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Multiple Positive Solutions of Integral Boundary Value Problem for a
Class of Nonlinear Fractional-order Differential Coupling System with
Eigenvalue Argument and (p;, p2)-Laplacian

Kaihong Zhao?

?Department of Applied Mathematics, Kunming University of Science and Technology, Yunnan, Kunming, 650093, P. R. China

Abstract. This paper is concerned with the integral boundary value problem for a class of nonlinear frac-
tional order differential coupling system with eigenvalue argument and (p;, p,)-Laplacian. Some sufficient
criteria have been established to guarantee the existence and multiplicity of positive solution by the fixed
point index theorem in cones. Meanwhile, we obtain the range of eigenvalue parameter. As an application,
one example is also provided to illustrate the validity of our main results.

1. Introduction

In this paper, we mainly study the integral boundary value problem for a class of nonlinear fractional
order differential coupling system with eigenvalue argument and (p;, p»)-Laplacian as follows:

Dﬂl (¢p, (Dgrua())) = /\1f1(t, ur(t), ua(t), uy(t), us(t)), t€j, 1)
DI (6. (D2 tt) = Moot 1a(8), uat), uy (1), 14(1)), e )
with the boundary value conditions
ayu1(0) — biuy(0) = fol p1(ua(t)dt,  ui(1) = u(0) =
a212(0) — by (0) = [ pa(Bua(d)dt, uy(1) = ug(0) = 2

%WWMﬁ%mwa(mmwm,
O (D51102(D) = [ @y (DF029)) dA2(S),  (: (DF20200))) =

where [ =[0,1],1<Bi<2<a;<3,A;>0,a; 20and b; > 0(i = 1, 2). ngr and Dgir(i =1, 2) are the standard
Caputo fractional derivative. ¢y, (x) = [x["~2x(i = 1,2) is pi-Laplacian. We know that ¢, = om L pi>1and
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% + % = 1. A; € C(J,R;) are nondecreasing functions of bounded variation, and the integrals in (2) are

Riemann-Stieltjes integrals. ¢; € L'(J;R))(i = 1,2), fi € C(J x (R2)* R;)(i = 1,2), Ry = (0,00), R} = [0, c0).

Fractional differential equations arise in many engineering and scientific disciplines as the mathematical
modeling of systems and processes in the fields of physics, chemistry, aerodynamics, electrodynamics of
complex medium, polymer rheology, Bode’s analysis of feedback amplifiers, capacitor theory, electrical
circuits, electron-analytical chemistry, biology, control theory, fitting of experimental data, and so forth.
Fractional derivatives provide an excellent tool for the description of memory and hereditary properties
of various materials and processes. This is the main advantage of fractional differential equations in
comparison with classical integer-order models. In consequence, the subject of fractional differential
equations is gaining much importance and attention. Especially, many people pay attention to the existence
and multiplicity of solutions or positive solutions for the boundary value problems of nonlinear fractional
differential equations (see [1, 3, 5, 6, 10, 12, 14-20]). Moreover, the boundary value problems with p-
Laplacian have been discussed extensively in the past few decades (see [4, 8, 9, 13, 21, 22]). However,
there is relatively rare paper dealing with the Riemann-Stieltjes integral boundary problems for high-
order nonlinear fractional differential coupling system. Therefore, it is worth to study the existence and
multiplicity of positive solutions for the high-order nonlinear fractional differential coupling system (1).

The rest of this paper is organized as follows. In Section 2, we recall some useful definitions and
properties, and present the properties of the Green’s functions. In Section 3, we give some sufficient
conditions for the existence and multiplicity of positive solution for BVP (1)-(2). As applications, an
example is also provided to illustrate the validity of our main results in Section 4. Finally, the conclusion is
given to simply recall our studied contents and obtained results in Section 5.

2. Preliminaries

For the convenience of the reader, we introduce the definitions and lemmas of fractional calculus theory.

Definition 2.1. (see [7,11]) The Riemann-Liouville fractional integral of order a > 0 of a function f : (0,00) —» R
is given by

a 1 t a—1
B0 = 5 [ 6= o
provided that the right-hand side is pointwise defined on (0, c0).

Definition 2.2. (see [7, 11]) The Caputo fractional derivative of order o > 0 of a continuous function f : (0,00) — R
is given by
1 (M)
Dg, f(t) = d
bSO T fo (E—syn ™

wheren — 1 < a < n provided that the right-hand side is pointwise defined on (0, o).

Lemma 2.3. (see [7]) Assume that u € C(0,1) N L(0,1) with a Caputo fractional derivative of order a > 0 that
belongs to u € C"[0, 1], then
I§, Dy, u(t) = u(t) +co +cit +--- + Cug 7Y,

forsomec; € R,i=0,1,...,n—1, where n is the smallest integer greater than or equal to a.
Lemma 2.4. The p-Laplacian operator have the following properties:

(1) Ifx 20, then ¢pp(x) = X1, ¢p(x) is increasing with respect to x.

(2) Ifx, y 20, then ¢p(xy) = Pp(X)Pp(y)

3) Ifp>1, % + % =1, then ¢g(Pp(x)) = Pp(pq(x)) = x.

(4) If0<x <y, then x <y & Py(x) < Py(y).
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(5) If0 <x < ¢ (y), then x < ;' (y) = Pyx) < .
(6) Ifg>2and 0 < x,y <M, then |pz(x) — pg()| < (g — 1IMT2|x — y.
(7) If1 <g<2andx,y>m >0, then |pg(x) — pg(y)| < (g — DmT2|x — yl.

Lemma 2.5. (see [2]) Let E be a Banach spaces and K C E be a cone in E. Let v > 0 and QQ, = {x € K : ||x]| < r}.
Assume that S : Q, — K is a completely continuous operator such that Sx # x for x € 9Q),.

