19] has introduced the following class of operators
Uy : Lp[0,1] — IT,, given by

n

n—-1
Unp(f52) = ) pusIFT () = (1= )" f(0) + X" f(1) + ) pus() ( fo
k=1

k=0

1 tkp_l(l _ t)(n—k)p—l
B(kp, (n = k)p)

f (f)dt) / (4)

where p > 0, p,c(x) = (})x*(1 — x)"* are the well-known Bernstein’s fundamental polynomials and B(x, y) =

f01 t1(1 - t)¥71, for x, y > 0 is Euler’s Beta function. Further investigations concerning a recursion formula
of the moments and estimates for simultaneous approximation of derivatives for the presented operators
(4) were made by Gonska and Paltdnea [12]. The authors showed that operators U, ,f constitute a link
between the well-known Bernstein operators and their genuine Bernstein-Durrmeyer variants.

Inspired by the above two articles, we introduce the Stancu-Durrmeyer type operators U,[ffg 1 Lg[0,1] —
I1,, defined by

U (fi0 =Y Pl ()
k=0

_ y\[n—al [n,-al n-1 1 4kp—1(1 _ p\(1—k)p—
_A-9"f0) | x : _fa](l) s prﬁ @ ( fo $ho=1(1 — (=R 1f(t)dt , -
k=1

1ln=al [, B(kp, (n — k)p)

where p >0, PE,%,E(X) = () = xF 7211 — x)l"* =41 are the well-known Stancu’s fundamental polynomials and

i = ¢t —h) - ... (t — (n — 1)h) is the nth factorial power of t with increment h.

The aim of this paper is to introduce a new Durrmeyer type modification of Stancu operators based
on Pélya-Eggenberger distribution. For these new operators some indispensable auxiliary results are
established in the second section. Our further study focuses on the qualitative part of these new operators
involving the uniform convergence and asymptotic behavior. In order to get the degree of approximation,
some quantitative theorems will be established.

2. Auxiliary Results

Let IN be the set of positive integers and Ny = IN U {0}. The monomials e;(x) = xk, for k € Ny called also
test functions play an important role in uniform approximation by linear positive operators. In order to
determine the images of the monomials by the Stancu-Durrmeyer type operators (5) we present a useful
form of these operators.
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Lemma 2.1. Forp >0, a > 0and x € (0, 1), we get

1
U (f;x) = mfo U1 = )5 U, (f; Bt

where Uy, f are defined at (4).

Proof. Using the relationship between Euler’s functions

T')C(y)

By = I(x+y)’

where I'(r) is Gamma function defined by I'(r) = fooo u e tdu, r>0,with[(r+n) = r(r+1)-...-(r+n-1)I(r),
for n € N, then it follows

_ Lrk)T(E2+n-k -1 _
B 4k F k)= G+Rr(s )zp}f;(x)(”) B(%,125).
a a r(%Jrn) ANk a’ a
Hence
-1
=l 52 s e 52 en
Pui®) (k)Ba' o Ba+' o
and
[a] o (n\B(E KT +n-k) 1 " ot (-k)p-1
W (f;x) = () fs (1 =) f(s)ds
ol e~ \k B(ﬁ,%) B(kp, (n = k)p) Jo /
B(%, 2 +n B(2+n, 12
+ & L )f(0)+ & 1_“)f(1)
B(3 2 B(3 )

N

n-1 1
1 X 1-x
= patk=l(] — T k=l —f kp=1 (n=Rp=1 £(5)d.
BGA%)hXJl: - Blkp, (1~ p) TS

1 1
+f(0)j; pl 1 =gt +f(1)f(; 1] — t)l;x‘ldt)

1
- ;f 711 = U, (f; Dt
0

B(3 1)
O

Below, we present four results involving Stancu-Durrmeyer type operators (5) without proof, because
for obtaining them we have to do only mechanical work. The images of the test functions ex(x) = x, for
k € INg by operators (5) are given in the following

Lemma 2.2. For the Stancu-Durrmeyer type operators it holds that

a N . a o x¥?p(n-1) x(1+a+p+nap) |
U =1 Uy =5 UikexX) = fraims + et
u[a] LN (n-1)(n-2)x°p? 3(n-1)(1+p+a+np)p | ((1+p)(2+p)+3a(1+p)2+np)+2a2(1+np)2+np))x
(€3;,X) = T T Graar20imp ) (Tra)(Tr2a)(I+np)@+p) ;
u[a] (64' X) _ (n-1)(n-2)(n=3)x*p> 6(n—1)(n—2)(1+p+a(3+np))x°p?

