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Abstract. In this paper, we will study the endomorphisms of a certain crossed product.

1. Introduction

In the theory of Hopf algebras, crossed products introduced by Doi and Takeuchi ([8]) are very important
algebraic objects, which are associated to cleft extensions of Hopf algebras: indeed, a cleft extension is the
same as a crossed product with an invertible cocycle([3],[8]). The main properties of the crossed product in
the category of Hopf algebras were investigated by Agore ([2]), which pointed out that the crossed product
was a new Hopf algebra containing a normal Hopf subalgebra.

Radford’s biproducts are important Hopf algebras, which account for many examples of semisimple
Hopf algebras. In ([12]), Radford characterized the endomorphisms (resp. automorphisms) of biproducts.
Inspired by the Radford’s ideas in ([12]), the aim of this paper is to discuss the endomorphisms of the
crossed products.

The paper is organized as follows.
In Sec.2, we recall the notion of crossed products and other useful notations which we often use. The

focus of this paper is to characterize the endomorphisms of crossed products in Sec.3. As the application of
the main result of Sec.3, we shall give a concrete example, then using the primary method, we characterize
its endomorphisms and furthermore automorphisms.

2. Preliminaries

Throughout k is a field and all vector spaces are over k , though we use the redundant expression “over
k”quite often. For vector spaces U and V, we drop the subscript k from Homk(U,V), Endk(U) and U ⊗k V
and use idU to denote the identity map of U.

Let (C,∆C, εC) be a coalgebra. We use a shorthand version of the Heyneman-Sweedler notation for
expressing the coproduct in writing ∆C(c) = c(1) ⊗ c(2) for c ∈ C. For a coalgebra C and an algebra D over
k, we let “?” denote the convolution product of Hom(C,D). Refer to ([7]-[13]) for more knowledge about
Hopf algebras.
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Let H be a Hopf algebra and A an algebra. H measures A, if there is a linear map φ : H⊗A→ A, written
by φ(h ⊗ a) = h · a, such that

h · 1A = εH(h)1A and h · (ab) = (h(1) · a)(h(2) · b),

for all h ∈ H, a, b ∈ A.
Assume that H measures A and that σ is an invertible map in Hom(H⊗H,A). The crossed product A]σH

of A with H is the set A ⊗H as a vector space, with multiplication

(a]h)(b]1) = a(h(1) · b)σ(h(2), 1(1))]h(3)1(2),

for all h, 1 ∈ H and a, b ∈ A. Here we have written a]h for the tensor a ⊗ h. It can be proved that A]σH is an
associative algebra with identity element 1A]1H if and only if the following compatibility conditions hold:
1H · a = a, σ(1H, h) = σ(h, 1H) = εH(h)1A and

h · (1 · a) = σ(h(1), 1(1))(h(2)1(2) · a)σ−1(h(3), 1(3)), (1)

[h(1) · σ(1(1), l(1))]σ(h(2), 1(2)l(2)) = σ(h(1), 1(1))σ(h(2)1(2), l), (2)

for all h, 1, l ∈ H and a ∈ A. Suppose that A is also a Hopf algebra and φ, σ are coalgebra maps, then A]σH
is a Hopf algebra if and only if the following two compatibility conditions hold:

h(1) ⊗ h(2) · a = h(2) ⊗ h(1) · a, (3)

h(1)1(1) ⊗ σ(h(2), 1(2)) = h(2)1(2) ⊗ σ(h(1), 1(1)), (4)

for all h, 1 ∈ H and a ∈ A. The antipode of A]σH is given by

S(a]h) = (SA[σ(SH(h(2)), h(3))]]SH(h(1)))(SA(a)]1H),

for all h ∈ H, a ∈ A.

3. Factorization of Certain Crossed Product Endomorphisms

Let A]σH be the crossed product. We define π : A]σH → H by π(a]h) = εA(a)h for a ∈ A and h ∈ H
and j : H → A]σH by j(h) = 1A]h for h ∈ H are Hopf algebra maps which satisfy π ◦ j = idH. We use
EndHopf(A]σH, π) to denote the set of Hopf algebra endomophisms F of A]σH satisfying π ◦ F = π.