(1) IflISx|| < |lx]| for x € dQ,, then i(S,Q,, K) = 1.
(ii) IfNISxIl = llx]| for x € 9QY,, then i(S,Q,,K) = 0

For convenience, we introduce the following notations. Let

1 1 1
. by by } !
i= | @ivdt, A= | dAgs), Al = | tdAir), y = min , » Ni= '
z f0<p<> fo ©), A fo @ {a1+b1 2+ b (1= AT (B)

w, = 0 [ G s, N = T WD) f Gon(1,5)d
i= i /S S/ i = T A e, v i = S S
ai—ui Jo ° (I-A)TBi—-1) (@i + bi)ai — )
i t 7 7 7
io = lim M uniformly for t € [0, 1],

X1+x2+x3+x3—0 ¢Pz ( 4 x])

i tl 7 7 7
= lim JM uniformly for t € [0, 1],

X1+X2+X3+Xg—>00 qjlﬂi (Z?:l x]')

where i = 1,2, I'(-) is the Gamma function.
Now we present the Green’s functions associated with BVP (1)-(2).

Lemma 2.6. If ¢;,v; € LY(]) and Ui # ai, q;i > 1 (i = 1,2), then the boundary value problem

=Dg’ ui(t) = ¢y (vi(t), t €],
a;u;(0) — bzui(o) = j(; Pi(t)ui(t)dt, 3)
ui (1) = u;'(O) =

has a unique solution

1
uilt) = fo Hit, )by (o1(s))ds, @)

where

1 1
Hi(t, s) = Gy (t,s) + : f $i(€)Ga(c, s)dc, ()
a4 — Hi Jo

1

and

a;l(a;) 7
@t+b)(ai—D)(1=5)%2 0
ail'(a;) 7

(ait+bi)(@i—1)(1—s)% 2 —a;(t—s)% ! 0<s<t<
Gy (t,s) = (6)
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Proof. By applying Lemma (2.3), we have
ui(t) = =I5, (g (0i(1) + cio + cat + o, 7)

u/(1) = u’(0) = O yields that cp, = 0, ¢;i1 = Igfl (q)qi(vi(l))) . According to the second equation of (3), we have

1

1
aicio — bicn = f pi(Bui(t)dt = cip = %[bilgfl (‘%(01‘(1))) + f (Pi(f)ui(f)df]-
0 i 0

By (7), we have

1
ui(t) = — 1% (g, (0i()) + ‘[b,«lg";l (g (@i(1))) + fo @(t)ui(t)dt]ﬂgfl (o @) t,

_ 1
Ca ()

1
+ (a;t + b; )f (a; = 1A = s)%~ ¢q (v,(s))ds] f Qi(Hu;(t)dt

t t
- f (t = )y (0i(s)) ds + (@it + b) f (@i = 1)(1 = 82, (0i(s))ds

1 1 1
=f0 Ga,(t, 8)y, (v,-(s))ds+a—ij0‘ @i(t)u;(t)dt. (8)

Thus,

1 1 1
L(p(t)u&t)dtzfo Qi(t) [f G, (t,8)Py, (vis )ds+ (pi(t)ui(t)dt]dt

1 1 1
- fo (pi<t>( fo Ga )by (”f(s’)ds)d”;,. fo i)t fo i)t
implies that

f @il <t>dt—+ f @i(t) ( f Galt, )by, (0 s»ds) ©)

Substituting (9) into (8), we obtain
1 1 1
—y'f @i(t) (f Gy, (t,5)Py; (vi(s) )ds)dt

(€)Ga,(c, S)dc) Pq; (vils)) ds = f Hi(t, s)pg; (vi(s)) ds,

1
u;(t) =f(; G, (t, 8)py; (vi(s)) ds +

j: (Ga,(t s)

where Gy, (t,s) and H;(t, s) are defined by (5) and (6), respectively.
Now, we will prove the uniqueness of solution for BVP (3). In fact, let u;(t), U;(t) are any two solutions
of (3). Denote W;(t) = U;(t) — u;(t), then (3) be changed into the following system:

{ -Dj Wit) = te]

a;Wi(0) - bzw;<0> = [} pityWichyt,
WI(1) = W/(0) =

Similar to above arguement, we get W;(t) = 0, that is U;(t) = u;(t), which mean that the solution for BVPs
(3) is unique. The proof is completed. O

Similar to Lemma 2.6, we obtain the following Lemma.
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Lemma 2.7. If A; : [0,1] — R is a function of bounded variation with A; # 1,1 < p; <2 and w; € LY()(i=1,2),
then the boundary value problem

{ —Df vi(t) = wilt), te],

1 (10)
v[(0) =0, vi(1) = [] vi(s)dAi(s)
has a unique solution
1
o) = [ Kt e, ay
0
where
1 1
Ki(t,s) = Gg.(t,s) + TR f Gg,(7,8)dAi(T), (12)
- Ai Jo
and
(1—s)Pi~ 1 —(t—s)Pi~!
TG s<t<l,
G (t,5) = { (1—s)ﬁz‘£(ﬁi) (13)
TG 0<t<s<1

Throughout this paper, we need the following assumptions.
(Hy) a; < (a;—1)b;,i=1,2.
(H>) OS‘U,‘ <a;, 0<A; < 1,A:~ <A;,i=1,2.

(Hs) @i € LY(J,RY), f; € CUx(R%)* R,)and A; € C(J, R,) are nondecreasing functions of bounded variation,
and the integrals in (2) are Riemann-Stieltjes integrals, i = 1, 2.

Lemma 2.8. If (H1) holds, then the functions G,(t,s) and Gg(t,s)(i = 1,2) defined by (6) and (13) satisfy the
following

(1) Gy(t,s) € C([0,1] x [0,1]), Gy,(t,s) > 0forallt,s € (0,1).

