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Abstract. In this paper, we will study the endomorphisms of a certain crossed product.

1. Introduction

In the theory of Hopf algebras, crossed products introduced by Doi and Takeuchi ([8]) are very important
algebraic objects, which are associated to cleft extensions of Hopf algebras: indeed, a cleft extension is the
same as a crossed product with an invertible cocycle([3],[8]). The main properties of the crossed product in
the category of Hopf algebras were investigated by Agore ([2]), which pointed out that the crossed product
was a new Hopf algebra containing a normal Hopf subalgebra.

Radford’s biproducts are important Hopf algebras, which account for many examples of semisimple
Hopf algebras. In ([12]), Radford characterized the endomorphisms (resp. automorphisms) of biproducts.
Inspired by the Radford’s ideas in ([12]), the aim of this paper is to discuss the endomorphisms of the
crossed products.

The paper is organized as follows.

In Sec.2, we recall the notion of crossed products and other useful notations which we often use. The
focus of this paper is to characterize the endomorphisms of crossed products in Sec.3. As the application of
the main result of Sec.3, we shall give a concrete example, then using the primary method, we characterize
its endomorphisms and furthermore automorphisms.

2. Preliminaries

Throughout k is a field and all vector spaces are over k , though we use the redundant expression “over
k”quite often. For vector spaces U and V, we drop the subscript k from Homy (U, V), Endi(U) and U & V
and use idy; to denote the identity map of U.

Let (C,Ac, ec) be a coalgebra. We use a shorthand version of the Heyneman-Sweedler notation for
expressing the coproduct in writing Ac(c) = cqy ® c) for ¢ € C. For a coalgebra C and an algebra D over
k, we let “x” denote the convolution product of Hom(C, D). Refer to ([7]-[13]) for more knowledge about
Hopf algebras.
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Let H be a Hopf algebra and A an algebra. H measures A, if there is a linear map ¢p : H® A — A, written
by ¢(h ®a) = h - a, such that

h-1a =¢en(h)la and h-(ab) = (hq) - a)(he) - b),

forallhe H,a,b € A.
Assume that H measures A and that ¢ is an invertible map in Hom(H ® H, A). The crossed product Aff,H
of A with H is the set A ® H as a vector space, with multiplication

(atih)(bg) = a(hq) - b)o(hw), 90))EhE)90),

forallh,g € Hand a,b € A. Here we have written affh for the tensor a ® h. It can be proved that A}, H is an
associative algebra with identity element 1,#1 if and only if the following compatibility conditions hold:
lg-a=a,o(ly,h) =oh, 1) = eg(h)14 and

h-(g-a) = ohay, 90)hede - 0o~ (he), 93), 1

[hay - o(ga), lap]ohey, 9o)le) = o(hay, 9a))o(hege), 1), )

forallh,g,l € Hand a € A. Suppose that A is also a Hopf algebra and ¢, ¢ are coalgebra maps, then Afi,H
is a Hopf algebra if and only if the following two compatibility conditions hold:

ha) ®h) -a = he) ®hq) -a, 3)

hayga) ® o(he), 9¢2)) = he)ge) ® o(ha), 90)), (4)
forallh,g € Hand a € A. The antipode of A, H is given by

S(aih) = (Salo(Su(h)), h@)14SH(H)))(Sa(@)i1y),

forallh € Ha € A.

3. Factorization of Certain Crossed Product Endomorphisms

Let Afi;H be the crossed product. We define n : Aff;H — H by 7n(affh) = ea(a)h fora € Aand h € H
and j : H — Af,H by j(h) = 1afh for h € H are Hopf algebra maps which satisfy 7 o j = idy. We use
EndHopf(AﬁgH, 71) to denote the set of Hopf algebra endomophisms F of Afi,H satisfying o F = 7.

We define IT : Af,H — A and | : A — Af,H by Il(afh) = ac(ha), Su(h)), for alla € A,h € H and
J(a) = afily, for all b € A. There is a fundamental relationship between these four maps given by:

]OH:idAﬁJH*(]IOSHOTI). (5)
The factorization of F is given in terms of F; : A - A and F, : H — A defined by:
Fi=IloFo] and F,=1IloFoj. (6)

Lemma 3.1. Let F €Endpope(Af,H, 7). Then:
(a) foralla e A,

Fi(a)f1y = F(afilp). )
(b) forallh € H,

F,(#1y = F(Lalha))(1alSH(h))- 8)
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(c) if H is cocommutative, for all a € A and h € H, we have
F(afih) = F((@)F:(hay)o™" (he), S(he)ha.- ©)
Proof. We need to calculate | o ITo F. Fora € A and h € H, we compute

(J o TI)(F(alth))

=F((atih)1))(j © Sy o m)(F((ah)2)))
=F((aih)))(j o St © m)((alih)2)
=F(aq)#hq))(j o Su o m)(ap#hw)
=F(atthq))(1a#Su(h)).