(T+a)(T+2a)(1+3a)(A+1p)2+1p) 3+np) + (T+a)(T+2a)(1+3a) (1+np)2+1p)3+np)
(n 1)(11(1+a(5+6a))+18(1+3a)(1+na)p+(1+na)(7+(11n-1)a)p? )x?p
(I+a)(1+2a)(1+3a)(1+np)(2+np)(3+np)
(6(1+a)(1+2a) 1+3a)+11(1+na)(1+a(5+6a)) p+6(1+3a)(1+na)(1+2na) p? +(1+na)(1+a(6n(1+na)-1)) )xp
(T+a)(T+2a)(1+3a)(A+np)2+1p) B+np)
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In order to compute the central moments of the operators (5), for brevity we will write in the sequel

M,[fg,,(x) = U,[q‘f[l ((e1 —x)";x), wheren > 1,r > 0and x € [0, 1].

Lemma 2.3. For the Stancu-Durrmeyer type operators it holds that
0 1 )x(1—
MLa] 1(X) =0; M[ 1] (x) — (I+a+p+nap)x( x);

.0, n,p,2 (1+a)(1+np)
M[a] 3¢ (2a(1+p)((n—4)p-6)(3+np)+a?((n—12)p—11)(2+np)(3+1p)—6a> (1+1np)(2+np)B+np)+(1+p)(—6+p(n—6+(n—2)p)))
n,p,4(x) = A+a)(1+20)(1+3a)(1+1p)@+1p) B+1p)

623 (6(1+a)(1+2a)(1+3a) +(1+a(5+6a))(12+n(11a-1)) p+2(1+3a) (1+na)(d-+n(6a—1)) p*+(1+na)2+n(6a-1)(1+na))p*)
+ Tra)(Lr2a) (Lt 3a) (Lt np) Zrnp)BHp)
22 (24(1+)(1420)(1430)+ (1+a(5+60))(47-+n(44a—3))p+6(1+3a) (1+10) -+ (8a—1)p+(1+na)(7—a-+3nBa—1)(1-+na))p*)
(1+a)(1+2a)(1+3a)(1+np)(2+np)(3+np)
x(6(1+a)(1+2a)(1+3ar)+11(1+na)(1+a(5+6a))p+6(1+3a)(1+na)(1+2na)p2+(1+na)(1+a(—1+6n(1+na)))p3)
+ Tra)(L+2a) (L1 3a) (Lt np) 2 np) 3 H1ip) :

Lemma 2.4. For any n € IN, we can write

CL“] x(1-1x)

Mya() = Uip(ler = x)%53) < =0

P

4

where C[Pa] is a positive constant depending on p and a.
We recall that « is a non-negative parameter which may depend only on the natural number 7.

Lemma 2.5. Ifa — 0asn — oo and lim na = c € R, then

n—oo

; [a] —
M, 0 =0

1+p+ 1-
fim - M) = SO,

lim o2 M () = x*3B+3pQ2+ p +2c(1+ p +cp))) ~ 6x3(1 + p + cp)? N 321+ p)1+p+ 2cp).
n,p4 p2 p2 p2

3. Main Results

Our further studies focus on the qualitative part of Stancu-Durrmeyer type operators, involving the
uniform convergence and asymptotic behaviors.

Theorem 3.1. Let f € C[0,1] and « be a non-negative parameter which may depend on n € IN, with « — 0 as
a]

n — oo, then lim UL,p(f; x) = f(x) uniformly on [0, 1].
n—oo

Proof. Since U]

W12 = 1, Ul (er; ) = x and Ul (ez;x) = 3 + SEmm2=d it follows

(I+a)(1+np)
lim U (e x) = ei(x), fori=0,1,2.

Applying the well-known Korovkin’s theorem, we get

gglgo U,[f/‘;( f;x) = f(x) uniformly on [0, 1].

The next result provides a Voronovskaja type theorem for the Stancu-Durrmeyer type operators.
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Theorem 3.2. Let f:[0,1] » R, @ — 0as n — oo and lim na = c € R. If f € C?[0,2], then

n—o0

1 1-
tim (L)) — £ () = +p+§f))x( D .