@) 2298 < Gy (0,8) < Ga(t,5) < Gay(1,9) forall £, s € [0, 1].

@) 29 ¢ (10,11 x [0, 1]), 22 > 0 forall t, s € (0, 1).

o a;\br i \Us
4) Ga’t(ts) < aGb’_(Os) forallt, s €[0,1].

(5) % < G, (1,9) forall t,s € [0,1],

(6) Ggi(t,s) € C([0,1] x [0,1]), Gg,(t,s) > 0 forall t,s € (0,1).
(7) (Bi — 1A = 1)Ggp.(s,5) < Gpi(t,s) < Gg,(s,9) forall t, s € [0,1].

Proof. Now we shall prove (1)-(5). In fact, it follows from the definition of G,, and G, that G,, and Gg, are
continuous on [0,1] X [0, 1]. For 2 < a; < 3, since

3Ga(tys) _ [ Mol 5 0, 0<s<t<],
oF %20 0<t<s<l,
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and
Gu,(0,5) bi(ev; — 1)(1 — 5)%~2
Go,(1,5)  (a; + bi)(ai — 1)(1 — 5)%2 — (1 — s)1!
_ bi(a; —1) S bifai=1) _ _bi sel
(@ +bi)(ai=1) —ai(l=s) ~ (@ +b)ai=1) ai+bi
. 9Ga, (£5) . ) .. . b;Ga (L,5)
It is clear that —4— is continuous on [0,1] X [0,1] and G(t,s) is increasing on ¢ € [0,1]. So b S

Cal0,5) < Gall,5) < Ga(L,s)for () € [0.1]x[0, 1], and G (1) > G (0,5) = MO > O fort,s € (0, 1).
mce

32Gai(f, 5) _ —Ilz(ai—ll(it;i(;?))(t—s)“i—3 <0, 0<s<t<1,
ot? 0, 0<t<s<l.

i 9Ga; (t; G (t, 9G,. (0, G (0
It is clear that ’(ts) i (£8) (0s5) _ a ( ,5)

is decreasing on t € [0,1]. So —;— < —5— = for (¢,s) € [0,1] x [0,1], and
9G‘gft's) > aG"atl D > 0 for (t,5) € (0,1) x (0,1). In addition, for a; < (a; — 1)b,, s€[0,1),i=1,2, we have

biGa,(L,5) _ bi [(ai +b)(a; = 1)(1 —9)% 2 —g;(1 - S)ai—l]

2;:Go,(0,8) a:bi(a; — 1)(1 — g)—2
_ aila; +s—=2)+bi(ai—1) _ aia;+s—-2)+a; _ ai(a; —2) +a; _1
ai(a; — 1) - ailai=1) 7 alai—1)
0,G;(0,5)

Notice that G,,(0,1) = G,,(1,1) = < Gy,(1,s) holds for s € [0, 1].
In what follows, we show that (6) and (7) hold. Indeed, since

8Gﬁi(t,s)_{ —%sa 0<s<t<l,
o '

thatis, Gg,(t, s) is decreasing with respect to t € [0, 1]. So Gg,(t,s) > Gg.(1,s) = 0and Gg,(t,s) # Ofort,s € (0,1).
Therefore, G (t,s) > 0 for £,5 € (0,1). When 0 < t < s < 1, Gy (t,5) = Gy (s,5) = UL~ When 0 <s <t < 1,

b (a1 5o T(6)
Gy (t,s) = =2 *r(;f;-SV < (l?fﬁ»; = Gg,(s, 5). Therefore, Gg,(t,s) < Gg,(s,5) for t,s € [0,1]. In addition, when
0<s<t<1,thereexists € € [t —s,1 — 5] such that
1-s
(I=-sfl—(t-sfit=Bi -1 f P2dr = (B — Def2(1—s—t+5)
t—s

> (= D= H(1 =)' > (B =1)(A - )1 -5 >0

which implies that Gg,(t,s) > (8;: — 1)(1 — t)Gg,(s,s). When 0 <s <t =1, Gg,(t,s) = Gg,(1,8) = 0and (8; — 1)(1 -
1)Gg,(s,5) = 0. When 0 < t <5 < 1,Gg,(t,5) = Gy, (s5,5) = “rf;) .So we know that (8;—1)(1-H)Gj,(s,5) < G, (¢, 5)
for t,s € [0, 1]. Thus, the proof of Lemma 2.8 is completed. [

Lemma 2.9. Assume that (H1) and (Hy) hold. Then the functions Hi(t, s) and K;(t,s) (i = 1, 2) defined by (5) and
(12) satisfy the following properties:

(1) Hi(t,s) € C([0, 1] x [0,1]), Hi(t,s) > O forall t, s € (0, 1).

(2) (:,—ib(;;Za(,liL)) < Hi(t,s) < a’G (l,s) forallt, s € [0,1].

(3) #52 € C([0,11x[0,1]), %42 > 0 for all t, 5 € (0, 1).
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(4) s L 2009 g aint, s € [0,1].

(5) < Gy (1,s) forall t, s € [0,1].
(6) Ki(t,s) € C([0,1] x [0,1]), Ki(t,s) > O forall t, s € (0,1).

(A=A (Bi—1)Gg; (5,9) G/s,( s)
) Lot

(ai—1:)Ga; (0,9)
b;

(7 <Ki(t,s) < 5 foralltse[O 1].