G

~

Thus,
(J o TI)(F(ath)) = F(aha))(1afSu (),

foralla € A and h € H. Equations (7) and (8) follow from the above equation. As for (9), we calculate

F(afih) =F(afi1p)F(1afh)
=F(af11)F(Lafh)(1, 8Su (b)) (0 (ha), Sthe)) i)
=F(af11)F(Lafhw) (1, 8Su(he) (0~ (ha), Stha)) i)
=(Fi(@)§11)(Er(ha) i) (0" (), S(he))) )
=F)(a)F,(hqy)o~" (h), S(he))iha),

as desired. O

By (7) and (8) of Lemma 3.1:
(idpg, i =ida  and  (idag,p)r = 0(hq), Su(hE))- (10)
Since Fi(14) = 14 by (7) of Lemma 3.1. By (9) of Lemma 3.1, we have
F(1ath) = Fo(ha))o™ (), Sthe)h, (11)

for all h € H. We are now able to compute the factors of a composite.

Corollary 3.2. Let F,G eEndHopf(AﬁaH, 11). Assume that H is cocommutative. Then

(1) (F (] G)l = Fl ] Gl,
(2) (FoG), = (Fio(G, % (07" o (idy ® Sy) o An))) x F,

Proof. For b € A, by (7) of Lemma 3.1, we have
(Fo G(b)#1y = (F o G)(bf1) = F(Gi(b)1n) = (F1 0 G1)(b)#1n.

Thus, it follows that part (1) holds. Let # € H. Using (11) and the fact that F is multiplicative, and part (1)
of (7), we obtain that:

(FoG),(hay)a™" (b, Sr(ls))heay
=F o G(148h)
=F(G,(hq))o ™" (he), St () h)
=(Fi(G(ha)o™" (), Su(ha))B1a)(Fr(ha)o (hs), Sre)ihe)
=Fi(G(hw))o " (h), Su(ha))Fr(hay)o ™ (), Sue) ihe).

Applying ids ® ey to both sides of the above equation, we can get part (2). O
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Lemma 3.3. Let F eEndHopf(AﬁgH, 11). Assume that H is cocommutative. Then:

(1) F;: A — Ais an algebra endomorphism.
(2) EA OF[ = EA.
(3) forallbe A,

A(Fi(b)) = Fi(bay) ® Fi(be))-

(4) forallbe Aand h € H,

Fi(hqy - b)F,(h@)) = Fr(hay)o " (hw), Suhe))(ha - FiB))o(hes), Su(he))-

Proof. Fora,b e A, we have

Fy(ab) =(IT o F o ])(ab)
=T1(F(abf1ly)) = TI(F(aflp)F(b41x))

(7) =II((Fi@)#10)(F1(0)d1m)
=Fi(a)F\(D).

We compute the coproduct of Fi(b)§1y = F(b§1p) in two ways. First of all,
AFi(W)#1n) = (Fi(b)ayilm) ® (Fi(b)#1n)
and secondly, since F is a coalgebra map, we have

A(F(bi1m))
= F((b#f11)q)) ® F((bi1n)@)
= F(bay§1n) ® F(boy#iln)
= Fi(bay)#ly ® Fi(be)i1n.

It follows that

(Fi(b)yli1n) ® (Fi(b) o #1H) = Fi(ba))#ly ® Fi(be)ilh.

4310

(12)

(13)

(14)

Applying ids ® ey ® ids ® ey to both sides of (14) yields (12). It follows easily that €4 o F, = €4 from (11).

