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Abstract. f -divergences play important role in probability theory, especially in information theory and in
mathematical statistics. Remarkable divergences can be found among them. Inequalities for f -divergences
are very useful and applicable in information theory. In this paper we give a precise equality condition
and a refinement for one of the basic inequalities of f -divergences. The results are illustrated by some
applications.

1. Introduction

Measures of dissimilarity between probability measures play important role in probability theory, es-
pecially in information theory and in mathematical statistics. Many divergence measures for this purpose
have been introduced and studied (see for example Vajda [14]). Among them f -divergences (see Section 2
for exact definitions) were introduced by Csiszár [2]-[3] and independently by Ali and Silvey [1]. Remark-
able divergences can be found among f -divergences, such as the information divergence, the Pearson or
χ2-divergence, the Hellinger distance and total variational distance. There are a lot of papers dealing with
f -divergence inequalities (see Dragomir [5], Dembo, Cover, and Thomas [4] and Sason and Verdú [13]).
These inequalities are very useful and applicable in information theory.

One of the basic inequalities is (see Liese and Vajda [10])

D f (P,Q) ≥ f (1) .

In this paper we give a refinement and a precise equality condition for this inequality. Some applications
for discrete distributions, for the Shannon entropy, and some examples are given.

2. Preliminary Results and Basic Definitions

The classical Jensen’s inequality is well known (see [7]).
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Theorem 2.1. Let 1 be an integrable function on a probability space (Y,B, ν) taking values in an interval I ⊂ R.

Then
∫
Y

1dν lies in I. If f is a convex function on I such that f ◦ 1 is ν-integrable, then

f


∫
Y

1dν

 ≤
∫
Y

f ◦ 1dν. (1)

The following approach to give a necessary and sufficient condition for equality in this inequality may
be new. First, we introduce the next definition.

Definition 2.2. Let (Y,B, ν) be a probability space, and let 1 be a real measurable function defined almost everywhere
on Y. We denote by essintν

(
1
)

the smallest interval in R for which

ν
(
1 ∈ essintν

(
1
))

= 1.

Remark 2.3. (a) Obviously, the endpoints of essintν
(
1
)

are the essential infimum (essinfν
(
1
)
) and the essential

supremum of 1, and either of them belong to essintν
(
1
)

exactly if 1 takes this value with positive probability.

(b) It is easy to see that either essintν
(
1
)

=


∫
Y

1dν

 (in this case 1 is constant ν-a.e.) or
∫
Y

1dν is an inner point

of essintν
(
1
)
.

(c) The interval essinfν
(
1
)

is connected with the essential range of 1, but not the same set (for example, the essential
range of 1 is always closed, and not an interval in general).

Lemma 2.4. Assume the conditions of Theorem 2.1 are satisfied. Equality holds in (1) if and only if f is affine on
essintν

(
1
)
.

Proof. It is easy to see that the condition is sufficient for equality in (1).

Conversely, if essintν
(
1
)

contains only one point, then it is trivial, so we can assume that m :=
∫
Y

1dν is

an inner point of essintν
(
1
)
. Let

l : R→ R, l (t) = f ′+ (m) (t −m) + f (m) .

If f is not affine on essintν
(
1
)
, then by the convexity of f , there is a point t1 ∈essintν

(
1
)

such that
f (t1) > l (t1). Suppose t1 > m (the case t1 < m can be handled similarly). Since f is convex, f (t) ≥ l (t) (t ∈ I)
and f (t) > l (t) (t ∈ I, t ≥ t1). It follows by using ν

(
1 > t1

)
> 0, that∫

Y

f ◦ 1dν =

∫
(1<t1)

f ◦ 1dν +

∫
(1≥t1)

f ◦ 1dν

≥

∫
(1<t1)

l ◦ 1dν +

∫
(1≥t1)

f ◦ 1dν >
∫
Y

l ◦ 1dν = f (m) ,

which is a contradiction.
The proof is complete.