Proof. Using Taylor’s expansion formula of function f, it follows

4 1 44
fO = f00 + f )t =)+ 5 ()t - X + o(t, x)(t - x)?, (6)
where @(t, x) := @(t — x) is a bounded function and ltim o(t, x) = 0. Taking the linearity of Stancu-Durrmeyer

type operators into account and then applying the operators UL“(]) on both side of the above equation (6), we
get

a (04 ! 1 o 17 a
U (f2) = F(x) = Upp(ler = 00 () + UL ((ea = x0%x) £(0) + Uiy (01, 2) - (e2 = 2)7; ).
Therefore using Lemma 2.3, we get

i . 1I+p+cp)x(1-x) , i .
Tim 1 (U0 - f) = = 2‘; £7@) + lim n (U575 (@8, 2) - (e1 = 27 x). ?)
We estimate the last term on the right-hand side of the above equality, applying the Cauchy-Schwarz
inequality, such that

UL (@) - (e = 0%%) < AU (@20t 23 7) UL (o1 - )% ) ®)
Because @*(x, x) = 0 and LDZ(', x) € C[0, 1], using the convergence from Theorem 3.1, we get

lim Ul (@2(t, x);x) = @*(x, %) = 0. 9)
Therefore, taking Lemma 2.5 into account and from (8), respectively (9) yields

,}i_liln (UL‘,YF], (m(t, x) - (e1 — x)%; x)) =0

and using (7) we obtain the asymptotic behavior of the Stancu-Durrmeyer type operators (5). O

The main tools to measure the degree of approximation of linear positive operators towards the identity
operators are moduli of smoothness. For f € C[0,1] and 6 > 0 we know the definition of the moduli of
smoothness of first, respectively second order, given by

wi(f,0) =sup{|f(x+h)— fx)| : x,x+he[0,1], 0 <h <6}
and
wo(f,0) :=sup{lf(x+h) =2f(x)+ f(x—h)| : x,x+xhe[0,1], 0 <h <9}

Definition 3.3. Let f € Cp[0, 1] (the space of all real-valued functions continuous and bounded on [0, 1]) endowed
with the norm ||f|| = SUP,¢10,1] |f(x)| and let us consider Peetre’s K-functional

Ka(f,6) = inf{||f —gll +Sllg”|l : g € C?[0,1]}, for 6 > 0. (10)
There exists an absolute constant M > 0, such that
Ka(f,8) < M-y (f, V5), (11)

conformable ([71, p. 177, Theorem 2.4).
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Proposition 3.1. Let f be a real-valued function continuous and bounded on [0, 1], with || f|l = sup, ;o1 1f ()], then

U (f: 0] < NIfIL

Proof. Taking the definition of Stancu-Durrmeyer type operators and Lemma 2.2 into account, it follows

[“]fx))— [“](x)F”k(f) Zp[“kxw,’j,kuﬂ)snfn U ) (eos ) = NIl

O

In the following, we get direct estimates in terms of moduli of smoothness and Peetre’s K-functional.

Theorem 3.4. If f € Cg[0, 1], then for any x € [0, 1] and 6 > 0, it follows
a 1+a na,
U0 - @ < 3 o (£, ).
Proof. Using the well-known property of first modulus of smoothness (first modulus of continuity)

F(t) = f@) < @r(f, It = 2) < (1467t = ) an(f, )

and applying the linear positive Stancu-Durrmeyer type operators to the above inequality, it follows

U520 - 0] < (Ulthen ) + S er = x6)) - n(f, ).

The Cauchy-Schwarz inequality for linear positive operators leads to
1 1
Ul (len - xx) < (Ul eo; 0)) - (U (e = 2%%))
Knowing that Stancu-Durrmeyer type operators preserve constants and conformable with the results ob-

tained in Lemma 2.3

I+a+p+nap)x(l-x)
1+ a)1+mnp)

M) o) = URS ((er = 0% x) =

we get

|l (5 x) — )| < (1+6‘11/%)w1(ﬁ6).

Taking the inequality /x(1 — x) < 1 into account and choosing 6 = ,/ ﬁ% we get the desired result. [

Theorem 3.5. If f is a differentiable function on [0,1] and f’ € Cg[0, 1], then for any x € [0,1] and 6 > 0, it follows

30 , . l+a+p+na
U5 = 0] < - en(f',0), with & =\t

Proof. Starting with the identity fB) = fx) = f/x)t—x)+ f(t)— f(x) = f'(x)(t —x), we get for £ between t and
—f(x) = f ()t - (&) —f (x)| -|t — x|, using the Lagrange mean value theorem (there exists a &
between t and x, such that f(t) fx) = f/(E)(t — x)). Because | — x| < |t — x], it follows

F/E) = Ol < w1 (1t =x)) < (1+57 (= x)2) - w1 (f,0)
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and
£ = F) = F/@)(t )| < (It =21+ 57 (t = 2?) - 1 (f,0).