Fora,b e Aand h, g € H, we have

F((affh)(bg))
=F(a(hq) - b)o(he), 9a)8he)19@)
=Fi(a(hq) - b)o(h), 90)Frh@9@)0 " (iwg@), Sthegw)ihe ge)-

On the other hand, since F preserves the multiplication, we compute:

F((ath)(btg))
=F(afih)F(blig)
=(Fi(@)F,(h))o™" (@), S(ha))iha) Fi(b)F(90)0~" (92), S(93))9@)
=Fi(a)F:(h))o " (h), S(h3))

X (h - FO)FA90)0~ (92, S@@)) o), 9@)he 96)
=F)(a)F,(hy)o ™" (h), S(h)) () - Fib)Fr(90)))

X (h) - 07 (9), SN0y, g gs)-
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Applying ids ® ey to both expressions for F((ah)(big)), we obtain

Fi(a(hay - b)o(hey, gn) (e 9@)o ™ (hage), St g@)) (15)
=F)(a)F,(hqy)o~" (h), S(h)(ha - Fib)FA(gq)))
X (h) - 07(g), S(963)))0 (), ga)-
Taking a = 14 and g = 1y in (15) yields (13). O
Lemma 3.4. Let F eEndHopf(AﬂgH, 11). Assume that H is cocommutative. Then,
(1) F,(1y) = 14.
(2) forallh,g € H,
Fo(hg) =Fi(0™" (), 90))) Fr(h2))o ™ (hez), Sua)) (16)
X (hs) - Fg92)0™" (96, Su(@@))o(hs), 96)0 (g6, S 9)),
(3) F,: H — Aisa coalgebra map,
Proof. Takinga = b =1, in (15) yields (16). For h € H, we compute A(F(14#h)) in two ways as follows.
A(F(1a8h)) =F(1alh)) ® F(1afh)
=F,(h))o™" (he), S(ha))h@ ® F(hs)o ™ (he), S(hay)) ).
On the other hand,
A(FQLatih)) =AF,(hay)o™ (), S(h)iha)
=(F:(ha))yo~ (he), S(he)) oy ihe)
® (F(ha) o (he), S(he))e)the)-
Applying ids ® ey ® id, ® ey to the expressions for A(F(1p4h)) gives part (3). [
The following theorem characterizes the element of Endpjom(Af#l-H).

Theorem 3.5. Let A#§,H be a crossed product and H a cocommutative Hopf algebra, let 7 : Afj,H — H be the
projection from A#,H onto H, and let Fpp be the set of pairs (L,R), where L : A - A, R : H — A are
maps which satisfy the conclusions of Lemma 3.3 and Lemma 3.4 for F; and F,, respectively. Then the function
® : Fa iy —Enduope(Afl.H, 1), described by (£, R) = F, where

F(ah) = Fi(a)F(hay)o ™" (hey, S(he))he),
foralla € Aand h € H, is a bijection. Furthermore, F; = Land F, = R.

Proof. We define W :Endpope(Afl,H, 1) — Fau by W(F) = (ITo Fo J,ITo F o j). Itis easily proved that ® and
W are mutually inverse.
It is easy to see that 7t o F = 7. Note that F(14#1y) = 141y and

e(F(ath)) =e(L(a @)R(hq))8B(h))
=ea(L(a™ @)R(h)en(Bhe))
=e4(L(a " (@))eaRhy)en(Bh)
=ea(a)en(h),

fora e Aand h € H whichmeans ¢ o F = ¢.
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Fora,b e Aand h, g € H, we have

F((aih)(blg))
=F(a(hq) - b)o(he), 9a)Hhe)19@2)
=Fi(a(hq) - D)o (hey, ga))Fr s 9e)0 " (g, Sulhegw)ihege)
=Fy(@)Fi(hq) - b)Fi(0(he), 90))Fr(h392)0 " (hwge), Sulie9@)ihe 96)
=Fy(@)Fi(hqy - b)F(he))o~" (h), Su(h))

X (h) - Fr(90)0™ (g), Sulhe))ohey, ge)he g
=Fi(@)F,(ha)o~" (h), Suha))

X (h) - Fi0))(hes) - Fi(91)o (9, Su(be)o(h), 96) e 9y
=Fi(a)F:(h))o ™" (h), Su(h))

X (h - EO)FA90)0 " (9), Suhs)alhe), 93)Eha) 9@
=F(afth)F(blg)

Therefore, F is an algebra morphism. Since

A(F(afth))

=AF(@)F(ha))o (h), She))iha)

=Fy(aq))Fr(h@)o ™ (he), S(he)iha ® Fi(ae)Fr(h)o ™ (he), Sthe))he)
=F(bhw)F (b he),

we have shown that Ao F = (F® F) o A. The other conditions which make F €End Hopf(AﬁgH, 77) can be
checked easily. Thus the proof is completed. [J

4. The Special Crossed Product

In this section, we shall construct a special crossed product, and describe its endomorphisms.
Example 4.1. Let A be the Sweedler’s Hopf algebra over the complex number field C which is described as follows:
A=Cc< 1A,g,x,gxlg2 =1,x*= 0,xg =—gx >