The next refinement of the Jensen’s inequality can be found in Horváth [8].
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Theorem 2.5. Let I ⊂ R be an interval, and let f : I → R be a convex function. Let (Y,B, ν) be a probability
space, and let 1 : Y → I be a ν-integrable function such that f ◦ 1 is also ν-integrable. Suppose that α1, . . . , αn are

nonnegative numbers with
n∑

i=1

αi = 1. Then

(a)

f


∫
Y

1dν

 ≤
∫
Yn

f

 n∑
i=1

αi1 (xi)

 dνn (x1, . . . , xn) ≤
∫
Y

f ◦ 1dν.

(b)∫
Yn+1

f

 1
n + 1

n+1∑
i=1

1 (xi)

 dνn+1 (x1, . . . , xn+1)

≤

∫
Yn

f

1
n

n∑
i=1

1 (xi)

 dνn (x1, . . . , xn) ≤
∫
Yn

f

 n∑
i=1

αi1 (xi)

 dνn (x1, . . . , xn) .

By analyzing the proof of the previous result, it can be seen that the hypothesis ” f ◦ 1 is ν-integrable”
can be weaken.

Theorem 2.6. Let I ⊂ R be an interval, and let f : I → R be a convex function. Let (Y,B, ν) be a probability

space, and let 1 : Y→ I be a ν-integrable function such that the integral
∫
Y

f ◦ 1dν exists in ]−∞,∞]. Suppose that

α1, . . . , αn are nonnegative numbers with
n∑

i=1

αi = 1. Then the assertions of Theorem 2.5 remain true.

We assume throughout that the probability measures P and Q are defined on a fixed measurable space
(X,A). It is also assumed that P and Q are absolutely continuous with respect to a σ-finite measure µ on
A. The densities (or Radon-Nikodym derivatives) of P and Q with respect to µ are denoted by p and q,
respectively. These densities are µ-almost everywhere uniquely determined.

Let

F :=
{
f : ]0,∞[→ R | f is convex

}
,

and define for every f ∈ F the function

f ∗ : ]0,∞[→ R, f ∗ (t) := t f
(1

t

)
.

If f ∈ F, then either f is monotonic or there exists a point t0 ∈ ]0,∞[ such that f is decreasing on ]0, t0[.
This implies that the limit

lim
t→0+

f (t)

exists in ]−∞,∞], and

f (0) := lim
t→0+

f (t)

extends f into a convex function on [0,∞[. The extended function is continuous and has finite left and right
derivatives at each point of ]0,∞[.
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It is well known that for every f ∈ F the function f ∗ also belongs to F, and therefore

f ∗ (0) := lim
t→0+

f ∗ (t) = lim
u→∞

f (u)
u
.

We need the following simple property of functions belonging to F.

Lemma 2.7. If f ∈ F, then f ∗ (0) ≥ f ′+ (1). This inequality becomes an equality if and only if

f (t) = f ′+ (1) (t − 1) + f (1) , t ≥ 1. (2)

Proof. Since f is convex,

f (t) ≥ f ′+ (1) (t − 1) + f (1) , t ≥ 1,

and therefore

f ∗ (0) = lim
t→∞

f (t)
t
≥ f ′+ (1) .

If (2) is satisfied, then obviously f ∗ (0) = f ′+ (1).
If there exists t1 > 1 such that f ′+ (t1) > f ′+ (1), then by the convexity of f ,

f (t) ≥ f ′+ (t1) (t − t1) + f (t1) , t ≥ t1,

and hence f ∗ (0) > f ′+ (1). It follows that f ∗ (0) = f ′+ (1) implies

f ′+ (t) = f ′+ (1) , t ≥ t1,

and this gives (2) (see [6] 1.6.2 Corollary 2).
The proof is complete.

The next result prepares the notion of f -divergence of probability measures.

Lemma 2.8. For every f ∈ F the integral∫
(q>0)

q (ω) f
(

p (ω)
q (ω)

)
dµ (ω)

exists and it belongs to the interval ]−∞,∞].

Proof. Since f is convex,

f (t) ≥ f ′+ (1) (t − 1) + f (1) , t ≥ 0.