Proof. By Lemma 2.8 and 0 < y; < a;, we have

a,(o s)

Hi(t,s) = Gg(t,s) (6)Ga(c,8)dc = Gy, (0,5) +
yl _ a;b;Gn,(1,5)
_G(OS)(1+ yi)_ai—yGa’(Os)_m’

and
1

H;(t,s) = Gy, (t,s) +

i

= Ga (1, s)(1+ Hi ):
_—

i 1

ai Ga; (1/ S)/
i

a; —

L. oHi(ts) _ 9G (tS)
which imply that (1)-(2) hold. =;

Ki(t,s) = Gg.(t,s) +

1 1
1—A‘f G, (T, 8)dAi(T)

Z(ﬁi—1>(1—t>cﬁi(s,s>+w f (1 = D)dA(D)

=(B; = 1)Gp,(s,5) (1—t+ % fo (1—T)dAi(T))
1

Gy(1,s 1
(Pi(C)Ga,-(C/ s)dc < Gg,(1,5) + a,i—y? f pi(c)dc
i i 0

and Lemma 2.8 yield that (3)-(5) hold.
Next, we prove that (6) and (7) hold. Indeed by Lemma 2.8 and 0 < A; < 1, we get

l. A= A)(Bi = )Gy ,9)
Z(‘Bl — 1)Gﬁi(S,S)(1 fA, - 1—;& ; ’l’dA( )) ( :(lﬁ x :(8,8
and
1
Ki(t,s) = Gg,(t,s) + ﬁf Gg,(7,5)dAi(T) < Ggi(s,3) ) f dA;(7)
A' G,‘ ’
= Gp(s9) (1 1A, ) - 15—(SAS,«)'

The proof is completed. [
Corollary 2.10. If0 < A; <1and A] < A;, then
Nl/ <Kit,s)<N;, i=1,2.
Proof. From Lemma 2.9, we have K;(t,s) < Gf"_(zs)
have

< e Let w(s) =

— A)Bi — - B)(1 —s)fi=3
(Az Az)(ﬁ(ll _1)A(2)r(ﬁ,61))(1 S) > O, = [O, 1), l - 1,2

Therefore, for s € [0, 1], we have K;(t,s) > w(s) > w(0) =

w'(s) =

A~
(1-A)T(Bi-1)”

(A=A, ) Bi— 1)Gﬁ, (s,5)

4297

(14)

orl <pf; <2, we

i =1, 2. The proof is completed. [J
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3. Main Results

In this section, we will discuss the existence and multiplicity of positive solutions to the BVP (1)-(2).

C[0, 1] with the norm |Jull = max;es |u(t)| is the Banach space. Let E be the Banach space of C![0,1]
endowed with the norm [|ull. = max{||u[le, [|t/'|l}. Thus, X = E X E is a Banach with the norm defined by
(i1, u2)ll = max{llusl., [fuzll.}, for (uq, uz) € X.

From Lemma 2.6 and Lemma 2.7, replacing w;(t) with A;fi(t, u1(t), ua(t), u;(t), uj(t)), i = 1,2, we obtain
the following lemma.

Lemma 3.1. Assume that y; # a; (i = 1, 2). Then BVP (1)-(2) have a pair of solutions (u1,uz) € X if and only if
(u1,u2) € X is a pair of solutions to the integral system

1 1
M,‘(t) = j(; Hi(t/ S)(Pq,‘ (Az j(; K,‘(S, T)fl (T/ ul(T)/ uZ(T)/ Mi(’f), u,z(T)) dT) dS, i= 1/ 2.

Define two scalar operators T; : X — Eand T> : X — E by

1 1
T1(u1, un)(t) = | Hi(t, s)pg, (Alfo Ki(s, 1) f1 (T,Hl(T)rMz(T)rui(T)/ué(T))dT)dS (15)

and

1 1
To(u, un)(t) = f Ha(t,8)g, (Az f Ko(s, 1) > (T, u1(7), ux(7), ui(7), Mﬁ(ﬂ) dT) ds. (16)
0 0
Now, we define an vector operator S : X — X by

S, w)(t) = (Ta(u, u)(®), a1, w2)(1), (17)
where T4 (u1, u2)(t) and T (11, uo)(t) are defined as (15) and (16), respectively.

We claim that whenever (13, u;) € X is a fixed point of the operator S defined in (17), it follows that

(u1(t), up(t)) is a pair of solutions for BVP (1)-(2). That is, a pair of functions (11, u2) € X is a pair of solutions

to BVP (1)-(2) if and only if (u1, u2) is a fixed point of the operator S defined in (17).
Define the cone K C X by

K = {(u1,u2) € X s 1z, ] 2 0, uy () + ua(t) 2 Yll(ur, w)ll, t € J, i =1, 2}, (18)
Lemma 3.2. If (Hy) holds, then |[u!llo < luillo and lJuill. = |[uillo, 1 =1, 2.
Proof. In view of (2) and (5) of Lemma 2.9, we have
1 1
u;(t) :f Hi(t,s)¢g (/\if Ki(s, 1) fi (T, u1(7), ux(7), ui (1), ué(’()) dT) ds
0
1
m f Guy(1,5),, ( f Ki(s, 1) f; (7, 11(7), u2(7), 1} (1), 15(7)) dT) ds
1
(az T b )(al — ) f Ga, (O s)(Pq, ( f K,‘(S, T)fl (T/ 51 (T)l MZ(T), Mi(’[), ué(T)) dT) ds

a;

- f Ga, (0, s)qbq,( f K,'(S,T)fi(T,u1(T),uz(’[),ui(’[),u'z(’[))d’[)ds, te[0,1].

Tai+ b
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By (4) of Lemma 2.9, we get

1
”f(t)‘fo JdH;(t, S)qqu( f Ki(s, 1) f; (T,ul(r),uz(f),u;(f),u;(r))df)ds

011

1
< f G, (0, s)qbq,( fo Ki(s,T)fi(T,ul(T),uz(T),u;(T),u;(T))df)ds, te[0,1].