“Land Sa(x) = —gx.

with coalgebra structure Ay (g) = g®g, Aa(x) = x@1+g®x, ea(g) =1, ea(x) = 0,54(9) =
= h ,eu(h) = 1. Define

Let H = C < 14, h > be the group Hopf algebra with h? =1y, Ag(h) = h®h, Sy(h)
the action of H on A as follows:

9)=9
h=

lg-1a=141g-x=x1g-9=9,15 - x9 = xg,

\/Eﬂj \/E

h'lAzlA’h'g:g/h‘szE‘l x+7€%ixg/
e Ve, Vs
X9 = €4x+764 xg

Define C-bilinear maps 0 : H® H — A as follows:

G(lH, 1H) = G(lH,h) = O'(h,lH) = 1A,O(h,h) =g
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Then we have a crossed product Afl,H which is Hopf algebra with the tensor coalgebra and the antipode S of Afl,H

given by

S(gth) = 1ath, S(gxtly) = x#1n, S(gxth) = (?e%g

Now, we shall characterize the element of EndHopf(AiigH, 71). Take a base of End(A) as follows:

L
L
L3
Ly
Ls
L
Ly
Ls
Lo
Lo
L
L
L3
E
Lis
Lis

Next, we shall consider F; €End(A) which satisfies the conditions of Lemma 3.3. Let

S(1a#ln) = 1af1n, S(Lalih) = ghh, S(x#1y) = —gxfily,

V2 o

(et =(=-

dg > 14,9 0,x—>0,9x— 0,
14— 0,9 14,x-0,9x =0,
d4= 0,9 0,x—>14,9x >0,
d4=0,9-0,x—0,9x > 1,4,
dg4—g9,9-0,x—0,9x =0,
1409~ g9x-0,9x—> 0,
d4 =0, 0,x—>g,9x= 0,
d4—>0,g—0,x—0,9x— g,
dg—>x,9-0,x—0,9x— 0,
dg—>0,g>xx-0,9x—>0,
d4—=0,g-0,x—>x,9x—0,
d4—=0,g-0,x—0,9x— x,
Ag—=gx, g 0,x—0,9x =0,
dg=0,g>gx,x—0,9x = 0,
d4—= 0,9 0,x- gx,gx = 0,

140, 0,x— 0,9x > gx.

16
F = Z ki L.
P

So we have

Fi(14) = kila + ksg + kox + ky3gx,
Fi(g) = ko1a + keg + kiox + kiagx,
Fi(x) = ks1a + k7g + kinx + kisgx,

Fi(gx) = kqla + ksg + kiox + kisgx.

efigx - —=eF0h, S@L) = L,

V2 .

X — ——et
2

ix)gh.

First, by (2) of Lemma 3.3 and applying to g, we have k; + k¢ = 1. By (1) of Lemma 3.3, Fi(14) = 14. Thus it
follows that k; = 1,ks = ko = ki3 = 0. Since F; preserves the multiplication, we have 14 = Fi(gg) = Fi(9)Fi(9),
which yields the following equations:

(R1)
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That F;(x)Fi(x) = 0 yields

k+k =0,

ksk; =0,

kski1 =0, (R2)
k3k15 =0.

That F;(gx)Fi(gx) = 0 yields

ki +ki=0,

k4k3 = O,

ksk12 =0, (R3)
k4k16 =0.

That F;(g)Fi(x) = Fi(gx) yields

k2k3 + k6k7 = k4,
kokz + keks = ks,

R4
koki1 + kekis + kskio — k7kia = kqo, (R4)
kokis + kek1 + kakia — kiok7 = k.
That F;(x)Fi(g) = —Fi(gx) yields
k2k3 + k6k7 = —k4,
kok7 + keks = —ks, (R5)

koki1 — kekis + kskio + kzkia = —k12,
kokis — kek1 + kakia + kiok7 = —ki.

4314

By (R5) and (R4), we can get k4 = kg = 0, thus (R3) naturally holds. That F;(x)F;(gx) = Fi(9x)F(x) = 0 yield

kskis + k7ki6 = 0,
kskig + k7ki = 0,
kskiz = k7ki6 = 0,
kzki2 — kski = 0.

(R6)

That F;(g)Fi(gx) = Fi(x) and Fi(gx)Fi(g) = —F(x) yield

kokia + keki = k11,

kokie + kek12 = ks,

k3 = k7 = 0, (R7)
kokiy — kekig = k11,

kokie — keki = k5.