This implies that for all ω ∈
(
q > 0

)
q (ω) f

(
p (ω)
q (ω)

)
≥ h (ω) := f ′+ (1)

(
p (ω) − q (ω)

)
+ f (1) q (ω) . (3)

Elementary considerations show that the function h is µ-integrable over
(
q > 0

)
, and this gives the result

by (3).
The proof is complete.

Now we introduce the notion of f -divergence.
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Definition 2.9. For every f ∈ F we define the f -divergence of P and Q by

D f (P,Q) :=
∫
X

q (ω) f
(

p (ω)
q (ω)

)
dµ (ω) ,

where the following conventions are used

0 f
(x

0

)
:= x f ∗ (0) if x > 0, 0 f

(0
0

)
= 0 f ∗ (0) := 0. (4)

Remark 2.10. (a) For every f ∈ F the perspective f̂ : ]0,∞[ × ]0,∞[→ R of f is defined by

f̂
(
x, y

)
:= y f

(
x
y

)
.

Then (see [12]) f̂ is also a convex function. Vajda [14] proved that (4) is the unique rule leading to convex and lower
semicontinuous extension of f̂ to the set{(

x, y
)
∈ R2

| x, y ≥ 0
}
.

(b) Since f ∗ (0) ∈ ]−∞,∞], Lemma 2.8 shows that D f (P,Q) exists in ]−∞,∞] and

D f (P,Q) =

∫
(q>0)

f
(

p (ω)
q (ω)

)
dQ (ω) + f ∗ (0) P

(
q = 0

)
. (5)

It follows that if P is absolutely continuous with respect to Q, then

D f (P,Q) =

∫
(q>0)

f
(

p (ω)
q (ω)

)
dQ (ω) .

Various divergences in information theory and statistics are special cases of the f -divergence. We
illustrate this by some examples.

(a) By choosing f : ]0,∞[→ R, f (t) = t ln (t) in (5), the information divergence is obtained

I (P,Q) =

∫
(q>0)

p (ω) ln
(

p (ω)
q (ω)

)
dµ (ω) +∞P

(
q = 0

)
. (6)

(b) By choosing f : ]0,∞[→ R, f (t) = (t − 1)2 in (5), the Pearson or χ2-divergence is obtained

χ2 (P,Q) =

∫
(q>0)

(
p (ω) − q (ω)

)2

q (ω)
dµ (ω) +∞P

(
q = 0

)
. (7)

(c) By choosing f : ]0,∞[→ R, f (t) =
(√

t − 1
)2

in (5), the Hellinger distance is obtained

H2 (P,Q) =

∫
X

(√
p (ω) −

√
q (ω)

)2
dµ (ω) . (8)

(d) By choosing f : ]0,∞[→ R, f (t) = |t − 1| in (5), the total variational distance is obtained

V (P,Q) =

∫
X

∣∣∣p (ω) − q (ω)
∣∣∣µ (ω) . (9)

We need the following lemma.
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Lemma 2.11. Let t0 := P
(
q > 0

)
.

(a) For every ε > 0

Q
(

p
q
< t0 + ε, q > 0

)
> 0.

(b)

essinfQ

(
p
q

)
≤ t0

Proof. (a) Obviously,

Q
(

p
q
< t0 + ε, q > 0

)
= 1 −Q

(
p
q
≥ t0 + ε, q > 0

)
.

The result follows from this, since

Q
(

p
q
≥ t0 + ε, q > 0

)
=

∫
X

q1( p
q≥t0+ε, q>0

)dµ ≤
∫

(q>0)

1
t0 + ε

pdµ

=
t0

t0 + ε
< 1.

(b) It comes from (a).
The proof is complete.

The following result contains a key property of f -divergences. We give a simple proof which emphasizes
the importance of the convexity of f , and give an exact equality condition.

Theorem 2.12. (a) For every f ∈ F

D f (P,Q) ≥ f (1) . (10)

(b) Assume P
(
q = 0

)
= 0. Then equality holds in (10) if and only if f is affine on essintQ

( p
q

)
.

(c) Assume P
(
q = 0

)
> 0. Then equality holds in (10) if and only if f is affine on essintQ

( p
q

)
∪ [1,∞[.