Applying the linear positive Stancu-Durrmeyer type operators to the inequality

If <|F @)t =2+ (It = x|+ 67t = x)?) - w1 (F,0),

obtained from the above relations, it follows

U0 - ] < | @] [ulsher = x| + (1eher = 20 + UL (o1 = 075)) - n (£,0).

The Cauchy-Schwarz inequality for linear positive operators

1

U,[fg(lel —x[;x) < (UESA(EO,'X))% . (U,[f,l ((61 - x)z;x))i

and the results obtained in Lemma 2.2, respectively Lemma 2.3 leads to

U0 - ] < (e 0)° - (ul) ((el—x) ) + U (1= 2%5) 01 (7,9)

< (UL (e - x%5) (1 = (U (e - x)z;x))%) w1 (f',0).
Because
(M @) = (U (e = 250) = =0 < 2\ frempes

and choosing 6 = ,/%,we get|U frx)— fx)| <B.wy(f,0. O

Estimates using the combinations of the first and second order modulus of smoothness are more refined
than estimates using only the first modulus of continuity.

Theorem 3.6. If f € C[0, 1], then for any x € [0, 1] and 6 > 0, it follows

U0~ 0] < 3 (£, + 2 (£, 0) with &= | gs

Proof. Using Péltdnea’s result [18] established for a linear positive operator L
1 1
L) = O < o) = 11+ [FG1 + 3lLGer = 5501 @n(f,6) + (Leewi) + 5551 (le1 = 97%5)) - a(,0)

we get for UL‘,”E, := L the estimate

U (f5x) = £ <IU oo ) = 11+ 1 ()] + < |u[“1<e1—xx>| w1(f,0)

+ (Ulheor ) + ziézu[“l (e =) wal £, ).

Taking into account the results of Lemma 2.2, respectively Lemma 2.3 and choosing 6 = /% we get
the desired result, using previously again the Cauchy-Schwarz inequality for linear positive operators. [
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Theorem 3.7. Let f € C[0,1], then for any x € [0, 1] yields

fa] 1[G\
|Uld(f3) - 0] < M- wa (£, 1), with 6_%(“"@) ,
where M is an absolute constant.

Proof. For any g € C?[0,1] and ¢, x € [0, 1], by using the Taylor’s expansion formula, we have

g = 9) + (- 1) () + f (t - wg" ().

Applying the Stancu-Durrmeyer type operators UE,‘?‘; on both sides of the above equation, we get

ULl (g; %) - g(x) = g/ (x) - UL g — x;) + UL (f (t = u)g” (u)du; ") ut) (f <f—u>g”<“>d””‘)’

taking the results of Lemma 2.3 into account. On the other hand

t
KGR

then having in mind the inequality established at Lemma 2.5

< (=27 lg"ll

a 7" a 1+ na 77 cy 7" 7’
Ul (g;x) = g(o)] < llg”ll- UL ((e1 = 0% x) < gy - 191l < gty - 911 = 62 - llg Il
For any f € C[0,1] and g € C?[0, 1], using the Proposition 3.1, it follows

|Uia(f2) = F)] < [WA(f = g 0| + U3 (g ) = 9] + 1f(x) = g0
<2-llf —gll+ &gl =2(If — gl + 5 - llg”N).-

Now, taking the infimum on the right-hand side over all g € C?[0, 1] and using the relation (11), we get

M 520 1) £l ), w0155
|

In order to prove a global approximation theorem for the Stancu-Durrmeyer type operators involving
the Ditzian-Totik modulus of smoothness, we recall some results from [8]. For any f € Cz[0,1] and 6 > 0
we define the Ditzian-Totik moduli of smoothness of first, respectively second order by

o?(f,) = sup If (x + $h90)) - £ (x = T )|
lhi<o x+(h/2)qb x)e [01]
and
@) (f,0) =sup  sup | f(x+ () - 2f(x) + f (x = hp ()|, (12)
<6 xxhp(x)€[0,1]
with ¢(x) = /x(1 —x), x € [0,1]. The appropriate K-functional of second order is given by
K (f,6%) = _inf (If —gll+6*||¢?a"]), (13)