We define Π : A]σH → A and J : A → A]σH by Π(a]h) = aσ(h(1),SH(h(2))), for all a ∈ A, h ∈ H and
J(a) = a]1H, for all b ∈ A. There is a fundamental relationship between these four maps given by:

J ◦Π = idA]σH ? ( j ◦ SH ◦ π). (5)

The factorization of F is given in terms of Fl : A→ A and Fr : H→ A defined by:

Fl = Π ◦ F ◦ J and Fr = Π ◦ F ◦ j. (6)

Lemma 3.1. Let F ∈EndHopf(A]σH, π). Then:

(a) for all a ∈ A,

Fl(a)]1H = F(a]1H). (7)

(b) for all h ∈ H,

Fr(h)]1H = F(1A]h(1))(1A]SH(h(2))). (8)
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(c) if H is cocommutative, for all a ∈ A and h ∈ H, we have

F(a]h) = Fl(a)Fr(h(1))σ−1(h(2),S(h(3)))]h(4). (9)

Proof. We need to calculate J ◦Π ◦ F. For a ∈ A and h ∈ H, we compute

(J ◦Π)(F(a]h))
(5) =F((a]h)(1))( j ◦ SH ◦ π)(F((a]h)(2)))

=F((a]h)(1))( j ◦ SH ◦ π)((a]h)(2))
=F(a(1)]h(1))( j ◦ SH ◦ π)(a(2)]h(2))
=F(a]h(1))(1A]SH(h(2))).

Thus,
(J ◦Π)(F(a]h)) = F(a]h(1))(1A]SH(h(2))),

for all a ∈ A and h ∈ H. Equations (7) and (8) follow from the above equation. As for (9), we calculate

F(a]h) =F(a]1H)F(1A]h)

=F(a]1H)F(1A]h(1))(1A]SH(h(5)))(σ−1(h(3),S(h(2)))]h(4))

=F(a]1H)F(1A]h(1))(1A]SH(h(2)))(σ−1(h(3),S(h(4)))]h(5))

=(Fl(a)]1H)(Fr(h(1))]1H)(σ−1(h(2),S(h(3)))]h(4))

=Fl(a)Fr(h(1))σ−1(h(2),S(h(3)))]h(4),

as desired.

By (7) and (8) of Lemma 3.1:

(idA]σH)l = idA and (idA]σH)r = σ(h(1),SH(h(2))). (10)

Since Fl(1A) = 1A by (7) of Lemma 3.1. By (9) of Lemma 3.1, we have

F(1A]h) = Fr(h(1))σ−1(h(2),S(h(3)))]h(4), (11)

for all h ∈ H. We are now able to compute the factors of a composite.

Corollary 3.2. Let F,G ∈EndHopf(A]σH, π). Assume that H is cocommutative. Then

(1) (F ◦ G)l = Fl ◦ Gl,
(2) (F ◦ G)r = (Fl ◦ (Gr ? (σ−1

◦ (idH ⊗ SH) ◦ ∆H))) ? Fr

Proof. For b ∈ A, by (7) of Lemma 3.1, we have

(F ◦ G)l(b)]1H = (F ◦ G)(b]1) = F(Gl(b)]1H) = (Fl ◦ Gl)(b)]1H.

Thus, it follows that part (1) holds. Let h ∈ H. Using (11) and the fact that F is multiplicative, and part (1)
of (7), we obtain that:

(F◦G)r(h(1))σ−1(h(2),SH(h(3)))]h(4)

=F ◦ G(1A]h)

=F(Gr(h(1))σ−1(h(2),SH(h(3)))]h(4))

=(Fl(Gr(h(1))σ−1(h(2),SH(h(3))))]1H)(Fr(h(4))σ−1(h(5),SH(h(6)))]h(7))

=Fl(Gr(h(1))σ−1(h(2),SH(h(3))))Fr(h(4))σ−1(h(5),SH(h(6)))]h(7).