Applying part (3) of Lemma 3.3 to g, we have the following relations:

kio = ks =0,
k2 =k,

k% = k6,

kokeg = 0.

(R8)

Applying part (3) of Lemma 3.3 to gx yields

ki =0,
kie = kigks,  (R9)
kokig = 0.



Q. G. Chen / Filomat 32:12 (2018), 43074317 4315

Applying part (3) of Lemma 3.3 to x yields

kis =0,
ki1 = ky1ks, (Rl())
kok11 = 0.

By (Rl)-(RlO), we can get k1 = 1, k3 = k4 = k5 = k7 = kg = kg = k10 = k12 = k13 = k14 = k15 = 0, and

ko +k2=1,
koke = kokin = kokis = 0,
ki1 = keki1 = kigke = kie.
Thus
F:1ly 1A/g — k21A + kég,x — knx,gx (4 k16gx.

Case 1: If k; = 0, then k¢ = 1 and kq; = ky¢ are arbitrary complex number. Thus
Fi:lpy- 14,90 g,x 5 tx, gx = tgx,

where t € C.
Case 2: If kg = 0, then we have ko = 1 and kg = k11 = k1 = 0. Thus

Fiilgm—=1a,9-14,x-0,9x - 0.

Next, we shall describe all F, eHom(H, A) which satisfy the conditions of Lemma 3.4. Take a base of
End(H, A) as follows:

Ri1g—>14,h—>0,
Ro 1y = 0,h— 14,
Rs:lp =g h—0,
Ry lg—=0,h—>yg,
Rs:1lg— x,h— 0,
Re: 1y 0,h > x,
Ry 1g = gx,h =0,
Rs 1y 0,k — gx.

By part (1) of Lemma 3.4, it follows that k; = 1,k3 = k5 = k; = 0. Thus we have
Fr(h) = kglA + k4g + k(,.’x + kggx.

Using €4 o F, = ey, we have ky + k4 = 1. Applying part (3) of Lemma 3.4 to &, we can gain the following
relations:

k6 = kg = O,
ky = kg,
ke = K.

Furthermore, such F, which satisfy the above relations will be

(Fh =R+ Ry, (Fr)o = Ry + Ry
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Concretely,
(Fohilg > 1a,h > 1y,
Elg=14,h > g.

Now, we shall consider the pair (F;, F,) which satifies the part (4) of Lemma 3.3. After careful discussion,
we can get the following pairs:

(1°) Fi:lam 14,9 14,x-0,9x 0,
F,, : 1H [ ad 1A,h [ ad 1A‘

2°) Fr:lam a9 14,x- 0,9x - 0,
Fo:lg1a,h- 9.

(3°) Fr:la=1a,9=g9,x-0,9x— 0,
F, g - 1A,]’l = 14.

) Fi:lpe= 14,90 g,x - tx, gx v tgx,
Fo:lg—la,h—g.

Observe that (3°) and (4°) satisfy the condition (3.12). By Theorem 3.5, we can get the elements of
Endpope(Aff,H, 1) as follows:

F: 121y — 14815,
1ah — glih,
9#ln — g1y,

gtth = 1a8h,
xfly — 0,
xh = 0,
gxfily - 0,
gxfh — 0.
and

F: 181y > 1481y,
1Aﬁh = 1Aﬁh,
gily - gily,

ghh — gth,
xfly > txlfly,
xfh v~ txth,
gxfly = tgxfily,
gxth — tgxfih.

Furthermore, the matrices of the elements of Endpops(Afl;H, 1) under the base 14815, 148k, g1y, ghth, x§1y, xth, gxly, gxgh
are

1 00 0O0O0O0O 10 00 0O0O0O
0 0010O0O00O0 01 00O0O0GO0OTO
001 0O0O0O0O O 001 0O0O0O0TO0
01 00O0O0O0OTGO 000 10O0O0TO0
0 000O0O0OOOJ))J]OOOOTtLOO0OO
0 000OO0OO0OGO0OTP O 0 000O0OTtE OO
0 000OO0OTO0OTP O 0 000O0O0O0OTLLO
000 O0OO0OTO0OTP O 000 O0O0O0O0t
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Thus AutHopf(AﬁgH, ) is isomorphic to

1 0000 O0O0O
010 0 00 0O
001 0O0O0O0TO0
00 01O0O0O0TO0
10000 ¢00o0lf0#tcCh
00 0 0 O0 ¢t 0O
00 0 0 O0O0 ¢t O
00 0 0 0 O0 0 t
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