9'€AC1c[0,1]
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where g’ € ACjoc[0, 1] means that g is differentiable and g’ is absolutely continuous on every closed interval
[a,b] € [0,1]. In [8], an inequality between K-functional (13) and second order modulus of smoothness (12),
which is given for a positive constant N by

K] (f,6%) < N - f(f,0) (14)

is established. Now, we are able to prove the following

Theorem 3.8. Let f € C[0,1], then for any x € [0, 1] yields

a C[a] %
U (f:2) = F()| < N - (£, 5), with & = (mnm) ,
where N is an absolute constant.

Proof. For any g € C?[0,1] and t,x € [0, 1], by using the Taylor’s expansion formula we get as in Theorem
3.7 that

t
Ul (g; %) g@ﬂ<dﬂ({ﬁ—u«@%@ﬁwﬁ. (15)

Since ¢*(x) is a concave function on [0, 1], for u = Ax + (1 — A)t with t < u < x and A € [0, 1], it follows

t—ul _Jt=Ax— (=M _ At - x| =2
@) PAx+ (1= T AP + (1= )t T ¢*(x)

Thus, using the above inequality in the relation (15) and Lemma 2.4, we get

a ' |t 7 7 a
uthor) - a0 < ua,z( )69 < |- (e —7)
1 P X(l B X) _ 1 ‘Eja]
¢2(x) fle*g”ll 1+np lo*o1l- 1+np

For any f € C[0,1] and g € ACio[0, 1], using the above inequality and Proposition 3.1, it follows

)

Taking the infimum on the right-hand side over all g € ACjo[0, 1] and using the relation (14), we get

[Usp(f3) = 0] < [URR(fF = g50] + [U5p(05) = 90 + 1 () = 9()
<2:11f g+ s 079 = 2 (1F - gl + iy 6%

1
) ) C[;“] 2
|Ull(Fix) - f@)| <2- Ko (£, 8%) < N wl(£,0), with & = (—2(1inp)) :
O

We establish the rate of convergence for differential functions whose derivatives are of bounded variation
on [0,1]. Let DBV]0, 1] be the class of differentiable functions f defined on [0, 1], whose derivatives f” are
of bounded variation on [0, 1]. The functions f € DBV[0, 1] could be represented

fw=£wwuﬂm
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where g € BV|[0,1], which means that g is a function of bounded variation on [0,1]. Also, the operators
U,[ffg f admit the integral representation

U (fix) = f S, f (bt (16)

where the kernel S,[jff], is given by

-1 n—k)p—1 n,—a n—a
(1 — t)n=he- (1 = x)lr=alst)  alnmaly(1 -t
mp(,1) = Z Puxx 0" B(kp n-Rp) | 1l 1ol

0(u) being the Dirac-delta function.

Lemma 3.9. Let a be a non-negative parameter which may depend on n € IN, with « — 0 as n — oo and
lim na = ¢ € R. For a fixed x € (0, 1) and sufficiently large n, it follows

n—oo
[a]

' Y (& x(1—x)
[a] .

) Ay = f (e Dt < A +np) (x—y)2’

Lo] x(1—-x)

i) 1-Al(x,2) = f S (x, bt < G
1+ np) np) (z —x)2’

O<y<x;

x<z<l1.

Proof.
i) Using Lemma 2.4, we get

[a]
[o] x_-f)2 [o] IS ST N7 Co' x(1-x)
(2, 7) = fsn (x, t)dt<f (x_y Sl Dt = s UL ((e1 - x75x) < e G

ii) The proof is immediately, hence the details are omitted. [J

Theorem 3.10. Let f € DBV[0,1], @ — 0asn — coand lim na = ¢ € R. Then for every x € (0, 1) and sufficiently

n—oo

large n, we have

[“]x(l x) I/ (x+) — f(x-)| C[a](l - %) [vVil x X
[a] P )+
TTRERE CEETEEE AL T

x=(x/ Vn)

C[a] [Vl x+((1-x)/k) 1 - x) x+((1-2)/ V)

(1+np) Z \/ (f) + N \/ (f

X X

where \/f;( f+) denotes the total variation of f{ on [a,b] and f, is defined by

F()-fx=), 0<t<x
F) = 0, t=x A7)

i) - f(x+) x<t<l.