Applying idA ⊗ εH to both sides of the above equation, we can get part (2).



Q. G. Chen / Filomat 32:12 (2018), 4307–4317 4310

Lemma 3.3. Let F ∈EndHopf(A]σH, π). Assume that H is cocommutative. Then:

(1) Fl : A→ A is an algebra endomorphism.
(2) εA ◦ Fl = εA.
(3) for all b ∈ A,

∆(Fl(b)) = Fl(b(1)) ⊗ Fl(b(2)). (12)

(4) for all b ∈ A and h ∈ H,

Fl(h(1) · b)Fr(h(2)) = Fr(h(1))σ−1(h(2),SH(h(3)))(h(4) · Fl(b))σ(h(5),SH(h(6))). (13)

Proof. For a, b ∈ A, we have

Fl(ab) =(Π ◦ F ◦ J)(ab)
=Π(F(ab]1H)) = Π(F(a]1H)F(b]1H))

(7) =Π((Fl(a)]1H)(Fl(b)]1H))
=Fl(a)Fl(b).

We compute the coproduct of Fl(b)]1H = F(b]1H) in two ways. First of all,

∆(Fl(b)]1H) = (Fl(b)(1)]1H) ⊗ (Fl(b)(2)]1H)

and secondly, since F is a coalgebra map, we have

∆(F(b]1H))
= F((b]1H)(1)) ⊗ F((b]1H)(2))
= F(b(1)]1H) ⊗ F(b(2)]1H)
= Fl(b(1))]1H ⊗ Fl(b(2))]1H.

It follows that

(Fl(b)(1)]1H) ⊗ (Fl(b)(2)]1H) = Fl(b(1))]1H ⊗ Fl(b(2))]1H. (14)

Applying idA ⊗ εH ⊗ idA ⊗ εH to both sides of (14) yields (12). It follows easily that εA ◦ Fr = εA from (11).
For a, b ∈ A and h, 1 ∈ H, we have

F((a]h)(b]1))
=F(a(h(1) · b)σ(h(2), 1(1))]h(3)1(2))

=Fl(a(h(1) · b)σ(h(2), 1(1)))Fr(h(3)1(2))σ−1(h(4)1(3),S(h(5)1(4)))]h(6)1(5).

On the other hand, since F preserves the multiplication, we compute:

F((a]h)(b]1))
=F(a]h)F(b]1)

=(Fl(a)Fr(h(1))σ−1(h(2),S(h(3)))]h(4))(Fl(b)Fr(1(1))σ−1(1(2),S(1(3)))]1(4))

=Fl(a)Fr(h(1))σ−1(h(2),S(h(3)))

× (h(4) · Fl(b)Fr(1(1))σ−1(1(2),S(1(3))))σ(h(5), 1(4))]h(6)1(5)

=Fl(a)Fr(h(1))σ−1(h(2),S(h(3)))(h(4) · Fl(b)Fr(1(1)))

× (h(5) · σ
−1(1(2),S(1(3))))σ(h(6), 1(4))]h(7)1(5).
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Applying idA ⊗ εH to both expressions for F((a]h)(b]1)), we obtain

Fl(a(h(1) · b)σ(h(2), 1(1)))Fr(h(3)1(2))σ−1(h(4)1(3),S(h(5)1(4))) (15)

=Fl(a)Fr(h(1))σ−1(h(2),S(h(3)))(h(4) · Fl(b)Fr(1(1)))

× (h(5) · σ
−1(1(2),S(1(3))))σ(h(6), 1(4)).

Taking a = 1A and 1 = 1H in (15) yields (13).