Proof. (a) If D f (P,Q) = ∞, then (10) is obvious.
If D f (P,Q) ∈ R, then the integral∫

(q>0)

f
(

p (ω)
q (ω)

)
dQ (ω) (11)

is finite, and therefore either Q
(
p = 0

)
= 0 or Q

(
p = 0

)
> 0 and f (0) is finite. It follows that Jensen’s

inequality can be applied to this integral, and we have

D f (P,Q) ≥ f


∫

(q>0)

pdµ

 + f ∗ (0) P
(
q = 0

)
(12)

= f
(
P
(
q > 0

))
+ f ∗ (0) P

(
q = 0

)
. (13)
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Let t0 := P
(
q > 0

)
. By using Lemma 2.7, t0 ∈ [0, 1], and the convexity of f , it follows from (13) that

D f (P,Q) ≥ f (t0) + f ′+ (1) (1 − t0) (14)

≥ f (1) + f ′+ (1) (t0 − 1) + f ′+ (1) (1 − t0) = f (1) . (15)

(b) If D f (P,Q) = f (1), then D f (P,Q) is finite.
Assume P

(
q = 0

)
= 0. Then by (12) and (13), D f (P,Q) = f (1) is satisfied if and only if equality holds in

the Jensen’s inequality. Lemma 2.4 shows that this happens exactly if f is affine on essintQ

( p
q

)
.

(c) Assume P
(
q = 0

)
> 0. Then (12), (13), (14) and (15) yield that there must be equality in the Jensen’s

inequality, f ∗ (0) = f ′+ (1), and

f (t0) = f (1) + f ′+ (1) (t0 − 1) . (16)

By Lemma 2.4 and Lemma 2.7, the first two equality conditions are satisfied exactly if f is affine on
essintQ

( p
q

)
∪ [1,∞[.

Now assume that f is affine on essintQ

( p
q

)
∪ [1,∞[. In case of t0 > 0, Lemma 2.11 (b) and the continuity of

f at t0 show that (16) also holds. In case of t0 = 0, it is easy to see that Q
( p

q = 0
)

= 1, and hence 0 ∈essintQ

( p
q

)
which implies (16) too.

The proof is complete.

Remark 2.13. (a) Consider the subclass F1 ⊂ F such that f ∈ F1 satisfies f (1) = 0. In this case inequality (10) has
the usual form

D f (P,Q) ≥ 0.

(b) The usual equality condition is the next (see [10]): if f is strictly convex at 1, then D f (P,Q) = f (1) holds if
and only if P = Q. Theorem 2.12 (b) and (c) give more precise conditions.

3. Main Results

Suppose that α1, . . . , αn are nonnegative numbers with
n∑

i=1

αi = 1. Let

A
n := A⊗ . . . ⊗A, with n factors,

and define the probability measures Qn and R onAn by

Qn := Q⊗ . . .⊗Q, with n factors,

and

Rα :=
n∑

i=1

αiQ⊗ . . .⊗Q ⊗
i
P̆ ⊗Q ⊗ . . .⊗Q.

In case of αi = 1
n (i = 1, . . . ,n) the probability measure Rα will be denoted by Rn.

These measures are absolutely continuous with respect to µn on An. The densities of R and Qn with
respect to µn are

n⊗
i=1

q : Xn
→ R, (ω1, . . . , ωn)→

n∏
i=1

q (ωi) ,
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and

(ω1, . . . , ωn)→
n∑

i=1

αiq (ω1) . . .
i
p̆ (ωi) . . . q (ωn) , (ω1, . . . , ωn) ∈ Xn,

respectively.
It is easy to calculate that

Rα

 n⊗
i=1

q = 0

 = 1 − Rα

 n⊗
i=1

q > 0

 = 1 − Rα
((

q > 0
)n
)

= 1 −
n∑

i=1

αiQ
(
q > 0

)n−1 P
(
q > 0

)
= 1 − P

(
q > 0

)
= P

(
q = 0

)
.