From above two inequalities, we obtain

bi ., ,
ui(t) 2 a; + bi ui(t) 2 ui(t)l t € [01 1]/

which implies that [[t/[lc < |[tilleo. Thus, [[ull. = max{||tilleo, [l/lleo} = l[ttilleo. The proof is completed. [

Lemma 3.3. Assume that (H1)-(H3) hold, then the operator S : K — K defined by (17) is completely continuous.

Proof. According to (H1)-(H3), we know that Ti(u1, uz)(t), T:(u1, u2)(t) = [%[Ti(ul,uz)(t)] > 0 foreacht € ],
i=1,2. Fort € |, by Lemma 2.9 and Lemma 3.2, we have

T1(uy, uz)(t) + Ta(uq, u2)(t)

2 A1 1
:2[ Hi(t,s)¢g, (/\,-fo Ki(s, 7)fi (T, u1(7), ux(7), ui (1), u;(’[)) dr) ds

2 (al+b)(a, m f w(L, s)qbql( f Ki(s, 0 f; (1, 11 (x), ua(2), 1} (1), uz(’[))d’f)

f H; 1s¢q( f s,r)fi(T,ul(T),uz(r),u;(f),u;@))dz)ds

1
f Hi(t, s)%( f Kz‘(S,’L’)fi(T,u1(T),u2(T),ui(’t),ué(”[))d’r)ds

 Sup
a;i +bi e

i

i

Sy

2
i bi
it e = -

i=1 !

2
Y ITi(au1, )

i=1

Q
+

i

>y 2 ITiGatr, u2)lle > y max{ITs (1, )l I Tty 1)l
i=1

=yI(T1(u1, u2), To(ur, u2))ll = IS (u1, u2)ll,

which implies that S(K) C K. Let B be any bounded subset in X. By virtue of the Ascoli-Arzela theorem,
we need to show that S(B) is uniformly bounded in X and S : K — K is equicontinuous. In fact, if B is
bounded, then AR > 0, such that for all (11, uy) € B, we have ||(u1, u2)|| < R, that is ||u1|l. < R, |luz]l < R.
Since f; € C([0,1] x R}, R,), for some ¢; € L'[0,1] such that fi(t, u1, up, 1}, u}) < @i(t) for t € [0,1], we derive
from Corollary 2.10 that

1 1
0 <Ti(ur, un)(t) = fo H,-(t,s)(j)q,(/\i fo Ki(s,f)f,-(T,ul(r),m(T),u;(f),u;(f))ah)ds

. 1 ! i

a; Mlgdly (1 Cail(ei = Da + k][ Ml
aPT— [(1 - A,-)l"(ﬁl-)] fo Gai(1,9)ds = 20— u)D(a; + 1) [(1 - A,-)l“(ﬁi)] '
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which means that T;(B) is uniformly bounded in X. So S(B) is also uniformly bounded in X.

In what follows, we show that S : K — Kis equicontinuous. Indeed, from Lemma 2.9, we get H;(s, ) and

% are uniformly continuous on [0, 1]. Therefore, foralle > 0,46 = 6(¢) > Osuch thatforallty, t,, s € [0,1]

1

Aillpi Pl
< {,whereL; = [ Ll ] . For all

and |t — f| < 6, we have |H;(t1,s) — Hi(t,s)| < Li, and |w - %

(1-A)T'(B:)
(u1,u2) € B, we have

1 1
|Tiu1, u2)(t1) — Tilur, w)(h2)| - < l:mmb@—ﬂﬁbﬂ%(hi:m@ﬂﬁhﬂwmwuxﬁwmaﬂwﬁ%

1 1 , o Pt
Skﬁﬁ%@o(v%%m“%<ﬂa%%%ﬂ -

Similarly, we get T; (ug, up)(t1) — T; (1, u2)(t2)| < €. This means that T; : X — E is equicontinuous on [0, 1].
Therefore, S : X — X is equicontinuous on [0, 1]. The proof of Lemma 3.3 is completed. O

Theorem 3.4. Assume that (H1)-(Hs) hold. Assume further that the following conditions are satisfied:

(B1) There exist nonnegative functions a;(t) € L'(J)(i = 1,2) and nonnegative nondecreasing functions ;(i = 1,2)
with respect to each variable x; (j = 1,2,3,4) such that

Ifi(t, x1, %2, X3, %4) = fi(t, y1, Y2, y3, Ya)l S ai(B)Qi(lxr — yal, 12 — ol Ixs — yal, e —wal), i=1,2;
(By) There exist nonnegative functions bi(t), ci(t) € LY(J)(i = 1,2) such that

bi(t) < filt,x, y,z,w) < ci(t), (¢, xy,zw)e(0,1)x ]R‘_t, i=1,2;
(Bs) Foranys >0, i(s,s,s,s)<s, i=1,2.
Then we have drawn two conclusions as follows:

() Ifpi>2,i=1,2,then the BVP (1)-(2) have a pair of unique solutions for A; € (0, A}), where

1

;-1
ai — Wi .
— ] , 1i=1,2,
a;N; fo Gy, (1,5)ds

1 1 =2
N;.‘:(qi—l)NifO‘a,-(T)dT(N;jo‘ bi(’c)d’c) , i=1,2.

(i) If1<p; <2,i=1,2, then the BVP (1)-(2) have a pair of unique solutions for A; € (0, A7"), where

A =

#%
AT =

a lu ;i~1

i~ Wi .