Lemma 3.4. Let F ∈EndHopf(A]σH, π). Assume that H is cocommutative. Then,

(1) Fr(1H) = 1A.
(2) for all h, 1 ∈ H,

Fr(h1) =Fl(σ−1(h(1), 1(1)))Fr(h(2))σ−1(h(3),SH(h(4))) (16)

× (h(5) · Fr(1(2))σ−1(1(3),SH(1(4))))σ(h(6), 1(5))σ(h(7)1(6),SH(h(8)1(7))),

(3) Fr : H→ A is a coalgebra map,

Proof. Taking a = b = 1A in (15) yields (16). For h ∈ H, we compute ∆(F(1A]h)) in two ways as follows.

∆(F(1A]h)) =F(1A]h(1)) ⊗ F(1A]h(2))

=Fr(h(1))σ−1(h(2),S(h(3)))]h(4) ⊗ Fr(h(5))σ−1(h(6),S(h(7)))]h(8).

On the other hand,

∆(F(1A]h)) =∆(Fr(h(1))σ−1(h(2),S(h(3)))]h(4))

=(Fr(h(1))(1)σ
−1(h(2),S(h(3)))(1)]h(4))

⊗ (Fr(h(1))(2)σ
−1(h(2),S(h(3)))(2)]h(5)).

Applying idA ⊗ εH ⊗ idA ⊗ εH to the expressions for ∆(F(1B]h)) gives part (3).

The following theorem characterizes the element of EndHom(A]σH).

Theorem 3.5. Let A]σH be a crossed product and H a cocommutative Hopf algebra, let π : A]σH → H be the
projection from A]σH onto H, and let FA,H be the set of pairs (L,R), where L : A → A, R : H → A are
maps which satisfy the conclusions of Lemma 3.3 and Lemma 3.4 for Fl and Fr, respectively. Then the function
Φ : FA,H →EndHopf(A]σH, π), described by (L,R) 7→ F, where

F(a]h) = Fl(a)Fr(h(1))σ−1(h(2),S(h(3)))]h(4),

for all a ∈ A and h ∈ H, is a bijection. Furthermore, Fl = L and Fr = R.

Proof. We define Ψ :EndHopf(A]σH, π)→ FA,H by Ψ(F) = (Π ◦ F ◦ J,Π ◦ F ◦ j). It is easily proved that Φ and
Ψ are mutually inverse.

It is easy to see that π ◦ F = π. Note that F(1A]1H) = 1A]1H and

ε(F(a]h)) =ε(L(α−1(a))R(h(1))]β(h(2)))

=εA(L(α−1(a))R(h(1)))εH(β(h(2)))

=εA(L(α−1(a)))εA(R(h(1)))εH(β(h(2))
=εA(a)εH(h),

for a ∈ A and h ∈ H which means ε ◦ F = ε.
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For a, b ∈ A and h, 1 ∈ H, we have

F((a]h)(b]1))
=F(a(h(1) · b)σ(h(2), 1(1))]h(3)1(2))

=Fl(a(h(1) · b)σ(h(2), 1(1)))Fr(h(3)1(2))σ−1(h(4)1(3),SH(h(5)1(4)))]h(6)1(5)

=Fl(a)Fl(h(1) · b)Fl(σ(h(2), 1(1)))Fr(h(3)1(2))σ−1(h(4)1(3),SH(h(5)1(4)))]h(6)1(5)

=Fl(a)Fl(h(1) · b)Fr(h(2))σ−1(h(3),SH(h(4)))

× (h(5) · Fr(1(1))σ−1(1(2),SH(h(6))))σ(h(7), 1(3))]h(8)1(4)

=Fl(a)Fr(h(1))σ−1(h(2),SH(h(3)))

× (h(4) · Fl(b))(h(5) · Fr(1(1)))σ−1(1(2),SH(h(6)))σ(h(7), 1(3))]h(8)1(4)

=Fl(a)Fr(h(1))σ−1(h(2),SH(h(3)))

× (h(4) · Fl(b)Fr(1(1)))σ−1(1(2),SH(h(5)))σ(h(6), 1(3))]h(7)1(4)