It follows that for every f ∈ F

D f (Rα,Qn) =

∫
(q>0)n

f



n∑
i=1

αiq (ω1) . . . p (ωi) . . . q (ωn)

n∏
i=1

q (ωi)

 dQn (ω1, . . . , ωn)

+ f ∗ (0) Rα

 n⊗
i=1

q = 0


=

∫
(q>0)n

f

 n∑
i=1

αi
p (ωi)
q (ωi)

 dQn (ω1, . . . , ωn) + f ∗ (0) P
(
q = 0

)
(17)

=

∫
(q>0)n

n∏
i=1

q (ωi) f

 n∑
i=1

αi
p (ωi)
q (ωi)

 dµn (ω1, . . . , ωn) + f ∗ (0) P
(
q = 0

)
.

By applying Theorem 2.5, we obtain some refinements of the basic inequality 10.

Theorem 3.1. Suppose that α1, . . . , αn are nonnegative numbers with
n∑

i=1

αi = 1. If f ∈ F, then

(a)

D f (P,Q) ≥ D f (Rα,Qn) ≥ D f (Rn,Qn) ≥ f (1) . (18)

(b)

D f (P,Q) = D f

(
R1,Q1

)
≥ . . . ≥ D f (Rm,Qm) ≥ D f

(
Rm+1,Qm+1

)
≥ . . . ≥ f (1) , m ≥ 1.

Proof. (a) The third inequality in (18) comes from Theorem 2.12.
So it remains to prove the first two inequalities in (18). By (5) and (17), it is enough to show that∫

(q>0)

f
(

p (ω)
q (ω)

)
dQ (ω) ≥

∫
(q>0)n

f

 n∑
i=1

αi
p (ωi)
q (ωi)

 dQn (ω1, . . . , ωn) (19)
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≥

∫
(q>0)n

f

1
n

n∑
i=1

p (ωi)
q (ωi)

 dQn (ω1, . . . , ωn) ,

which is an immediate consequence of Theorem 2.6.
(b) We can proceed similarly as in (a).
The proof is complete.

By considering the special f -divergences (6-9), we have after each other
(a) the information divergence

I (Rα,Qn) = ∞P
(
q = 0

)
+

∫
(q>0)n

n∑
i=1

αip (ωi)
n∏

j=1
j,i

q
(
ω j

) ln

 n∑
i=1

αi
p (ωi)
q (ωi)

 dµn (ω1, . . . , ωn) ,

(b) the Pearson divergence

χ2 (Rα,Qn) =

=

∫
(q>0)n

n∏
i=1

q (ωi)

 n∑
i=1

αi
p (ωi) − q (ωi)

q (ωi)


2

dµn (ω1, . . . , ωn) +∞P
(
q = 0

)
,

(c) the Hellinger distance

H2 (Rα,Qn) =

∫
(q>0)n

n∏
i=1

q (ωi)


 n∑

i=1

αi
p (ωi)
q (ωi)


1/2

− 1


2

dµn (ω1, . . . , ωn) ,

(d) the total variational distance

V (Rα,Qn) =

∫
(q>0)n

n∏
i=1

q (ωi)

∣∣∣∣∣∣∣
n∑

i=1

αi
p (ωi) − q (ωi)

q (ωi)

∣∣∣∣∣∣∣ dµn (ω1, . . . , ωn) .

Now, we consider the special case, important in many applications, in which P and Q are discrete
distributions.

Denote T either the set {1, . . . , k} with a fixed positive integer k, or the set {1, 2, . . .}. We say that P and Q
are derived from the positive probability distributions p :=

(
pi
)

i∈T and q :=
(
qi
)

i∈T, respectively, if pi, qi > 0
(i ∈ T), and

∑
i∈T

pi =
∑
i∈T

qi = 1. In this case X = T,A is the power set of T, and µ is the counting measure on

A.

Corollary 3.2. Suppose that α1, . . . , αn are nonnegative numbers with
n∑

i=1

αi = 1. Suppose also that P and Q are

derived from the positive probability distributions
(
pi
)

i∈T and
(
qi
)

i∈T, respectively. If f ∈ F, then
(a)

D f (P,Q) =
∑
i∈T

qi f
(

pi

qi

)
≥

∑
(i1,...,in)∈Tn

n∏
j=1

qi j f

 n∑
j=1

α j
pi j

qi j


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≥

∑
(i1,...,in)∈Tn

n∏
j=1

qi j f

1
n

n∑
j=1

pi j

qi j

 ≥ f (1) .