— ] , 1=1,2,
a;N; fo Gy, (1,5)ds

1 1 qi=2
le*:(qi—l)Nij; ai(T)dT(N,'j; c,-(T)dT) , i=1,2

Proof. Now we prove that (i) holds. In this case p1, p» > 2, we have 1 < g1, g2 < 2. Defining the operator
5:X — Xas (17), we assert that the operator S : X — X is contraction. In fact, let (x1, 1), (x2, ¥2) € X, by
(14) and (B,), we have

1 1
fo Ki(s, 7) fi(t, 11(7), v (1), (1), ¥; (1) )dT = N fo bi(7)d.
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Thus, (B1) and (B3) associated with (7) of Lemma 2.4 yield

1 1
o ( fo 1<i<s,ﬂﬁ(m(r»yl(r»x;(my;<r>)d1)—qb,,,. ( fo Ki(S/T)fi(foz(T)/yz(T)/xé(T)/yﬁ(T))dT)

=(qi — D|N;

=N;ll(x1 = x2, 1 — y2)ll-

So it follows from above inequality and Lemma 2.9 that
ITiCxr, y1)(t) = Tilxz, y2)(B)]

1 1
A?i—lﬁ Hi(t,S)[Qi)qi (fo Ki(s, T)ﬁ(r,xl(’c), yi(1), x4 (1), yi(’c))dT)

1
. ( fo Ki(s, 7) fi(T, x2(1), 2 (1), %4(7), y’z(’[))d’[)]ds

aATTING ol
P f Gar (L, )dsllCrr — 22,1 — 2l
a; — Ui 0
aiN; ! #\g;—1 :
< m f Gay(1,8)ds X (AT lCer = x2, y1 = y2)ll = ll(x1 —x2, y1 = y2)ll, i=1,2.
i i Jo
Hence

1ISCx1, y1) = S(x2, y2)ll = H(Tl(xl,yl) = T1(x2, y2), To(x1, y1) — Ta(x2, yz))H

=max {[|IT1(x1, y1) — Ta(x2, y2)lls, IT2(x1, y1) — T2 (x2, y2)ll«}
<1 = x2, y1 = y2)ll = I1(x1, y1) — (x2, v2)II.

Therefore, we know that S : X — X is a contraction mapping. By Banach contraction principle, for A; < A
(i=1,2),S: X — X has a unique fixed point (u},u;) € X, which is a pair of solutions of BVP (1)-(2).
Similarly, we can easily show that (ii) holds. So we omit it. The proof is completed. [

Theorem 3.5. Assume that (H1)-(Hs) hold. If fl.o = f° = +oo and there exist constants p1,11,12 > 0 such that

filt, x1,%2,x3,%5) < Py (rip1),  (t,x1,%2,x3,%5) €[0,1] X [0, p1]*, i =1,2, (19)
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then BVP (1)-(2) have at leﬁst two pairs of positive solﬁtions W3, ud) and (u;}, u3) satisfying 0 < [|(ud, ud)|l < p1 <
|Gy, w3y)l| for any A; € (éi,/\i), where A, = (yM))1F, A; = (riMy)' .

Proof. Define the cone K C X and the operator S : X — X as (18) and (17), respectively. From Lemma 3.3,
we know that S : K — K is completely continuous. In view of fi0 = +oo, there exist 01 € (0,p1), L1 > 1 such
that 0 <uy +up +uj +u) <oy and

filt,u, a1, 15) 2 Ly, (un + 12 + 105 +103) 2 (1 +102), 0<E< L. (20)

Let Q,, = {(u1,u2) € K [[(u1, u2)l| < o1}. Then for each (u1, uz) € dQ,,, by Lemma 2.9, (14) and (20), we have

1 1
Ti(ur, u2)(F) = f Hi(t,s)%(m f Ki(s,z)fi(T,ul(z),uz(T),u;(T),u;(T))dT)ds

aibidpg, (A /
. mf G (1, )by, (N f Pp,(ur(7) +M2(T))d7)ds

_ aibi¢4i(N;)¢qi(Az
T @t b)) Jo Ga,(l,s)qbqi ( fo qbpi(u1(1)+u2(f))d1)ds

“ibi‘qu(N{)Ci’qi(Ai) 1 !
> m 0 Gai(l,S)CPqi (j; ¢p;(y||(u1/u2)||))dT)ds

= AT Mlu, )l > AT M, )l = e, ), i =1,2.
So || Ti(u1, u)ll. > [I(u1, up)ll for each (u1, uz) € dQ4,, i = 1,2. In consequence,
IS Qur, u2)ll = (T (w1, u2), Ta(ur, u2))ll = max{l|T1(ur, u2)lle, T2 (1, u)lle} > [1(u1, u2)ll,
which implies ||S(u1, up)|l > [[(u1, u2)l| for (us, uz) € dQ,,. Hence, according to Lemma 2.5, we obtain
i(S,Qy,, K) = 0. (21)
On the other hand, since f;° = +oo, there exist 03 > p1, L, > 1 such that u; + us + u] + u; > 03 and

filt, un, uz, uy, u5) > Loy, (u1 +up +uy + ué) > ¢p(uy +up), 0<t <1,

Let o, > 2;3 and Q,, = {(u1,u2) € K : ||(u1, u2)ll < 02}. Then for each (uy, uz) € dQ,,, we have uy(t) + ux(t) >
yll(u1, u2)ll = yoa = 203. Similar to Lemma 3.2, we get T;(uq, uz)(t) > (w1, u2)ll, i = 1,2. So ||Ti(uy, up)ll. >
[I(1, u2)|| for each (11, uz) € dQ,, which implies ||S(uy, u2)l| > [[(u1, u2)|| for (us, 12) € dQ,,. Hence, applying
Lemma 2.5, we also get

i(S,Qy,,K) = 0. (22)

Let Qp = {(u1, u2) € K : [[(u1, u2)ll < p1}. Then, for any (u1, us) € dQ,,, by Lemma 2.9, (14) and (19), we have