=F(a]h)F(b]1)

Therefore, F is an algebra morphism. Since

∆(F(a]h))

=∆(Fl(a)Fr(h(1))σ−1(h(2),S(h(3)))]h(4))

=Fl(a(1))Fr(h(1))σ−1(h(2),S(h(3)))]h(4) ⊗ Fl(a(2))Fr(h(5))σ−1(h(6),S(h(7)))]h(8)

=F(b(1)]h(1))F(b(2)]h(2)),

we have shown that ∆ ◦ F = (F ⊗ F) ◦ ∆. The other conditions which make F ∈End Hopf(A]σH, π) can be
checked easily. Thus the proof is completed.

4. The Special Crossed Product

In this section, we shall construct a special crossed product, and describe its endomorphisms.

Example 4.1. Let A be the Sweedler’s Hopf algebra over the complex number field C which is described as follows:

A = C < 1A, 1, x, 1x|12 = 1, x2 = 0, x1 = −1x >

with coalgebra structure ∆A(1) = 1⊗1, ∆A(x) = x⊗1+1⊗x, εA(1) = 1, εA(x) = 0,SA(1) = 1 = 1−1 and SA(x) = −1x.
Let H = C < 1A, h > be the group Hopf algebra with h2 = 1H, ∆H(h) = h ⊗ h, SH(h) = h = h−1, εH(h) = 1. Define
the action of H on A as follows:

1H · 1A = 1A, 1H · x = x, 1H · 1 = 1, 1H · x1 = x1,

h · 1A = 1A, h · 1 = 1, h · x =

√
2

2
e

3π
4 ix +

√
2

2
e
π
4 ix1,

h · x1 =

√
2

2
e
π
4 ix +

√
2

2
e

3π
4 ix1.

Define C-bilinear maps σ : H ⊗H→ A as follows:

σ(1H, 1H) = σ(1H, h) = σ(h, 1H) = 1A, σ(h, h) = 1.
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Then we have a crossed product A]σH which is Hopf algebra with the tensor coalgebra and the antipode S of A]σH
given by

S(1A]1H) = 1A]1H,S(1A]h) = 1]h,S(x]1H) = −1x]1H,

S(x]h) =(

√
2

2
e
π
4 i1x −

√
2

2
e

3π
4 ix)]h,S(1]1H) = 1]1H,

S(1]h) = 1A]h,S(1x]1H) = x]1H,S(1x]h) = (

√
2

2
e

3π
4 i1x −

√
2

2
e
π
4 ix)]h.

Now, we shall characterize the element of EndHopf(A]σH, π). Take a base of End(A) as follows:

L1 :1A 7→ 1A, 1 7→ 0, x 7→ 0, 1x 7→ 0,
L2 :1A 7→ 0, 1 7→ 1A, x 7→ 0, 1x 7→ 0,
L3 :1A 7→ 0, 1 7→ 0, x 7→ 1A, 1x 7→ 0,
L4 :1A 7→ 0, 1 7→ 0, x 7→ 0, 1x 7→ 1A,

L5 :1A 7→ 1, 1 7→ 0, x 7→ 0, 1x 7→ 0,
L6 :1A 7→ 0, 1 7→ 1, x 7→ 0, 1x 7→ 0,
L7 :1A 7→ 0, 1 7→ 0, x 7→ 1, 1x 7→ 0,
L8 :1A 7→ 0, 1 7→ 0, x 7→ 0, 1x 7→ 1,
L9 :1A 7→ x, 1 7→ 0, x 7→ 0, 1x 7→ 0,
L10 :1A 7→ 0, 1 7→ x, x 7→ 0, 1x 7→ 0,
L11 :1A 7→ 0, 1 7→ 0, x 7→ x, 1x 7→ 0,
L12 :1A 7→ 0, 1 7→ 0, x 7→ 0, 1x 7→ x,
L13 :1A 7→ 1x, 1 7→ 0, x 7→ 0, 1x 7→ 0,
L14 :1A 7→ 0, 1 7→ 1x, x 7→ 0, 1x 7→ 0,
L15 :1A 7→ 0, 1 7→ 0, x 7→ 1x, 1x 7→ 0,
L16 :1A 7→ 0, 1 7→ 0, x 7→ 0, 1x 7→ 1x.