Proof. The Stancu-Durrmeyer type operators preserve constants and using (16), for every x € (0,1) we have

1 t
U (frx) - f(x) = f S () - f))dt = f S, ) f F'(w)dudt. (18)
0 x
For any f € DBVI0, 1], from (17) we may write

[ erf/(x_) L ;f,(x_)sgn(u — %) + Ox(u) (f'(u) R ilCarhd ]

£ = futw) + ),

(19)
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where
1, u=x
6X(u):{ 0, u#=x.
Obviously,

joq (jxf (f'(u) - W)éx(u)du) np(x Bt =

fl(ftw ) ( )t = Mf(t x)S[“](xt)dt
0 \Jx

_fen) + fe)
2
Applying Chauchy-Schwarz inequality for linear positive operators, it follows

el \f‘f (x+) - f(x ) ——————llf—ﬂ‘f‘u S (x, tydt

np
-
- 2
7 +)_ 7 _
N J ) zf &) (Ut - v%) "

Using Lemma 2.3, respectively Lemma 2.4 and the relations (18), (19) yields

and

U (e —xx) =

sgn(u — x)du )dt

U (it - x|; x)

[uleh(fi0 - fo)| <

’  fl (e C[a] (1_ )
|f (x+)2f(x ) [Cp XL —x (20)

(1+np)

X t 1 t
0 ( f f;(u)du)S,[jf,]J(x,t)dtJr f ( f f;(u)du)S,[ff,]J(x,t)dt'.

Let G0(f, 2 = [ ([ frwdu) S, it and 7o) f,2) = [ ([ f(u)du) S)(x, Hdt. To complete the proof,
it is sufficient to estimate Q,[f‘g) and 7—'”[0;)] Since fe f dt/\,[f[]) (x,t) < 1forall[a,b] C [0,1], applying the integration
formula by parts and using Lemma 3.9 with y = x — (x/ V1), we may write

gkl =| [ ( f fit du)m“f}(x,ﬂ]:j [ Atk s

[a] _
f f A1 i, Bldt < = (1+ i f V<fx><x—t )+ f V(fodt

“]x(l x)

o f\/(fx -t 2\ g,

X(X/\F)

By the substitution of u = x/(x — t), we get

Cilx(1—x) et/ Vi cl1 -x) o
e (=1~ \/(fx EETT \/ (fo)du

x—(x/u)

a1 _ [vn] + x [a] 41 [Vn]  «x
<0y x)Z fk“ \/ (< DN gy
k=1

(1 + ”P) x—(x/k) (1 + le) k=1 x—(x/k)
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Thus
a]( _ )[\/ﬁ]

Q( >+— \/ (f)- (21)

k=1 x—(x/k) x (x/ \/n)

la]
G < <y

Using the integration formula by parts and applying Lemma 3.9 with z = x + ((1 — x)/ v/n), we get

7t 0] = f 1 ( f | f;<u>du) Siplx, t)df]
-|[ ( | tfx’(u)du) -2+ [ 1 ( [ t f;w)du) (1= 25} )
_ f F - A, t))du] f £ = AL, )t + f ( f flu du)dt(l A, t))‘

- f fiydu(1 = Al (x, 2)) - f fHa - /\[“](xt)dt+ f frwdu(1 - Al (x, t))]

- f faé(t)(l—ALD,‘g,(x,t))dt’

f Zf;(t)(l—A“”(x B)dt + f fina - Ak, t»dt|

Clilx(1 - x) S ,
< W \/(fx)(t —x)dt + j; \/(fx)dt
x+((1-x)/ Vn)

CE,“]x(l - x) 5 (1-x)
i i —x)2d ).
A +np) Jera-v/vi) \x/(fx o=y = Vn \x/ )

By the substitution of v = (1 — x)/(t — x), we get

: [a] (1 _ x) Vi x+H((1=x)/v) (1 _ ) x+((1-x)/ v/n)
|7l (fr,x)| < T——— (f)A - x)"'do + () (22)
x (1 +np) v x v x
C[a] [Vn] x+((1-x)/ v/n)

N ka1 x+(1-x)/0) (1 - x) ,
< (1:np);jk‘ \x/ (f)dv + ———= v \x/ (f2)

C[ptl]x (V] x+((1-x)/k) x+((1-x))/ Vn

(1-x ,
x (F)+ = v (f)-

Combining the estimates (20)—(22), we get the required result. [

B (1+mnp) =
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