(b)

D f (P,Q) ≥ . . . ≥
∑

(i1,...,in)∈Tn

n∏
j=1

qi j f

1
n

n∑
j=1

pi j

qi j


≥

∑
(i1,...,in+1)∈Tn+1

n+1∏
j=1

qi j f

 1
n + 1

n+1∑
j=1

pi j

qi j

 ≥ . . . ≥ f (1) , n ≥ 1.

Proof. This comes from Theorem 3.1 immediately.

Finally, we give an example to illustrate the previous result. We consider only Corollary 3.2 (a).

Example 3.3. (a) By choosing f : ]0,∞[→ R, f (x) = − ln (x) and pi = 1
k (i = 1, . . . , k) in the previous corollary (in

this case T = {1, . . . , k}), we have

D f (P,Q) = −

k∑
i=1

qi ln
(

1
kqi

)
= ln (k) +

k∑
i=1

qi ln
(
qi
)

≥ −

∑
(i1,...,in)∈Tn

n∏
j=1

qi j ln

1
k

n∑
j=1

α j

qi j

 = ln (k) −
∑

(i1,...,in)∈Tn

n∏
j=1

qi j ln

 n∑
j=1

α j

qi j


≥ −

∑
(i1,...,in)∈Tn

n∏
j=1

qi j ln

 1
kn

n∑
j=1

1
qi j


= ln (kn) −

∑
(i1,...,in)∈Tn

n∏
j=1

qi j ln

 n∑
j=1

1
qi j

 ≥ 0.

It can be obtained from this some refinements of the classical upper estimation for the Shannon entropy

H (Q) := −
k∑

i=1

qi ln
(
qi
)
≤

∑
(i1,...,in)∈Tn

n∏
j=1

qi j ln

 n∑
j=1

α j

qi j


≤ − ln (n) +

∑
(i1,...,in)∈Tn

n∏
j=1

qi j ln

 n∑
j=1

1
qi j

 ≤ ln (k) .

(b) If f : ]0,∞[ → R, f (x) = x ln (x) in the previous corollary, then we have the following estimations for the
information or Kullback–Leibler divergence:

I (P,Q) =

n∑
i=1

pi ln
(

pi

qi

)
≥

∑
(i1,...,in)∈Tn


n∑

j=1

α jpi j

n∏
l=1
l, j

qil

 ln

 n∑
j=1

α j
pi j

qi j


≥

1
n

∑
(i1,...,in)∈Tn


n∑

j=1

pi j

n∏
l=1
l, j

qil

 ln

1
n

n∑
j=1

pi j

qi j

 ≥ 0. (20)
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(c) The Zipf-Mandelbrot law (see Mandelbrot [11] and Zipf [15]) is a discrete probability distribution depends on
three parameters N ∈ {1, 2, . . .}, q ∈ [0,∞[ and s > 0, and it is defined by

f
(
i; N, q, s

)
:=

1(
i + q

)s HN,q,s
, i = 1, . . . ,N,

where

HN,q,s :=
N∑

k=1

1(
k + q

)s .

Let P and Q be the Zipf-Mandelbrot law with parameters N ∈ {1, 2, . . .}, q1, q2 ∈ [0,∞[ and s1, s2 > 0, respectively,
and let 2 ≤ k ≤ N be an integer. It follows from the first part of (20) with T = {1, . . . ,N} that

I (P,Q) =

N∑
i=1

1(
i + q1

)s1 HN,q1,s1

log
( (

i + q2
)s2 HN,q2,s2(

i + q1
)s1 HN,q1,s1

)

≥

∑
(i1,...,iN)∈Tn


n∑

j=1

α j
1(

i j + q1

)s1
HN,q1,s1

n∏
l=1
l, j

1(
il + q2

)s2 HN,q2,s2


× ln

 n∑
j=1

α j

(
i j + q2

)s2
HN,q2,s2(

i j + q1

)s1
HN,q1,s1

 ≥ 0.

This is another type of refinement for I (P,Q) than it is given in [9].
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