Next, we shall consider Fl ∈End(A) which satisfies the conditions of Lemma 3.3. Let

Fl =

16∑
i=1

kiLi.

So we have

Fl(1A) = k11A + k51 + k9x + k131x,
Fl(1) = k21A + k61 + k10x + k141x,
Fl(x) = k31A + k71 + k11x + k151x,

Fl(1x) = k41A + k81 + k12x + k161x.

First, by (2) of Lemma 3.3 and applying to 1, we have k2 + k6 = 1. By (1) of Lemma 3.3, Fl(1A) = 1A. Thus it
follows that k1 = 1, k5 = k9 = k13 = 0. Since Fl preserves the multiplication, we have 1A = Fl(11) = Fl(1)Fl(1),
which yields the following equations: 

k2
2 + k2

6 = 1,
k2k6 = 0,
k2k10 = 0,
k2k14 = 0.

(R1)
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That Fl(x)Fl(x) = 0 yields 
k2

3 + k2
7 = 0,

k3k7 = 0,
k3k11 = 0,
k3k15 = 0.

(R2)

That Fl(1x)Fl(1x) = 0 yields 
k2

4 + k2
8 = 0,

k4k8 = 0,
k4k12 = 0,
k4k16 = 0.

(R3)

That Fl(1)Fl(x) = Fl(1x) yields 
k2k3 + k6k7 = k4,
k2k7 + k6k3 = k8,
k2k11 + k6k15 + k3k10 − k7k14 = k12,
k2k15 + k6k11 + k3k14 − k10k7 = k16.

(R4)

That Fl(x)Fl(1) = −Fl(1x) yields
k2k3 + k6k7 = −k4,
k2k7 + k6k3 = −k8,
k2k11 − k6k15 + k3k10 + k7k14 = −k12,
k2k15 − k6k11 + k3k14 + k10k7 = −k16.

(R5)

By (R5) and (R4), we can get k4 = k8 = 0, thus (R3) naturally holds. That Fl(x)Fl(1x) = Fl(1x)Fl(x) = 0 yield
k3k12 + k7k16 = 0,
k3k16 + k7k12 = 0,
k3k12 − k7k16 = 0,
k7k12 − k3k16 = 0.

(R6)

That Fl(1)Fl(1x) = Fl(x) and Fl(1x)Fl(1) = −Fl(x) yield
k2k12 + k6k16 = k11,
k2k16 + k6k12 = k15,
k3 = k7 = 0,
k2k12 − k6k16 = −k11,
k2k16 − k6k12 = −k15.

(R7)

Applying part (3) of Lemma 3.3 to 1, we have the following relations:
k10 = k14 = 0,
k2

2 = k2,
k2

6 = k6,
k2k6 = 0.

(R8)

Applying part (3) of Lemma 3.3 to 1x yields
k12 = 0,
k16 = k16k6,
k2k16 = 0.

(R9)
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Applying part (3) of Lemma 3.3 to x yields
k15 = 0,
k11 = k11k6,
k2k11 = 0.

(R10)

By (R1)-(R10), we can get k1 = 1, k3 = k4 = k5 = k7 = k8 = k9 = k10 = k12 = k13 = k14 = k15 = 0, and
k2

2 + k2
6 = 1,

k2k6 = k2k11 = k2k16 = 0,
k11 = k6k11 = k16k6 = k16.

Thus
Fl : 1A 7→ 1A, 1 7→ k21A + k61, x 7→ k11x, 1x 7→ k161x.