1 1
Ti(u1, u2)(t) = ¢qi(/\i)f H;(t, 8)pg, (f Ki(s, 1) fi (T/ (1), ua(7), ui(7), M'z(T))dT)dS

sz (A)
= = q m f Ga,(l S)¢q,( f prl(ripl d’t) ds

- 1% A) f Ga (1, 5y (Nichp(rip) s = oy (ADMirpy

= /\?’ ViMill(u1,u2)|| <A~ ViMiH(Ml,Mz)H = [|(u1, u2)ll-
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Consequently, [|S(u1, u)|| < [|(u1, u2)|| for (u1, uz) € dQ,,. Hence, in the light of Lemma 2.5, we also obtain

i(S,Q,,K) = 1. (23)

p1s
By (21)-(23) and noting that 01 < p; < 02, we obtain

i(S,Qp, \ﬁal,K) =1(5Q,,,K)-i(5Q,,K) =1,

i(S, ng\ﬁ K) = i(5,Qq,,K) = i(5,Q,,,K) = -1

prr

Therefore, S : X — X have both nonzero fixed points (”(1)/ ug) € Qp, \501 and (u}, u3) € Qy, \5p1. They are
two pairs of positive solutions of BVP (1)-(2) with 0 < ||(u(1), ug)ll < p1 <|l(u}, u3)ll- The proof of Theorem 3.5
is completed. [J

Theorem 3.6. Assume that (Hy)-(H3) hold. Iffi0 = f° = 0 and there exist constants py, my, my > 0 such that
filt, x1,%2,%3,%4) > Py, (mip2), (£, x1,%2,%3,x4) € [0,1] X [0, po]*, i = 11,2, (24)

then BVP (1)-(2) have at least two pairs of positive solutions (W, ud) and (u;, uy) satisfying 0 < [|(u, ud)ll < p2 <
(e, w3l for any A; € (©,, ©;), where ©, = (m;M,)' 7, ©; = (4M))' P, i =1,2.
Proof. Define the cone K C X and the operator S : X — X as (18) and (17), respectively. From Lemma 3.3,

we know that S : K — Kis completely continuous. In view of fio = 0, there exist 61 € (0, p2), 0 < €1 < 1 such
that for 0 < uy + up + 1} +uj < 61 and

,fl(tl Uy, Uy, Mi,u;) < 51(]5;7,‘ (1/[1 +ux + Mi + u,Q) < (Ppi(”ul”oo + ”u2”oo + “ulllloo + “1’6”00)
< dp(20l1mlle + l2lleo)) < by (411, w)ll), 0 < £ < 1. (25)

Let Qs, = {(u1, u2) € K : ||(u1, u2)ll < 61}. Then for each (11, up) € dQs,, by Lemma 2.9, (14) and (25), we have

1 1
Ti(u, up)(t) = ¢L7i(/\i)£ Hi(t, s)¢y, ([} Ki(s, 1)fi (T/ u1(7), ux(7), ui(7), M'z(T))dT)dS

i®g(Ai) [ 1
Sw fo Ga (1, 5)cby, (Ni fo ¢p,(4ll(u1,u2)||)dr)ds

a; — U
= 4Mipg, (A)I(u1, u)ll < 4Mi@?ﬁlll(u1,uz)ll =y, u)ll, i=1,2.
So || Ti(u1, u)ll. < [|(u1, up)ll for each (u1,uz) € dQs,, i = 1,2. Consequently,
IS Qur, u2)ll = (T (w1, u2), Ta(ur, u2))ll = max{l|T(ur, u2)lle, T2 (1, u)lle} < 11(u1, u2)ll,
which implies ||S(uy, u2)|| < |[(u1, u2)l| for (uy, uz) € dQs,. Hence, according to Lemma 2.5, we have
i(S,Q,,,K) = 1. (26)

On the other hand, since fi‘x’ =0, there exist 63 > p2, 0 < &2 < 1 such that uy + uy + 1} +uj > 63 and

filt 1n, 12,15, 13) < 2y, (1 + 10z + 105+ 113) < @y, (4w, w)ID), O£ <1,

Next the discussion is divided into two cases.
Case 1. Suppose that f; are bounded. In view of f; : [0,1] X Q — [0, o0) are continuous, there exists M} >
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0(i = 1,2) such that fi(t, u1, up, uj, u}) < ¢p,(M;) for all (¢, uy, uz, uj, u5) € [0,1] X [0, o0)*. Take 64 > max{%,(%}.
Then, for (11, uz) € K with ||(u1, u2)|| = 04, we get
1 1
T )0 = [ HG,90, (Ai | 565,95 (500, 1200160, 1300) dT) ds
0 0

< aipg, (M)

1
Pl | Gay (1, 9)g, (Nichy, (M))ds

*

= MiM;(P‘Ii(Ai) < TI <Oy =l(ur,ull, i=1,2.

Case 2. Suppose that f;are unbounded. In view of f; are continuous, thereexistt' € [0, 1]and 65 > max{03, p2}
such that fi(t, u1, us, uj, u) < fi(t', 65, 06s,0s,05) for all (t,u1, uz,uj,u5) € [0,1] X [0, 55]4, i = 1,2. Then, for
(ul, uz) € K with ||(M1,M2)|| = (55, we get

1 1
Ti(ulr Mz)(t) = qbﬂli(/\i) ]0‘ Hi(t/ s)qqu‘ (]O‘ Ki(s/ T)fl (T/ ul(T)r Mz(’[), Mi(T), M’Z(T)) dT) ds

1 1
S(pqi(/\i)fov Hi(f,S)(ﬁqi (L Kj(S,T)ﬁ (t’,65,65,65,65) d’[)ds

aiqbi(Ai) 1 1
Sﬁ S Ga,(1,8)¢py, (Ni‘fo ¢pi(4||(ulluz)||)dT)ds

i—1 .
= AMicg, (A1, wo)ll < 4MBT N (utr, u)ll = ll(uer, u)ll, i=1,2.