Case 1: If k2 = 0, then k6 = 1 and k11 = k16 are arbitrary complex number. Thus

Fl : 1A 7→ 1A, 1 7→ 1, x 7→ tx, 1x 7→ t1x,

where t ∈ C.
Case 2: If k6 = 0, then we have k2 = 1 and k6 = k11 = k16 = 0. Thus

Fl : 1A 7→ 1A, 1 7→ 1A, x 7→ 0, 1x 7→ 0.

Next, we shall describe all Fr ∈Hom(H,A) which satisfy the conditions of Lemma 3.4. Take a base of
End(H,A) as follows:

R1 :1H 7→ 1A, h 7→ 0,
R2 :1H 7→ 0, h 7→ 1A,

R3 :1H 7→ 1, h 7→ 0,
R4 :1H 7→ 0, h 7→ 1,
R5 :1H 7→ x, h 7→ 0,
R6 :1H 7→ 0, h 7→ x,
R7 :1H 7→ 1x, h 7→ 0,
R8 :1H 7→ 0, h 7→ 1x.

Let

Fr =

8∑
i=1

kiRi.

By part (1) of Lemma 3.4, it follows that k1 = 1, k3 = k5 = k7 = 0. Thus we have

Fr(h) = k21A + k41 + k6x + k81x.

Using εA ◦ Fr = εH, we have k2 + k4 = 1. Applying part (3) of Lemma 3.4 to h, we can gain the following
relations: 

k6 = k8 = 0,
k2 = k2

2,
k4 = k2

4.

Furthermore, such Fr which satisfy the above relations will be

(Fr)1 = R1 + R2, (Fr)2 = R1 + R4.
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Concretely,

(Fr)1 :1H 7→ 1A, h 7→ 1A,

(Fr)2 :1H 7→ 1A, h 7→ 1.

Now, we shall consider the pair (Fl,Fr) which satifies the part (4) of Lemma 3.3. After careful discussion,
we can get the following pairs:

(1◦)
{

Fl : 1A 7→ 1A, 1 7→ 1A, x 7→ 0, 1x 7→ 0,
Fr : 1H 7→ 1A, h 7→ 1A.

(2◦)
{

Fl : 1A 7→ 1A, 1 7→ 1A, x 7→ 0, 1x 7→ 0,
Fr : 1H 7→ 1A, h 7→ 1.

(3◦)
{

Fl : 1A 7→ 1A, 1 7→ 1, x 7→ 0, 1x 7→ 0,
Fr : 1H 7→ 1A, h 7→ 1A.

(4◦)
{

Fl : 1A 7→ 1A, 1 7→ 1, x 7→ tx, 1x 7→ t1x,
Fr : 1H 7→ 1A, h 7→ 1.

Observe that (3◦) and (4◦) satisfy the condition (3.12). By Theorem 3.5, we can get the elements of
EndHopf(A]σH, π) as follows:

F : 1A]1H 7→ 1A]1H,

1A]h 7→ 1]h,
1]1H 7→ 1]1H,

1]h 7→ 1A]h,
x]1H 7→ 0,

x]h 7→ 0,
1x]1H 7→ 0,
1x]h 7→ 0.

and

F : 1A]1H 7→ 1A]1H,

1A]h 7→ 1A]h,
1]1H 7→ 1]1H,

1]h 7→ 1]h,
x]1H 7→ tx]1H,

x]h 7→ tx]h,
1x]1H 7→ t1x]1H,

1x]h 7→ t1x]h.

Furthermore, the matrices of the elements of EndHopf(A]σH, π) under the base 1A]1H, 1A]h,1]1H, 1]h, x]1H, x]h, 1x]1H, 1x]h
are 

1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


,



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 t 0 0 0
0 0 0 0 0 t 0 0
0 0 0 0 0 0 t 0
0 0 0 0 0 0 0 t


.
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Thus AutHopf(A]σH, π) is isomorphic to

{



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 t 0 0 0
0 0 0 0 0 t 0 0
0 0 0 0 0 0 t 0
0 0 0 0 0 0 0 t


|0 , t ∈ C}.
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