So, if we always choose (s, = {(u1, u2) € K : |[(u1, up)l| < 62 = max{d4, 05}, then we have ||S(u1, u2)|| < ||(u1, u2)l|
for (11, up) € dQs,. Therefore, by Lemma 2.5, we also get

i(S,Qy,, K) = 1. 27)

Let Qp, = {(u1,u2) € K : ||(u1, uz)ll < p2}. Then, for any (u1, u2) € dQ,,, similar to the above arguments, we
obtain

1 1
Ti(u1, uz)(t) =f0 H;(t, )y, (/\ifo Ki(s, 1) fi (Tﬂ«ll(T)r ua(1), 1 (1), “Q(T)) dT) ds

aibipy,(A) ! (!
> i .y G000 [ ontmenbn)a

= A My, )l > @0 My, )l = N, w)ll, i =1,2.
Consequently, [|S(uy, u2)|| > ||(u1, uz)ll for (u1, uz) € 9Q,,. Applying Lemma 2.5 again, we derive
i(S,Q,,,K) = 0. (28)
By (22)-(24) and noticing that 0; < p2 < 0,, we have
i(S,Q,p, \ Qs,, K) = i(S, Qp,,K) —i(5,Q;5,K) = -1,

i(S,Qs,\ Qp,, K) = i(S, Qs,, K) = i(S,Q,, K) = 1.

Therefore, S have both nonzero fixed points (u?, ug) € Q,, \551 and (uj, u;) € €y, \ﬁpz. They are two
pairs of positive solutions of BVP (1)-(2) with 0 < |I(u?, ug)ll < p2 < ||(u7, u3)ll. The proof of theorem 3.6 is
completed. O
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4. Illustrative Example

Consider the following BVP with p-Laplacian, for ¢t € | = [0, 1]:

D, (8 (D3, 100)) = it 1001, 1201, 50, 50),

s 7 (29)
Dy, (@ (Dg,120))) = Aot 10, 1201, 50,150
with the boundary value conditions
u1(0) — 2u7(0) = fol e“fur(tydt,  uwy(1) = uf(0) =
2u5(0) — 3uz(0) = fol(cost + Dua(H)dt,  uji(1) =uy(0) =
(30)

%@&@%ﬂ%@@@ﬂm»@d%MM)

Bp: (Do,120)) = [ 91 (D umwmm»(@J%wﬂw)
whereay =2, o =%,p=3, =5 =3 = = =b; =2,by =3, p1(t) = e, pa(t) = cost + 1
and A1 (t) = Ax(t) = % In addition, we set

—2t

fit, x1,x2,x3,X4) = [(xl + X0+ X3+ Xa)E 4+ (¥ X+ X3+ X4)2] ,

3200
o3t
folt, x1, %2, X3, Xx4) = 20000 [(xl + X2+ X3+ Xa)? (¥ + X+ X3+ X4)3]
Clearly, for t € [0,1] and x; > 0 (i = 1,2,3,4), fi(t,x1,x2,x3,%4) > 0, fo(t, x1,%2,%3,%4) > 0. By the simple
calculation, we get 0 < g = 1—% <l<m=1,0<puy=1-sinl<a=20<A;= % <1(i=12),

fio = f* =0 (i =12).Letp =1, because fi(t,x1,x2,x3,%4) is monotone increasing function for each
X1,%2,%x3,%4 > 0, taking r1 = 15, 2 = 555, for (t, x1, X2, x3,x4) € [0,1] X [0, 1]*, we have

N
Filt,x1, X0, %3, X4) < 32 0 5 (4% +42) ~ 0.0109 < ¢y, (r1p1) = (@) = 0.0250,
1
folt, x1,%2, X3, %4) < 20000 (47 +4%) = 0.0033 < ¢y, (rap1) = 555 = 000490,
a1, (N1) a1b1pg, (N7) 1
= G 1,8)ds ~ 3411709, M, = ——~ 1" | G, (1,5)ds ~ 7.3342,
—ur Jo w(1:9) L (@ + b)) — ) Jo m(1:)
a2¢4,(N: 1 a2brg, (N 1
M, = 2P (2) Gay(1,8)ds ~ 1744957, M} = 02029, (Ny) Ga,(1,5)ds ~ 12.5337.
a =t Jo (a2 + bp)(a2 — u2) Jo
Therefore,

= (YM)"P ~ 04767, A1 = (nM)' " ~ 2.1656,
7/ 1

= (yM})'7 2 0.1330, Ap = (rM,)' " ~ 1.4327.
2

Thus, all conditions of Theorem 3.5 hold. According to Theorem 3.5, when A; € (0.4767,2.1656) and
Az € (0.1330, 1.4327), BVP (29)-(30) have at least two pairs of positive solutions (u(l), ug) and (u], u5) satisfying
0 <1, udll < 1 < |I(usy, upll-

5. Conclusions

In this paper, we study the integral boundary value problem for a class of nonlinear fractional order
differential coupling system with eigenvalue argument and p-Laplacian. By the fixed point index theorem,
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some sufficient conditions have been obtained to ensure the existence and multiplicity of positive solution.
We also give the range of eigenvalue parameter. Compared with the single fractional differential equation,
the study of fractional order coupling system is more complicated and challenging since it is difficult to
find the Green function of system (1). Our results are new and interesting. Our methods can be used to
study the existence of positive solutions for the high order or multiple-point boundary value problems of
nonlinear fractional differential coupling system. However, there exist some difficulties and complexities
to address the structure of the Green’s function for these boundary value problems.
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